实变函数论课件19 单调函数的结构
实变函数课件

E[ f a] E[a f a n] ,
n 1
所以 E [ f a ] 是可测集.
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
推论 设 f 在 E 上可测,则 E [ f = a ] 可测,不论
a 是有限实数或±∞ .
证 因为
E[ f a] E[ f a] E[ f a]
2 可测的充要条件 定理1 设 f 是定义在可测集 E 上的实函数.下列
任一条件都是 f 在 E 上可测的充要条件:
⑴ 对任何实数 a , E [ f a ] 都可测; ⑵ 对任何实数 a , E [ f < a ] 都可测;
⑶ 对任何实数 a , E [ f a ] 都可测; ⑷ 对任何实数 a , b ( a < b ), E [ a f < b ] 都可测 (充分性要假定 | f (x ) | < ). 证 只需证明条件 ⑴ , ⑷ 的充要性.
{ x [a, b] | f ( x ) c }
下午9时18分43秒
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
下午9时18分43秒
下午9时18分43秒
1 可测函数的定义
2 可测的充要条件 3 函数可测的充分条件 4 可测函数的四则运算 5 可测函数列的性质 6 可测函数与简单函数的关系 7 几乎处处问题
所以, m E[ f a] 0. 即E[ f a]为零测度集,从而可测 。 由函数可测的定义知, f ( x)在E上可测。
2018年8月8日9时18分
上一页 下一页 主 页 返回 退出
2024版《函数的单调性》全市一等奖完整版PPT课件

利用单调性证明不等式
1 2
构造函数 根据不等式的特点,构造一个与不等式相关的函 数。
判断函数单调性 通过求导或差分等方法判断所构造函数的单调性。
3
利用单调性证明不等式 根据函数的单调性,结合不等式的性质,证明不 等式成立。
2024/1/29
18
利用单调性解决实际应用问题
要点一
建立数学模型
要点二
判断函数单调性
2024/1/29
21
导数与微分在函数单调性研究中的应用
导数大于零的区间内函数单调 增加,导数小于零的区间内函 数单调减少。
2024/1/29
导数等于零的点为函数的驻点, 需要进一步判断其左右两侧导 数的符号来确定该点的单调性。
微分的概念可以应用于函数单 调性的研究,通过微分可以分 析函数的局部变化率,进而判 断函数的单调性。
14
指数函数与对数函数
对数函数 $y = log_a x$($a > 0, a neq 1$)的单调 性
当 $0 < a < 1$ 时,函数在 $(0, +infty)$ 上单调递减。
当 $a > 1$ 时,函数在 $(0, +infty)$ 上单调递增。
指数函数与对数函数的图像关于直线 $y = x$ 对称,即 互为反函数。
2024/1/29
19
05
函数单调性与其他知识点关联
2024/1/29
20
函数奇偶性与周期性对单调性影响
奇函数在对称区间上的单调性相 同,偶函数在对称区间上的单调
性相反。
周期函数在一个周期内的单调性 与整体单调性一致,可以通过研 究一个周期内的单调性推断整体
的单调性。
实变函数PPT

第一讲
1. 集合运算的基本性质 定理 1 (1) A A A , A A A (2) A A, A A, A A (3) A B B A, A B B A
(4) A B C A B C , A B C A B C
(5) A B C A B A C (6) A B C A C B C
第一讲
一. 言归正传
第1章 集合
§1.1 集合的运算
一. 集合的定义及其运算
1. 集合运算的定义
m
(1) 并: A B , An , An , A
n 1
n 1
(2) 交: A B , m , An An , A
n 1
n 1
(3) 差: A B
(4) 补:设 A S ,则 Cs A : S A
❖
(1)《微积分》或《数学分析》中讨论的函数都是比较好的函数,即
没有太多的间断点,基本上是连续函数,这些函数都有很好的可微性与可
积性,但在实际应用(理论与工程应用)中的函数一般都没有这样好的性
质。例如著名的Dirichlet函数。
D
x
1, 0,
x是0,1中的有理数 x是0,1中的无理数
在《数学分析》中,这个函数在0,1 的每一点不可微,在0,1
(9’)
S
A
S A
(10’)
S
A
S A
第一讲
一. 集合序列的上、下限集
定义 1.
假设An 是一列集合,称集合
Am
为序列
An
的
n1 mn
上限集,记作
lim
x
An
或
lim
x
sup
An
;称集合
实变函数论中的基本概念及性质分析

实变函数论中的基本概念及性质分析实变函数论是数学分析中的重要内容,主要研究实变函数的基本概念和性质。
实变函数是指定义域和值域都是实数的函数,在实际问题中具有广泛应用。
本文将从实变函数的基本概念、连续性、可导性、极限以及函数的性质等方面对实变函数进行分析。
一、实变函数的基本概念实变函数是数学中最基本的概念之一,它与虚变函数相对应,是指定义域和值域都是实数的函数。
实变函数可以表示为f:D→R,其中D为定义域,R为值域。
实变函数的定义域可以是一个区间、多个区间的并或交,甚至是整个实数集。
实变函数的定义有一些特点,首先是唯一性,同一个定义域和值域的实变函数只能有一个。
其次是有定义性,即每个值域中的元素都有相应的定义域中的元素与之对应。
此外,实变函数还具有有界性、单调性、周期性等多种性质。
二、实变函数的连续性和可导性连续性和可导性是实变函数的重要性质,对于函数的性质和应用具有重要意义。
连续性是指在定义域上函数的变化没有突变,没有间断点。
实变函数在某一点x=c处连续的充分必要条件是:函数在x=c处的极限存在且等于函数在x=c处的值。
如果函数在定义域的每一点处都连续,则称函数在该定义域上连续。
可导性是指函数在某一点处的导数存在。
实变函数f(x)在点x=c处可导的充分必要条件是:函数在点x=c处的两侧导数存在且相等。
如果函数在定义域的每一点处都可导,则称函数在该定义域上可导。
三、实变函数的极限极限是实变函数论中的重要概念,用于描述数列或函数在某一点处的逼近情况。
对于实变函数f(x),当x无限靠近a时,f(x)无限靠近L,我们称L是函数f(x)在点x=a处的极限。
实变函数的极限有一些基本性质,如保号性、四则运算、夹逼准则等。
利用这些性质,我们可以求解实变函数的极限,帮助我们更好地理解和分析函数的行为。
四、实变函数的性质分析实变函数的性质分析是数学分析中的重要内容,可以帮助我们更深入地研究函数的特点和应用。
实变函数的性质有很多,如有界性、单调性、周期性、奇偶性等。
实变函数论泛函分析课件

02 实变函数的定义与性质
实变函数的定义
01
02
03
定义域
实变函数的定义域是实数 集的一个子集,可以是有 限或无限的。
值域
实变函数的值域是实数集 的一个子集,可以是有限 或无限的。
函数表达式
实变函数可以表示为从定 义域到值域的映射关系, 通常用符号 f(x) 表示。
实变函数的性质
单调性
如果对于任意 x1<x2,都有 f(x1)≤f(x2),则称 f(x) 在其定义
微积分的应用
介绍微积分在各个领域的应用,如物理学、工程学、经济学等。
微积分的进一步发展
介绍微积分的进一步发展,如变分法、最优控制等。
04 泛函分析的基本概念
泛函的定义与性质
定义
泛函是将函数空间的每一个元素作为自变量,其值是实数或 复数的函数。
性质
泛函是定义在函数空间上的,它具有连续性、可加性、线性 等性质。
么该空间是自完备的。
共鸣定理
在赋范线性空间中,如果存在 一个与所有单位球相交的集合,
那么该空间是自完备的。
开映射定理
如果X和Y是赋范线性空间,T 是X到Y的开映射,那么T是满
射。
闭图像定理
如果X和Y是赋范线性空间,T 是X到Y的连续线性映射,那
么T的像集是闭的。
05 泛函分析的应用领域
微分方程的求解
分析中的某些问题。
应用领域
实变函数论和泛函分析 在许多应用领域都有交 叉,如 质
线性性质
对于任意实数k和函数f,g,有 $k(f+g)=(kf)+(kg)$, $(kf)+(kg)=(k+k)(f)$。
连续性质
如果f_n(x)是函数空间中的收敛序列, 那么$f_n(x)$的极限函数也是连续的。
实变函数论PPT课件

VS
牛顿-莱布尼兹公式
对于任何给定的连续函数,在区间上的定 积分都可以通过求和的方式计算,该求和 公式称为牛顿-莱布尼兹公式。
微分与积分的应用举例
微分的应用
积分的应用
在物理学中,微分被广泛应用于计算速度、 加速度、位移等物理量;在经济学中,微分 被用于计算边际成本、边际收益等经济指标。
在物理学中,积分被广泛应用于计算面积、 体积、能量等物理量;在经济学中,积分被 用于计算总成本、总收入等经济指标。
实数集合R在通常的度量下是连 续的,即任意两个不同的实数之 间都存在其他实数。
在实数集合R中,任意两个不同 的实数之间都存在无限多的其他 实数。
实数的运算性质
加法性质
实数的加法满足交换律和结合律,即对任意实数x、y和z, 有x+y=y+x、(x+y)+z=x+(y+z)。
01
乘法性质
实数的乘法满足结合律,即对任意实数 x、y和z,有(x*y)*z=x*(y*z)。
有限覆盖定理
如果E是一个闭区间,{[a(n),b(n)}是一个开区间族,且E被 {[a(n),b(n)}覆盖,那么存在一个有限的子集族 {[a(n_i),b(n_i)}使得E被它覆盖。
03
集合论基础
集合的定义与性质
总结词
集合的基本概念和性质
详细描述
集合是由某些确定的元素所组成的,具有明确的概念和性质。集合可以通过列举法或描述法进行定义,并具有确 定性、互异性和无序性等基本性质。
实变函数论ppt课件
目录
• 引言 • 实数理论 • 集合论基础 • 测度论基础 • 可测函数与积分理论 • 微分与积分定理 • 实变函数论的应用
实变函数课件
实变函数在物理学中的应用
描述电磁场
通过实变函数,可以精确地描述电磁场的 分布和变化,为电磁学的研究提供数学工
具。
解决偏微分方程
实变函数可用于解决物理学中的偏微分方 程,如波动方程、热传导方程等,从而揭 示物理现象的数学规律。
量子力学
在量子力学中,实变函数被用于描述粒子 的波函数,揭示微观粒子的运动规律。
微观经济学
实变函数可用于描述消费者的 效用函数和生产者的成本函数 ,揭示微观经济行为的数学规
律。
宏观经济学
通过实变函数,可以建立宏观 经济模型,分析经济增长、通 货膨胀等宏观经济现象的数学
机制。
金融数学
实变函数在金融数学中有广泛 应用,如期权定价、投资组合 优化等,为金融市场的分析和
决策提供支持。
谢谢
积分的不等式与估计
介绍积分不等式和估计的基本方法,如Holder不等式、 Minkowski不等式、Chebyshev不等式等,并举例说明其应用。
05 实变函数的微分学
CHAPTER
导数与微分的概念
导数定义
详细阐述实变函数导数的定义及其几 何意义,包括左导数、右导数和导函
数等概念。
可导性判定
介绍判断函数在某点是否可导的方法 ,包括利用定义、导函数连续性等。
与连续性的区别
一致连续性是函数在整个区间上的性质,而连续性是函数在一点或一些点上的性质。一致连续的函数在整个区间上具 有“均匀”的连续性,即函数值的变化不会太快或太慢。
性质
一致连续的函数具有有界性、可积性等性质。
04 可测函数与积分
CHAPTER
可测函数的概念与性质
可测函数的定义
详细解释可测函数的定义,包括在给定集合上 的函数及其相关性质。
实变函数论ppt课件
21
第27讲 Lp-空间简介
| f (x) g(x) || f (x) | | g(x) | a.e.[E]
这意味着 f (x) 与 g (x) 的符号在E上几乎处处
1
相 同, 从而由 | f (x) | c p | g(x) | a.e.[E] 得
1
1
f (x) c p g (x) a.e.[E] 所以 f (x) c p g(x) a.e.[E] ,
由上面的讨论,显见对任意 f , g Lp (E,) 有
0 ( f , g)
7
第27讲 Lp-空间简介
即 是Lp (E) Lp (E) 上非负的有限函数。它是不是Lp (E) 上的距离呢?为此,设 ( f , g) 0 ,则得
1
[ | f (x) g(x) |p dx] p 0 , E
则显然有 [ f ] [g] 。这样, 作为 Lp (E) Lp (E)
上的函数的确满足距离定义中的(i),至于(ii)则是
显而易见的,所以只需验证它是否满足(iii)。
10
第27讲 Lp-空间简介
为方便起见,以后也用 f 记 [ f ],只要说f Lp (E)
则指的就是与 f 几乎处处相等的函数类[ f ] ,若
证毕。
由定理2不难看到 Lp (E) Lp (E上) 的函数
满足三角不等式,即对任意 f , g, h Lp (E) ,
22
第27讲 Lp-空间简介
有 ( f , g) ( f , h) (h, g) 。 1
事实上, ( f , g) [ |f (x) g(x) |p dx] p 1
|f g |p dx 0 ,且
p 1
,注意到
p
实变函数论讲义
第1章集合与点集实变函数论作为现代分析数学的基础,其知识结构是建立在集合论之上的.集合论产生于19世纪70年代,由德国数学家康托尔(Cantor)创立,它是整个现代数学的开端及逻辑基础.作为本科教材,本章只介绍必需的集合论知识,而不涉及有关集合论公理的讨论.1.1 集合及相关概念大家在中学就认识了集合这个概念.所谓集合,是指具有某种特定性质的对象的全体.集合中的对象称为该集合的元素.集合通常用大写英文字母A,B,C,…表示;元素通常用小写英文字母a,b,c,…表示.今后用一些特殊的记号表示特殊的集合:R表示全体实数形成的集合;C表示全体复数形成的集合;N,Z,Q分别表示自然数集、整数集和有理数集.另外,不含任何元素的集合称为空集,用记号表示.集合的具体表示方法一般有两种:一种是枚举法,如集合{1,2,3,4,5};一种是描述法,例如,大于20的自然数组成的集合,可写为{x|x>20,且x为自然数}.一般地,若A是具有某种性质P的元素组成的集合,通常记为A={x|x具有性质P}.对于给定的某集合A及某对象a,若a是A中的元素,就说a属于集合A,记为a∈A;否则,就说a不属于集合A,记为给定两个集合A和B,若A中的元素都属于B,则称A是B的子集,记为或进而,若同时有和,则A=B.对于任意的非空集合A,空集和A当然是A的子集,这两个子集称为平凡子集.除此之外的子集称为真子集.例1.1.1 写出{1,2,3}的所有子集,由此计算{1,2,…,n}的子集的个数,其中n∈N.{1,2,3}的所有子集是:,{1,2,3},{1},{2},{3},{1,2},{1,3},{2,3},第1章集合与点集1.1集合及相关概念共个.一般地,{1,2,…,n}的子集的个数是:C0n+C1n+…+C n n=2n,其中C k n=n!k!(n-k)! (k∈{0,1,…,n})为组合数公式.任给集合A,它的所有子集构成的集合称为它的幂集,记为1.1.1 集合的运算我们知道,数可以进行运算,并由此生成新的数.类似地,集合之间也可以进行运算,并由此生成新的集合.其中,最常用的运算有“并”、“交”、“差”三种.定义1.1.1任意给定集合A和B,集合{x|x∈A或x∈B}称为A与B的并集,并集也称为和集,记为A∪B,或A+B;集合{x|x∈A且x∈B}称为它们的交集,交集也称为积集,记为A∩B,或AB;推而广之,给定集合族∈Γ,其中Γ是指标集,则此集合族的并集与交集分别为∪α∈∈Γ,x∈Aα};(1.1)∩α∈∈Γ,x∈Aα}.(1.2)集合{x|x∈A且称为A与B的差集,又称补集,记为A\\B,或A-B.注意:一般来说(A-B)∪B未必等于A.如果已知则A-B称为B相对于A的余集,记为AB,特别地,如果我们在某一问题中所考虑的一切集合都是某一给定集合S的子集时,集合B相对于S的余集就简称为B的余集, SB简记为而集合(A-B)∪(B-A)称为A与B的对称差,记为A△B.例1.1.2 设-1+1i≤x≤1--1k<x<1k,k=1,2,…,则∪mi=1B i=x-1+1m≤x≤1-1m, -1p<x<1p. 其中n,m,p∈N.由此知∪-1<x<1},集合的并、交、差(补)运算满足下面的运算律:定理1.1.1 (1) 交换律A∪B=B∪A, A∩B=B∩A;特别地A∩A=A,A∪A=A, A∪=A,(2) 结合律A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C.(3) 分配律A∩(B∪C)=(A∩B)∪(A∩C);一般地A∩∪α∈∪α∈(4) 大小关系∪B).(5) 若∈Γ,则∪α∈∪α∈∩α∈∈特别地,若或∈Γ,则∪α∈∈证明下面仅证A∩∪α∈∪α∈任取x∈A∩∪α∈则x∈A且α0∈Γ,使得x∈Bα0,于是x∈∪α∈由x 的任意性得A∩∪α∈∪α∈反过来,任取x∈∪α∈α),则α0∈Γ,使得x∈即x∈A且x∈Bα0,从而x∈A且x∈∪α∈故x∈A∩∪α∈由x的任意性得∪α∈∪α∈综合起来,等式成立.□以下给出关于余集计算的部分性质. 定理1.1.2 (1) A-(2) 若则SA SB,B\\A=B∩A c;(3) 对偶律(德摩根(De)律)若则(A∪B)c=A c∩B c,∪B c.一般地∩α∈∪α∈∪α∈∈证明下面仅证对偶律:若则(A∪B)c=A c∩B c,其余结合相关定义类似可得.事实上,由补集定义, (A∪B)c={x|x∈X且∪B}={x|x∈X,x A且={x|x∈X,x∈A c且x∈B c}=A c∩B c.□德摩根律使我们通过余集的运算把并集变为交集,把交集变为并集.这种转化在集合的运算及论证中是很有用的.1.2 集合列的上极限和下极限众所周知,数列可以讨论极限.类似地,集合列也可以讨论极限.以下我们给出集合列及其极限的定义.定义1.1.2 一列集合(n=1,2,…)称为集合列,也可记为属于上述集合列中无限多个集的元素的全体所形成的集称为该集合列的上极限,或称为上限集,记为lim n→∞或lim n→∞sup A n;对于上述集合列,那些除了有限个下标外,属于该集合列中每个集合的元素的全体形成的集称为这个集合列的下极限,或称为下限集,记为lim n→∞A n或lim n→∞inf等价地,lim n→∞sup A n={x|对于任意的自然数n,存在k≥n,使得x∈A k}, lim n→∞inf存在∈N,当时,x∈A n}. 由此知,lim n→∞inf n→∞sup A n.进而,对于给定集合列若其上、下极限相等,则称集合列收敛,其极限即为它的上(或下)极限,记为lim n→∞A n.集合列的上(下)极限可以用“并”与“交”运算来表达. 定理1.1.3 给定集合列n},则lim n→∞∪lim n→∞inf∪证明利用lim n→∞∈N,k≥n,使得x∈A k}(1.3)来证明关于上极限的等式,关于下极限的情况可类似证得.记∪事实上,设x∈A,则对任意取定的n,存在m>n,使得x∈A m,即对任意n,总有x∈∪故x∈B,继而反之,设x∈B,则对任意的n>0,总有x∈∪即总存在m(m≥n),使得x∈A m,故x∈A,继而从而A=B,另一等式可同样证明.□若集合列满足:∈N,则称是单调增加集合列;若∈N,则称之为单调减少集合列.统称为单调集合列.由定理1.1.3易知,单调集合列是收敛的.具体地,若为单调增加集合列,则lim n→∞A n=∪若为单调减少集合列,则lim n→∞A n=∩∞n=1A n.例1.1.3 设是如下一列点集:A2m+1=0,2-12m+1〗,m=0,1,2,…, 〗, 我们来确定的上、下极限.因为闭区间\中的点属于每个而对于开区间(1,2)中的每个点x,必存在自然数N(x),使得当n>N(x)时,有1+12n<x≤2-12n+1,即当n>N(x)时但x∈A2n+1.换言之,对于开区间(1,2)中的x,具有充分大的奇数指标的集合都含有x,即中有无限多个集合含有x,而充分大的偶数指标的集合都不含有x,即中不含有x的集合不会是有限个.又区间\n→∞sup\n→∞inf\例1.1.4 设为:当n=2k时,k∈N;当n=2k+1时,k∈N. 则lim n→∞sup∪{(0,y)|y≥0};lim n→∞inf定义1.1.3设A,B是两个集合,称一切有序“元素对”(x,y)(其中x∈A,y∈B)形成的集合为A与B的直积集或笛卡儿(Descartes)积,记为A×B,即A×B={(x,y)|x∈A,y∈B},其中(x,y) =(x′,y′)是指x=x′,y=y′,X×X也记为例1.1.5 设A={1,2,3},B={4,5},则A×B={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.例1.1.6 \×\为平面上单位闭正方形.例1.1.7 Q×Q=Q Q2为平面上有理点集.习题习题1.3 试证:(1) A∩(B∪C)=(A∩B)∪(A∩C);(2) (A\\B)∪B=(A∩B)\\B的充要条件是(3) A-(B-C)=(A-B)∪(A∩C).1.4 证明:(1) A△B=B△A;(2) (A△B)△C=A△(B△C);(3) A∩(B△C)=(A∩B)△(A∩C);(4) 对任意的A,B,存在C使得A△C=B.1.5 设是一集合列,作-∪n-1k=1A k,n=2,3,…,试证互不相交,且∪ni=1A i=∪nj=1B j,n=1,2,…,∞.1.6 设f(x),g(x)是点集E上定义的两个函数,a,k为任意实数,但k≠0.则(1) {x: f(x)≥a}=∩∞n=1x:f(x)>a-1n;(2) {x: |f(x)|>k}∪x: |g(x)|>ak.1.7 试证:(1) ∪∞i=1(A\\(2) ∩∞i=1(A\\∪i.1.8 设-求出集合列的上限集和下限集.1.9 设A n=E,n=2k-1,F,n=2k, 求集合列的上限集和下限集.1.10 设m为整数,n=1,2,…,试证lim n→∞sup n→∞inf1.11 设是\上的一列函数,且存在\使得lim n→∞f n(x)=1,x∈\\\E, 0, x∈E.令∈\: 求集合lim n→∞E n.1.12设以及f(x)是定义在R上的实值函数,则使不收敛于f(x)的一切点x所形成的集合为∪∞k=1∩∞N=1∪∞n=Nx:-11. 设(k=1,2,…)随着k→∞单调下降趋于(n=1,2,…)定义在E上∈E),试证:对任意的a有(1) E\=∪\;(2) E\\;(3) E\=∪\.注:E\={x∈E|f(x)>a}.1.1.2 映射、基数与可数集1.2 映射、基数与可数集我们都知道,实数是可以比较大小的,那么自然地联想一下,集合有没有大小的差别呢?直观地想,如果是有限集合,可能集合元素的个数多集合就大,那么对于含有无限个元素的集合,集合的大小该怎么比较呢?全体实数构成的集合就一定比全体正实数构成的集合大吗?在对集合的定义和基础运算有了一定的了解之后,我们接下来就介绍一下用以刻画集合大小的概念:基数.在此之前,我们要引入映射的概念,本节的最后,我们还将向大家介绍一种最常见的集合:可数集.1.2.1 映射大家都熟悉函数概念,下面要讲到的映射是函数概念的抽象化.定义1.2.1给定两个非空集合X,Y,若对于X中每个元素x在Y中都存在唯一的元素y与之对应,则称这个对应为映射.若用φ表示这种对应,则记为φ:并称φ是从X到Y的一个映射.此时,x∈X在Y中对应元y称为x在映射φ下的像, x称为y的一个原像,记为y=φ(x).进而,y的原像集为{x|y=φ(x),x∈X},记为-1(∈X}Y称为映射φ:X→Y的值域,而X为定义域.特别地,若φ(X)=Y,则称映射φ是满射,也称为到上的映射(X到Y上的映射);若对于每个y∈φ(X)其原像集-1(y)是单点集,等价地,若x1,x2∈X,当时必有则称该映射是单射,也称为一一映射.注1.2.1 一一映射存在逆映射,即-1:-1(y)=x,当φ(x)=y时.进而,到上的一一映射称为双射,也称为一一对应.给定映射φ:X→Y,及则A的像集为∈A},B的原像集为-1(B)={x|φ(x)∈B}.综上易得下面关于映射与集合的并和交运算的关系式:φ∪α∈∪α∈φ∩α∈∈φ-1∪α∈∪α∈--1∩α∈∈-例1.2.1给定非空集合X,定义其非空子集A上的特征函数为χA(x)=1,x∈A,于是是从X的幂集到{0,1}上的映射.而且可以利用特征函数来反馈集合本身的特征:1.2.2 基数给定一个集合,若它只含有限个元素则称为有限集;否则,就称为无限集.对于有限集来说,若不考虑元素的具体特性,则所含元素的个数是一个基本而重要的量,因与元素个数有关的问题一般会涉及元素个数的比较.两个有限集是否含有相同数量的元素可用能否建立一一对应来衡量.受此启发,尽管对于无限集来说谈论个数没有实际意义,但比较两个无限集所含元素的多少,仍然可以用能否建立一一对应来度量.定义1.2.2 给定集合A,B,若存在从A到B的一一对应,则称集合A与B对等,记为A~B.对等关系有下述性质. 定理1.2.1 任给集合A,B,C,有(1) (自反性)A~A;(2) (对称性)若A~B,则B~A;(3) (传递性)若A~B,且B~C,则A~C.符合上述三条的关系称为等价关系.因此,集合之间的对等是一种等价关系.下面,我们描述性地给出集合基数的概念.定义1.2.3设A,B为给定两个集合,如果A~B,那么就称集合A与集合B的基数或者势相同.记为=.因此,对等的集合具有相同的基数(势).特别地,当A是非空有限集时,则存在某自然数使得A与一一对应,而由唯一确定,于是可以认为=n 0.由此知,基数(势)的概念是通常元素个数的推广.以下给出一些常见的集合的例子.例1.2.2 (0,1)~R.事实上,令φ:-π2,则易知φ建立了(0,1)与R之间的一一对应.例1.2.3任意两个圆周上的点集具有相同的基数.事实上,不妨令任给的两个圆同圆心,于是让从圆心出发的同一条射线与两个圆的交点相互对应,则该对应是一一对应.有了集合大小的概念--基数,接下来,我们给出基数大小比较的法则.定义1.2.4给定两个集合A和B,若存在B的子集使得A~则称A的基数不大于B的基数, 记为≤;若≤,并且≠,此时称A的基数小于B的基数,记为<.自然数可以比较大小,类似地,基数也可以比较大小.即,对于任意给定的两个基数α,β,关系式α<β,α=β,α>β,这三者中有且仅有一式成立.证明要涉及集合论的公理系统,超出本教材范围,故略.对于自然数a,b,若a≤b且b≤a则a=b.对于基数也有类似的结论,也就是说集合的大小在某种意义下也是可以比较的. 定理1.2.2(伯恩斯坦(Bernstein)定理)给定集合A,B,若≤且≥,则=.证明由题设,存在双射φ:及双射ψ:下面用迭代法寻找及使得φ(A′)=B\\B′,同时ψ(B′)=A\\A′.为此,考虑下面的方程组:φ(A′)=B\\B′,ψ(B′)=A\\等价地A′=A\\ψ(B′),B′=B\\φ(A′).(1.4) 为了求解方程组(1.4),运用迭代法,逐次作A1=A\\ψ(B), \\\\\\\\-1),\\由上述构造知注意到ψ是一一映射,于是有再结合德摩根律,有∪∪∞i=1(A\\-1))=A∩∞-- 此处记类似地,可得\\∪从而,式(1.4)有解A′=∪定义映射Φ(x)=φ(x),x∈-1(x),x∈A\\A′. 由上述构造知,φ(A′)=B\\-1(A\\A′)=B′,于是Φ是满射.至于Φ的单射性由φ及ψ的单射性即得.因此,Φ是从A到B上的一一对应.从而,A~B.□推论1.2.1 设~C,则A~B,B~C.证明以A~B为例,设φ是A和C之间的一个一一对应,令x∈A,φ(x)∈B},则~B,取则自然有~A.于是由伯恩斯坦定理有A~B.1.13 可数集本小节我们给出最常见的一种无穷集合--可数集的定义,并研究其相关性质.定义1.2.5与自然数集对等的集合称为可数集,或称为可列集.于是任意的可数集A均可写成A={反之,这种形式的集合均为可数集.可数集的基数记为0.下面的定理表明,可数集的基数在无限集中是最小的. 定理1.2.3任意无限集均包含可数子集.证明设A是任意给定的无限集,任意取定∈A,因A\\仍然是无限集,再任意取定2∈A\\{a1},依次类推,在A\\中取出在A\\中取出照此继续,即得A的可数子集进一步,我们有下述定理.□定理1.2.4若X是一个无限集,Y是有限集或可数集,则X∪Y=.证明因X∪Y=X∪(Y\\X),故不妨设若Y是可数集,记由于X是无限集,由定理1.2.3知,X有可数子集于是有分解∪(X\\X1) .令φ:X∪Y→X,使得-1,n=1,2,…;φ(x)=x,x∈X\\X 1.由此构造知φ是X与X∪Y之间的一一对应;若Y为有限集,则对应的取为与Y有相同个数的X中的有限集,然后类似于上面的证明即得.□众所周知,有限集不可能和它的任意真子集建立一一对应关系.无限集与有限集的本质区别就在于此,即下面的定理. 定理1.2.5集合X是无限集的充要条件是,存在X的真子集Y有Y~X.证明因若X是有限集时,X不可能与它的任意真子集对等,由此得证充分性;下证必要性:任取X的一个有限子集A,因X是无限集,故X\\A亦是无限集,利用定理1.2.4得,X\\A=(X \\A)∪A=,记Y=X\\A,得证.□下面一系列定理关心的是集合及其子集的可数性问题. 定理1.2.6可数集的子集如果不是有限集,则一定是可数集.证明设A是可数集是A的一个无限子集.首先,因故其次,因是无限集,由定理1.2.3可知于是由伯恩斯坦定理得即是可数集.□定理1.2.7 设A为可数集,B为有限或可数集,则A∪B为可数集.证明设或(1)先设由于可数集总可排成无穷序列,当B有限时,A∪B={b1,b2,…,b n,a;当B可数时,A∪B={a1,b1,a2,b2,…,a n,b n,…},可见A∪B总可以排成无穷序列,从而是可数集.(2) 一般情况下,此时令-A,则A∩B*=,A∪B*=A∪B.由于B至多可数,故作为B的子集,也至多可数(有限集或可数集),由(1)的证明知,A∪B*可数,故A∪B也可数.□推论1.2.2设是有限集或可数集,则∪ni=1A i也是有限集或可数集,但如果至少有一个是可数集,则∪ni=1A i必为可数集. 定理1.2.8 可列个可数集的并集是可数集.证明设(n=1,2,…)是一列可数集.(1)先设因为都是可数集,于是可记A n={a n1,a n2,…,a nk,…},n,k=1,2,…,从而∪中元素可按下述方式排成一列:∪规则是:排第一位,当i+j>2时排在第j+∑i+j-2k=1k位因此∪是可数集(注:当部分是有限集时仍适用).(2) 一般情况下,各可能相交,令-∪i-1j=1A j(i≥2),则且∪∪由可数易知都是有限集或可数集,如果只有有限个不为空集,则由推论1.2.2易知∪为可数集(因为至少为可数集);如果有无限多个(必为可数个)不为空集,则由(1)知∪∪也是可数集,故在任何场合∪都是可数集.□推论1.2.3 (1) 有限集与可数集的并是一可数集;(2) 有限个可数集的并是一可数集;(3) 可数个互不相交的非空有限集的并是一可数集;(4) 可数个可数集的并是一可数集. 例1.2.4 整数集,有理数集均为可数集.事实上,整数集Z=N∪(-N),其中-为负自然数全体的集合. 因映射f:N→-N,f(n)=-n,建立了N与-之间的一一对应,故-N是可数集.于是由定理1.2.7知Z是可数集.对于有理数集,记Q+为正有理数全体的集;Q-为负有理数全体的集,于是Q=Q+∪Q-∪{0}.令A n=1n,2n,3n,…则(n∈N)是一列可数集,而Q+=∪从而由定理1.2.8知Q+亦可数;又Q-与Q+通过映射f(x)=-x (x∈Q+)建立了一一对应,于是Q-也可数.再利用定理1.2.7即得Q是可数集.由例1.2.4易得下面一些今后很有用的结论:有理系数多项式全体所构成的集合是可数集;R中无限个互不相交的开区间所形成的集是可数集.事实上,在每一个开区间中任意取定一个有理数,由题设可知开区间与取定的有理数是一一对应的.因此这些有理数形成Q的一个无限子集,记为Q 1,由定理1.2.6得Q1可数,从而得证.注1.2.2若A中每个元素可由n个互相独立的记号一对一地加以决定,各记号跑遍一个可数集,即A={a x1,x2,…,x n|x k=x k(1),x k(2),x k(3),…;k=1,2,…,n},则A为可数集.例1.2.5元素是由k个正整数所组成的集合,其全体构成一可数集A={(n 1,n2,…,n k)|n i∈Z+}.例1.2.6 整系数多项式a0x n+a1x n- -的全体是一可数集.记a a0,a1,…,a n=a0x n+a1x n- -则整系数多项式的全体可记为∪,为可数集,其中代数数的全体是一个可数集(所谓代数数,就是整系数多项式的根).事实上,整系数多项式的全体可数,而每一个整系数多项式只有有限个根,故代数数的全体是一个可数集.例1.2.7 N与R不对等,即N≠R.若不然,存在N与R的一个一一对应,将与N中n对应的元素(n)记为则R上至少有一个单位长度的区间不含不妨设此区间为\,将\分为三等分,则0,13〗,23,1〗中至少有一个不含以表示这个区间,将三等分,其左、右两个区间中至少有一个区间不含记为依此类推,可得一串闭区间},满足:(1) 且的长度趋于0; (2)由闭区间套定理知但对任意的换言之不在R中,这是不可能的.这一矛盾说明与R不可能对等.例1.2.8R上任一单调函数的不连续点全体的集至多可数,即或为空集,或为有限集,或为可数集.不妨设f(x)是单调递增函数.若f(x)在R上连续,则其不连续点集为空集;若存在间断点由柯西(Cauchy)收敛原理可知-0)与均存在,于是f(x1-0)=lim x→x1-表明对应开区间-对于两个不同间断点和由函数f(x)的单调性可得,开区间-与-互不相交.进而,由上面的分析知,f(x)的不连续点集与上述开区间形成的集合之间存在一一对应,于是,或为有限集,或为可数集.1.14 不可数集与连续基数对于一个无限集,若不是可数集,则称之为不可数集. 定理1.2.9开区间(0,1)是不可数集.证明用反证法:假若(0,1)是可数集,则可记而每个(i=1,2,…)均可按下述方式唯一表示成十进制纯小数:a(1)=0.a(1)1a2(1)a3(1)…,(2)…,(3)…,规定,上述各数不能从某位起全为0.令满足:当当由上述构造知∈(0,1),但这与假设矛盾.□由前面的例1.2.2及定理1.2.9得,实数集R是不可数集.今后用c表示实数集R的基数,称之为连续基数(势).而且由定理1.2.9知例1.2.9 (a,b)=c,其中a,b∈R.事实上,令φ(x)=a+x(b-a),x∈(0,1),则φ建立了(0,1)与(a,b)之间的一一对应,于是(a,b)=(0,1)=c.类似地,可证(-∞,0)=(0,+∞)=\=(a,b\]=\=\=(0,1)=c.下面的定理关心的是连续基数的性质问题. 定理1.2.10设是一列互不相交的集合,它们均有连续基数,则并集∪n也有连续基数.证明注意到\及\故∪~∪∞n=1\即∪n有连续基数.□由定理1.2.10易知,平面R2有连续基数,即R2=c.类似地有R n=R∞=c,此处R∞是指可数个R的笛卡儿积.定理1.2.3告诉我们,可数集在无限集中间基数最小,那么有没有最大的基数呢?答案是否定的,即下面的结论. 定理1.2.11任给一个非空集合是其幂集,即由A的所有子集形成的集合.则证明假若A~则存在一一对应φ:于是对于每个a∈A,都唯一存在A的子集φ(a)与之对应.作A的子集∈A|xφ(x)}.根据假定,应有A中元素与对应.由此,若∈A0,则与的定义矛盾;若,则由的定义知又应该属于矛盾.于是A与不对等.进而,单点集全体形成的真子集,记为A ~,显然A~~A,因此例1.2.10其中记从自然数集N到两点集{0,1}的所有映射形成的集.事实上,对于任意的f∈{0,1}N,令φ:则φ是从到(0,1\]的一一映射,于是有0,1\];另一方面,每个x∈(0,1\]均可唯一表示(规定下面二进制表达式中必须出现无限多个1)为x=∑∞n=1x n2n,∈{0,1}.令∈N,则∈{0,1}N.进而,定义映射φ:∈(0,1\],则φ是从(0,1\]到的一一映射,于是有(0,1\再利用伯恩斯坦定理即得\]=c.注意到N=0,例1.2.10用记号表示,即既然没有最大的基数,那么限定在0与c之间情况又如何呢?集合论的奠基者康托尔于1878年提出下面的猜想:在0与c之间没有基数存在,即不存在集合X,使得0<<c.这个问题又被称为连续统假设问题.20世纪伟大的数学家希尔伯特(Hilbert)在1900年国际数学家大会上提出了23个重大数学问题,其中就包括连续统假设问题.而连续统假设问题直到1963年才由科恩(Korn)和哥德尔(Godel)解决:他们证明了,连续统假设与已有的集合论公理系统是相容的,既不能被证明也不能被否定. 习题习题1.15 设f: X→Y是一个满射,证明下列3个命题等价:(1) f是一一映射;(2) 对任意的有f(A∩B)=f(A)∩f(B);(3) 对任意的若则1.16 设f: X→Y,证明f是满射的充要条件是,对任意的有-1(A))=A.1.17 设映射f: ∈I(I为指标集),试证:(1) f∪α∈IAα=∪α∈If(Aα);(2) f∩α∈IAα∩α∈If(Aα);(3) 若则--∈I,i=1,2; (4) -1∪α∈IBα=∪α∈If-1(Bα);(5) -1∩α∈IBα=∩α∈If-1(Bα);(6) -1(Y--1(Y)--1.18 设E是X的子集,定义在X上的特征函数为χE(x)=1,x∈E, 0,x∈X-E.如果都是X的子集.证明:(1) ∪B(x)-(2) (3) --(4) n→∞sup sup(5) n→∞inf n→∞inf 5.设分别是到到的一一映射,问是否一定存在\\到\\的一一映射?1.1.3 试构造(0,1)与\7.试构造出一个从无理数集Q c到实数集R之间的一一映射.1.2.2 试证:若集合A中每个元素由n个独立的记号决定,各记号跑遍一可数集B,即A={a x∈B,k=1,2,…,n},则A为可数集.1.19平面点集A中任意两点之间的距离都大于某一固定常数d,且d>0,则A至多为可数集.1.20 设A=B∪C,=c,则B与C中至少有一个集合的势为c.1.21 如果A=∪则至少有一个的势为c.1.22 试证:若且A~A∪C,则有B~B∪C.1.23 证明:\上的全体无理数作成的集合其基数是c.1.24 证明:若E是可列集,则E中存在可列个互不相交的真子集. 15.若f(x)是R上的实值函数,则集合A1={x|x∈R,f(x)在x处不连续,但右极限f( x+0)存在是可数集.1.1.4 证明\上的连续函数全体C\的势为c.1.1.5 若对任意有限个x:使得∑ni=1f(x)≤M成立,试证,能使f(x)≠0的x的集合至多为可数集.1.1.6 证明(a,b)上的凸函数在除一个至多可数集的点外都是可微的.1.3R n中的点集1.3 中的点集1.3.1 n维欧氏空间R是实数集,其几何表示即数轴;R2={(x,y)|x,y∈R}是有序实数对全体形成的集合,其几何表示即坐标平面.对于任意的∈R2, 定义两种线性运算:(1) 加法(2)数乘∈R.则R2关于这两种运算构成线性空间,(0,1),(1,0)是R2的一组基,因个数为两个,故R2称为二维线性空间.因平面上的点与从原点出发以该点为终点的向量一一对应,故R2又称为向量空间,其中的元素又称为向量.平面几何(欧几里得(Euclid)几何)及平面解析几何就是建立在R2基础之上的.推而广之,有下面的定义.定义1.3.1 n维欧氏空间为集合{x=(x1,x2,…,x n)|x i∈R,i=1,2,…,n(n∈N)},记为R n,或记为R×R×…×R,共n个R.类似地关于上述加法及数乘运算构成一个线性空间为R n的一组基.沿用二维线性空间的称谓也称为n维向量空间,其中的元素称为点或向量.对于任意的∈R n,定义d(x,y)=∑ni= -则d(x,y)有下述3条性质:(1) 正定性,d(x,y)≥0,且d(x,y)=(2) 对称性,d(x,y)=d(y,x);(3) 三角不等式,d(x,z)≤d(x,y)+d(y,z).这3条性质是距离的本质刻画,因此,上面定义的d(·)是R n上的一种距离,于是称为距离空间.性质(1), (2)由定义立得;性质(3)的证明要用到下述柯西-施瓦茨(Cauchy- Schwarz)不等式.引理1.3.1(柯西-施瓦茨不等式)。
实变函数与泛函分析全册精品完整课件
University of science & Technology of China
五大论:
集合论-着重介绍 Cantor 关于集合的势论的知识.
测度论-讲解 Lebesgue 测度的思想与方法.
积分论-讲解 L 积分的定义、性质、极限定理和 L 可积函数空间,积分与微分的关系.
空间论-主要讲述无穷维赋范空间和内积空间,以 及与共轭空间有关的知识. 算子论-主要讲述三大基本定理(共鸣定理、开映 射定理、闭图像定理),共轭算子以及算子谱理
论.
University of science & Technology of China
教学目的
使学生掌握 L 测度与 L 积分的基本理论、基本思想 与方法,为今后进一步使用现代分析普遍应用的这 一基本工具打下基础。
使学生掌握有关空间和算子的基本理论和思想方法 . 认识和理解现代数学中公理化、抽象与具体、理 论和应用密切联系的特点并加以应用.
前言
课程的重要性 课程讲授的主要内容 教学目的 难易程度 考核方式
University of science & Technology of China
《实变函数与泛函分析》的重要性 在20世纪初期产生并发展起来的学科,是整 个分析数学中最年轻的学科之一 从“经典理论”向“现代理论”转折的关口 是联系各门课程的纽带
通过与其他学科的联系,加强学生对于数学思想方 法的内在联系和一致性的认识,从整体上提高学生 的数学素养
University of science & Technology of China
课程难度与考核方式
内容抽象,难度较大 平时表现分+考试分数, 比例 认真学习则无须担心考核
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
f (x0 hn ) hn
f (x0 ) .
若数列 n有界, 则存在子列{ nk }收敛于某数, 就是 f (x) 在 x0点的一个列导数;
若数列 n无界,不妨设上无界, 则存在子列{ nk }趋于 ,就是 f (x)在 x0 点的一个列导数.
命题 2 设 f (x) 是[a,b]上的有限函数, x0 [a,b], 则 f (x) 在 x0 点存在导数 f (x) 在 x0 点的所有列导数都相等.
令 N E Eˆ, 则 mN 0, g(x) 在[a,b] \ N 上处处存在有限导数,
因此 f (x) g(x) x在[a,b] \ N 上处处存在有限导数,即 f (x) 在[a,b] 上几乎处处可微.
6
定理 4 若 f (x) 是[a,b]上的单调不减函数, 则 f (x)是[a,b]上几乎处处有定义的非负可积函数,
容易看出
Epq x0 | D1g(x0 ) p q D2 g(x0 ) .
E Epq. 由引理2(i)(ii)知 ( p,q)A
q m*Epq m*g(Epq) p m*Epq.
由 p q 知 m*Epq 0, 从而 mE 0.记 Eˆ x0 | x0 [a,b] \ E, g(x0 ) , 由引理2(iii)知mEˆ 0.
f (x0 ) ( 0 , 0 ) n
0.
由命题1的证明过程, n必有一子列趋于某个数 , 是 f (x) 在 x0 的一个列导数.
从而 . 这与f (x) 在 x0 的所有列导数均为 相矛盾.
4
13 单调函数的微分性质
我们约定,今后凡说到单调函数均指有限单调函数。关于单调函数的连续性, 我们已经知道 :
定理1 设 f 是 [a, b] 上的单调递增函数,则 f 具有下列性质: (1) f 的不连续点全是第一类的; (2) f 的不连续点集至多可数; (3) f 在不连续点的左、右方跳跃度都是非负的,并且所有跳跃度的总和不 超过 f (b) f (a) . 下面来讨论单。调函数的可微性.
引理2 设 f (x) 是 [a,b] 上的严格增函数, E [a,b].
1
1 2 列导数
定义2 设 f (x) 是 [a,b] 上的有限函数, x0 [a,b]. 若某一趋于0的数列hn(hn 0,x0 hn [a,b])
使
lim f (x0 hn ) f (x0 )
n
hn
( 为有限数或 ), 就称 是 f (x) 在 x0 相应于 hn的列导数,记作Df (x0 ) .
定义3 设 f (x) 是 [a,b] 上的有限函数, x0 [a,b]. 若极限
lim f (x0 x) f (x0 )
x0
x
存在(为有限数或 ), 就称此极限值为 f (x) 在 x0的导数, 记作 f (x0 ).
若 f (x) 在 x0 存在有限的导数, 就称 f (x) 在 x0 可微.
证明 由导数的定义立即可知。
设 f (x) 在 x0 的所有列导数均为 , 又设 为有限数(若 为 可类似地证明), 下证 f (x) 在 x0 的导数为 . 假若 不是 f (x) 在 x0 的导数, 则存在 0 0及趋于 0的数列
hn(hn 0,x0 hn [a,b])使
n
f (x0 hn ) hn
定理 1 (Vitali 复盖定理)设E是R1中的有界集, V 是E的Vitali复盖, 则可以从V中选
出有限个或可列个两两无交的闭区间Ii 使
m(E \ Ii ) 0.
(1)
i
定理 1 的结论是说:可以从 V 中选出有限个或可列个两两无交的闭区间Ii 几乎
复盖 E(即除了一个零测度子集外 Ii 复盖 E). i
第六章 微分与 Lebesuge 不定积分
第一节 单调函数的微分性质
11 Vitali 复盖定理 定义 1 设 E R1,V 是一族长度为正数的闭区间. 若对于每个 x E, 总存在 V 中的
一列闭区间 In, 使
x In (n 1, 2, ), mIn 0, 就称 V 是 E 的 Vitali 复盖.
x 0 时, x 0时
lim
f (0 hn )
f (0)
lim
hn
sin
1 hn
lim sin
1
1.
n
hn
n
hn
n
hn
3
命题 1 设 f (x) 是[a,b] 上的有限函数, 则对任何 x0 [a,b], f (x) 在 x0 点至少有一 个列导数.
证明 设 x0 [a,b], 则存在数列hn, 使 hn 0,hn 0且 x0 hn [a,b]. 记
2
例1
狄利克雷函数
1, f (x) 0,
x为有理数,在 x为无理数,
有理点x0
点的列导数.
Df
( x0
)
lim
n
f (x0
hn ) hn
ቤተ መጻሕፍቲ ባይዱ
f (x0 )
0,
1 hn
,
hn为有理数 hn为有理数
0
例2
1
,
1
上的函数
f
( x)
x
sin
1 x
,
0,
在 x 0 点的所有列导数为 | 1 1.
E x0 | x0 [a,b], g(x) 在 x0 不存在导数.
若 x0 E,由命题2 知 g(x) 在 x0 必存在不相等的两个列导数 1、2 , 不妨设 1 2 ,
则存在两个正有理数 p、q使
1 p q 2.
令 A {( p, q) | p、q 为正有理数,p q}, 显然 A 是可列集. 对每个 ( p, q) A, 令
(i)设 p 是一个非负实数, 若 f (x) 在 E 的每个点 x至少有一个列导数 x p, 则
m* f (E) p m*E;
(ii)设 q 是一个非负实数, 若 f (x) 在 E 的每个点 x至少有一个列导数 x q, 则
m* f (E) q m*E; (iii)若 f (x) 在 E 的每个点 x 至少有一个列导数为 , 则 m*E 0.
5
定理3(Lebesuge 单调函数可微性定理)
若 f (x) 是[a,b]上的单调函数,则 f (x) 在[a,b]上几乎处处可微.
证明 不妨设 f (x) 是 [a,b] 上的单调不减函数(若f (x)单调不增,考虑 f (x) 即可).令g(x) f (x) x,
则 g(x) 在[a,b]的每个点只能有非负的列导数.记