怎样进行分数应用题的教学
分数应用题说课稿通用(5篇)

分数应用题说课稿通用(5篇)教学目标:1、使学生理解稍复杂的求一个数的几分之几是多少的应用题数量关系;初步掌握这类应用题的结构特点,解题思路和解题方法。
2、提高学生分析问题的能力。
3、使学生养成认真审题的良好习惯。
教学形式:班级教学与小组合作学习相结合。
一、教学过程1、铺垫:在旧知的复习中,为学生主动进行新知的学习作好准备。
准备题(1):国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4,我国约有多少只?教学过程:①用线段图表示题意,以10厘米为一段,这条线段一共要画几厘米?(学生口答老师在黑板上作图)②用去是什么意思?(请一个同学上来把它表示出来)③用去多少吨是求线段中的那一部分?谁愿意上来把它画出来?准备题(2):人的心脏跳动的次数随年龄而变化。
青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多60次。
婴儿每分钟心跳多少次数?教学过程:①准备题(1)反映了总量和部分量的关系,作图时只要画一条线段。
这一题反映了什么关系?应画几条线段?②先画什么?为什么?(学生口答老师在黑板上作图)③画婴儿每分钟心跳的次数时先画什么?④60次应画多长?谁愿意上来把它画出来?⑤婴儿每分钟心跳的次数是求线段图中的那一部分?准备题(1)、(2)作图并分析后要求学生用1分钟时间列出两道题目的算术并计算(两人板演),然后讲评并表扬做得全对的同学,同时对个别同学的错误进行有针对性的纠正。
2、探求新知:让学生在主动探索的过程中掌握新知识。
例4:国家一级保护动物野生丹顶鹤,20xx年全世界约有20xx只,我国占其中的1/4,其它国家约有多少只?教学过程:①例4与准备题(1)相比有何变化?②线段图应该怎么改?你会改吗?(请一个同学上黑板改)③这道题老师不讲你会做吗?(请两个同学上黑板做,其余学生在下面做,不会的可以看书。
)④作好的同学可以考虑有没有不同的方法,试试看。
⑤作好后准备回答下列问题:把什么看作单位“1”,先求什么?再求什么?⑥讨论、讲评试做情况,对两种方法全对的同学进行表扬,最后看书并填写书中空白部分。
2023年《分数应用题复习》教案(8篇)

2023年《分数应用题复习》教案(8篇)《分数应用题复习》教案1教学目标1、使学生较熟练地掌握求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这两类应用题。
2、提高学生分析、解答应用题的能力,培养学生对立统一的辩证思想。
教学重点和难点找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。
教学过程设计(一)复习基础知识教师谈话:我们已经复习了求一个数是另一个数的几分之几(百分之几)、求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这三类应用题。
这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。
(板书:分数,百分数应用题复习)投影出示如下习题:1、读题列式并按要求改编题:①一本书100页,读了60页,读了这本书的几分之几?学生读题:如果把问题改成读了百分之几应如何解答?样列式计算?③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板2、补充问题。
(1)六一班有男生30人,女生20人,_______________?可以求什么?从最基本的想起。
学生读题后补充问题并列式:①女生是男生的几分之几(百分之几?)②女生比男生少几分之几(百分之几?)③男生是女生的几分之几(百分之几?)④男生比女生多几分之几(百分之几?)可以求什么?从最基本的想起,学生读题后补充问题并列式:①女生有多少人?②全班共有多少人?③男生比女生多多少人?④女生比男生少多少人?3、回答问题。
师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。
)③甲是甲乙差的4倍。
⑤乙是单位1。
4、小结。
通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?(二)画线段图分析解答投影出示如下练习:1、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?①学生读题;②学生自己画图列式;③订正画图;④指名列式。
分数应用题教案(精选15篇)

分数应用题教案(精选15篇)分数应用题教案1教学内容:人教版六年制教材第十一册P83例4。
教学目标:1、掌握解题思路。
2、会正确解答稍复杂的分数应用题。
3、培养探索精神与分析解决问题的能力。
教学重点:稍复杂的分数应用题的解题思路。
教学难点:寻找新旧知识之间的联系。
教学准备:教学软件(逐步演示的线段图及学生提供的知识)、贴纸(出示例4)、投影片(提供练习题)、纸条(收集不同算法)教学过程:一、谈话引入师:同学们,上新课前老师先提一个问题,大家先思考,然后抢答。
如果要你们查找广州市市长热线电话,有什么办法呢?师:(汇报完)同学们想到了查114,找报纸等不少的办法,不管什么方法,我们都是通过联系一些能找到市长热线电话的有关资料去查找,同样,解决数学问题也要联系我们学过的有关知识。
二、教学1、引出例4。
下面同学们就利用这种解决问题要联系有关知识的方法,来解决今天学习的分数应用题(贴纸出示例4,后板书课题)例4:出示一个发电厂原有煤2500吨,用去3/5,还剩多少吨?2、出示目标。
解答应用题时,我们通常是怎样做的?(1理解题意;2联系学过的知识去分析数量关系;3会解答。
板书目标:会分析、会解答)3、理解题意。
那么下面大家就先默读题目,看一下你是怎样理解这道题的题意的,用自己的语言组织一下。
(独立进行理解题意)汇报。
(提问几个学生,教师边根据学生的回答边逐步计算机出示线段图)若学生不会答可补充问用去3/5表示什么意思?(表示用去的是原有的3/5)说明什么?(把把原有的2500吨看作单位“1”) 2500吨还剩?吨用去3/54、查找资源。
刚才大家都能比较准确地理解题意,那么看到题目的条件与问题,你想到什么知识对我们解决这个问题有帮助?(独立思考→小组交流、师参与引导→汇报→教师根据汇报计算机出示有关知识)1)求一个数的几分之几是多少用乘法计算。
2)总量-用去量=还剩量 3)用去3/5→用去?吨4)用去3/5→还剩2/55、主动探索,尝试解决。
小学分数应用题教学策略

小学分数应用题教学策略小学分数应用题是数学学科中的重要内容,也是学生在实际生活中运用数学知识解决问题的常见形式。
在教学中,教师需要注重培养学生的数学思维能力和解决问题的能力,并采取科学有效的教学策略,帮助学生掌握分数应用题的解题方法。
一、培养学生的数学思维能力在小学阶段,学生的思维能力与发展水平有限,因此教师需要注重培养学生的数学思维能力,包括:1. 观察力:教师可以通过生活实例,引导学生发现分数的应用场景。
例如,让学生观察物品的部分、整体关系,从而引出分数的概念。
2. 抽象思维:教师可以通过把分数的应用与具体的实物联系起来,让学生通过观察和比较,发现规律,从而形成抽象思维。
3. 逻辑思维:教师可以引导学生将分数问题进行抽象化,运用逻辑思维分析问题,从而培养学生的逻辑思维能力。
二、采用多元化的教学策略在教学中,教师应采取多元化的教学策略,让学生在不同的场景下进行分数应用题的训练。
例如:1. 情境模拟:教师可以编制情境模拟的教学案例,让学生在模拟的情况下进行分数应用题的训练,加深学生的分数应用体会。
2. 手工制作:教师可以引导学生通过切割纸片、折纸、画图等手工制作方式,让学生更好地体会分数的含义和应用。
3. 探究式学习:教师可以通过提出问题、让学生进行探究、得出结论等方式,让学生自己探索分数应用题的解题方法和规律。
三、注重培养问题解决能力在教学中,教师需要注重培养学生的问题解决能力,帮助学生学会独立思考、解决实际问题。
具体策略包括:1. 启发式教学:教师可以引导学生通过观察、发现、模仿、联想、比较等启发式方法,帮助学生解决分数应用题。
2. 组织性学习:教师可以组织小组学习或讨论,帮助学生相互启发、相互学习,在组织性学习中培养学生的问题解决能力。
浅谈分数应用题的教学方法

浅谈分数应用题的教学方法分数应用题在小学数学分数教学中是重点又是难点,尤其理清数量关系,熟悉分辨应用题型,更是让学生学习掌握的知识点。
只有在此基础上才能让学生巩固理解数学基础知识,开拓发展思维能力,进而掌握解题方法与技巧。
所以,引导学生正确分析,解答分数应用题,提高学生观察、分析、解决问题的技巧和能力,是落实素质教育的正确途径。
因此,精心设计教学过程,突出训练重点,进行有系统的教学方法是关键。
结合教学中的实践,浅谈以下教法。
1.启发诱导学生理清数量关系,培养分析问题能力分数应用题的教学,要让学生明白数量之间的关系,理清包含分率意义的句子,让学生学会找单位1的量,这是分数应用题解答难点。
为了使学生更好的掌握这一基础知识,为此设计了一下练习题。
1.1找出下题中单位1的量。
(1)柳树是杨树的5/9,杨树是单位1;(2)红花的1/3相当于黄花;红花是单位1;(3)黑兔相当于白兔的5/6,白兔是单位1;1.2写出下列各数量的对应分率。
一批货物,第一天运走1/5,第二天运走1/6,第三天运完。
第一天运走的对应分率是();第二天运走的对应分率是();第三天运走的对应分率是();1.3画线段图分析。
(1)男生人数占全班人数的3/5,男生24人;(2)一袋大米已经吃了1/5,还剩40斤。
通过以上分析思维,以及图形线段直观表示等强化训练手段,使学生迅速找准单位1,理清量、率的一一对应关系。
因而有利于培养学生的正确数学思维,是实现教学运算程序化的良好方法。
2.对比练习,增加归纳辨别能力对比练习,更有助于发展学生智力。
对比练习就是抓学生易错点,把彼此之间既有联系又有区别的题型放在一起进行比较分析,找出相同点和不同点,进一步培养学生分析辨别能力。
例如:(1)小金体重40公斤,小银是小金的1/4,小银有多少公斤?(2)小金体重40公斤,小银比小金多1/4,小银有多少公斤?(3)小金体重40公斤,小银比小金少1/4,小银有多少公斤?(4)小金体重40公斤,小银比小金少1/4公斤,小银有多少公斤?(5)小金体重40公斤,是小银的1/4,小银有多少公斤?(6)小金体重40公斤,是小银的1/4公斤,小银有多少公斤?做完后,引导学生进行讨论,说出它们的异同点,通过比较分析,提高学生鉴别问题的能力。
小学分数应用题教学策略

小学分数应用题教学策略在教学小学分数应用题的过程中,我们应该采用一系列有效的教学策略,以帮助学生理解和解决这些问题。
以下是一些可能的教学策略:1. 清楚地解释问题的背景和要求。
在给学生出题之前,我们应该先解释问题的背景和要求。
当涉及到分数的比较时,我们可以解释分数的大小关系,如分数越大,数值越大;或者解释分数表示的是部分和整体之间的关系。
2. 引入实际生活中的例子。
为了让学生更好地理解分数应用题,我们可以引入一些实际生活中的例子。
我们可以用食物分割为几份来说明分数的概念,如将一块蛋糕分为四分之一,学生可以想象自己得到了多少份。
3. 使用图形和模型。
图形和模型可以帮助学生更直观地理解分数的概念。
我们可以使用矩形和圆形的图形来表示分数,并让学生练习将图形分割成几个部分。
4. 提供解题策略和步骤。
当学生面对一个分数应用题时,我们可以提供一些解题策略和步骤,以帮助学生解决问题。
我们可以鼓励学生先将分数化简为最简形式,再进行计算。
5. 举一反三。
在解决一个具体的分数应用题之后,我们可以引导学生思考类似的问题,并将其应用于其他情境。
这样可以帮助学生将所学的知识迁移到其他领域。
6. 给予实践机会和反馈。
学生通过实践来巩固和应用所学的知识。
我们可以设计一些练习题,让学生在课堂上或课后完成,并及时给予反馈。
反馈可以是个人的或者是小组的,可以通过互相之间的讨论和检查来进行。
7. 激发学生的兴趣和探究精神。
我们可以设计一些有趣和具有挑战性的分数应用题,激发学生的兴趣和探究精神。
我们也可以鼓励学生提出自己的问题,并尝试寻找解决办法。
教学小学分数应用题需要结合清晰的解释、实际生活中的例子、图形和模型、解题策略和步骤、举一反三、实践机会和反馈等多种教学策略,以帮助学生深入理解并解决这些问题。
我们也应该激发学生的兴趣和探究精神,让他们积极参与学习过程。
浅谈分数应用题的教学技巧

浅谈分数应用题的教学技巧分数是数学中一个相对较难的概念,很多学生在学习过程中会遇到困难。
特别是在分数的应用题中,更是需要学生具备丰富的逻辑思维和计算能力。
教师在教学分数应用题时需要有一定的技巧和方法,来帮助学生更好地理解和掌握知识。
本文将就浅谈分数应用题的教学技巧进行讨论。
一、引导学生建立正确的数学思维在教学分数应用题时,教师首先要引导学生建立正确的数学思维。
分数是数学中的一个重要概念,学生需要通过分数应用题的练习和实践,逐渐建立起对分数的认识和理解。
教师可以从实际生活中的例子出发,引导学生思考分数的意义和作用,让学生逐渐明白分数在生活中的实际应用,并建立起正确的数学思维。
教师还可以通过启发式问题、讨论等教学方法,激发学生的思维,引导学生自主学习和发现问题的解决方法,培养学生分析问题和解决问题的能力。
通过这种方式,学生可以更好地理解分数的概念和应用,培养学生的逻辑思维和数学能力。
二、注重分数应用题的教学实践分数应用题的教学在于实践,通过大量的练习和实际运用,学生才能更好地掌握知识。
教师在教学分数应用题时应注重教学实践,让学生进行大量的练习和应用,巩固所学知识。
教师可以设计一些有趣的分数应用题,让学生在实际问题中应用所学的知识,提高学生的学习积极性。
可以设计购物、比赛、分配物品等实际场景,让学生通过计算和分析,理解分数的概念和应用。
教师还可以根据学生的不同水平和学习需求,设计不同难度的分数应用题,鼓励学生自主学习和探索,提高学生的学习兴趣和能力。
三、培养学生的问题解决能力在教学分数应用题时,教师还应培养学生的问题解决能力。
分数应用题通常涉及到一些复杂的问题,需要学生通过综合分析和计算,解决问题。
教师在教学过程中应引导学生掌握一些解决问题的方法和技巧,培养学生的问题解决能力。
四、及时进行评价和反馈在教学分数应用题中,教师还应及时进行评价和反馈,帮助学生发现问题,并及时进行纠正和改进。
教师可以通过检测、作业、讨论等形式,对学生的学习情况进行评价,倾听学生的声音,了解学生的学习困难和问题,帮助学生及时解决问题。
分数应用题的教学设计

分数应用题的教学设计一、教学背景分析在数学教学中,分数是一个重要的知识点。
分数的学习对学生理解数学概念、解决实际问题具有重要意义。
然而,由于分数是一个较为抽象的概念,许多学生在学习过程中容易感到困难和挫败感。
因此,如何设计有效的教学方案,引导学生以真实、有趣的场景来认识和掌握分数应用题的解题方法是至关重要的。
二、教学目标1. 理解分数的概念和基本性质;2. 掌握分数的加减乘除运算法则;3. 能够熟练地应用分数进行实际问题的解答;4. 培养学生的逻辑思维能力和问题解决能力。
三、教学内容与步骤1. 导入环节- 引入一个生活中的实际问题,如:小明买了3/4千克的苹果,他自己吃了1/2千克,那么他还剩下多少千克?- 让学生思考该问题背后的分数运算原理,并与生活实际联系起来。
2. 概念讲解- 讲解分数的定义,包括分子、分母的含义以及分数的约分、通分等基本概念。
- 通过具体例子和图示,让学生直观地理解分数的大小比较和运算法则。
3. 分组讨论- 将学生分成小组,让每个小组各自设计一个分数应用题,并用具体的实例来解答。
- 学生可以选择生活中的场景,如购物、分菜、比赛等,设置不同的分数应用题。
4. 小组分享- 每个小组派代表向全班分享他们设计的应用题,并解答问题。
- 全班学生可以提出问题,共同讨论如何解决应用题,并给予建设性的意见和建议。
5. 教师示范和指导- 教师以一个较复杂的分数应用题为例,讲解解题思路和步骤。
- 通过板书、互动讨论等方式,指导学生理解和掌握解题方法。
6. 练习与巩固- 发放练习册或提供在线练习资源,让学生进行分数应用题的练习,巩固所学的知识和技能。
- 教师可以及时检查学生的答题情况,并针对难题或错误进行辅导和讲解。
7. 实际应用拓展- 引导学生将所学的分数知识应用到更广泛的实际问题中,如游戏规则、比赛成绩、食谱调和等。
- 激发学生对分数知识的兴趣和应用能力,培养他们解决实际问题的能力。
四、教学评估与反馈1. 教学评估- 设计一份针对分数应用题的简单测试,考察学生对分数的理解和运用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样进行分数应用题的教学
分数应用题的教学要紧紧抓住分数的意义与一个数乘分数的意义进行,要分类指导,抓住“基础型”“ 复杂型” “隐蔽型”句式采用不同分析方法,从而让学生能自主分析分数应用题,提高解决问题能力。
:分数应用题分析数量关系
许多学生在解答“求一个数的几分之几是多少”与“已知一个数的几分之几是多少,求这个数”的应用题时,感到难以理解,无从下手。
不少老师在教学分数应用题时也因学生难以理解题意、解题经常出错而教学生套用一种列式套路:判断单位“1”已知或未知而选用乘法或除法列式。
这种方法虽然暂时解决了难题,但是学生解题时生搬硬套,不知其所以然,对学生的能力培养存在严重的负面影响。
学生解分数应用题感到难以理解,究其原因,是对分数的意义不理解而难以判断谁是单位“1”,对一个数与分数相乘的意义不理解而不懂怎样列式。
我们在教学相关知识时要教得扎实,分数的意义与一个数乘分数的意义要让学生真正弄清楚,为后面分数应用题教学打下扎实基础。
笔者多年任教六年级数学教学,对这一问题作过多年研究,认为在教学生解答这两类分数应用题时,只要紧紧抓住上述意义,抓住关键句进行分析,断谁是单位“1”,找出题中相等关系,难题自然迎刃而解。
下面谈一谈不同类型的关键句该如何分析,找出相等关系。
一、“基础型”句式
指“一个数是另一个数的几分之几”的句式。
如①“小强身高是小林的7/8”,②“今年产量的3/4相当于去年的产量”,③“男生占全班人数的3/5”等。
这种句式先找出单位“1”(“谁”的几分之几,这个“谁”就是单位“1”),然后根据一个数乘分数的意义列出相等关系,格式:一个数=另一个数(单位“1”的量)×几分之几。
如①单位“1”是“小林身高”,相等关系:小强身高=小林身高×7/8 ;②单位“1”是“今年产量”,相等关系:今年产量×3/4 =去年的产量;③单位“1”是“全班人数”,相等关系:男生人数=全班人数×3/5 。
二、“复杂型”句式
指“一个数比另一个数多(少)几分之几”的句式。
这种句式以“另一个数”为单位“1”,我们可以把这种句式转换成:多(少)的部分是单位“1”的几分之几;一个数是单位“1”的几分之几。
从而把它转化成基础型句式,然后再按基础型句式进行分析。
如:小华的邮票枚数比小林少1/5 ,是把小林邮票枚数看作单位“1” ,转换成基础型句式是:小华比小林少的枚数是小林的1/5;小华的邮票枚数是小林的(1-1/5)。
从而得出相等关系:小华比小林少的枚数=小林邮票枚数
×1/5;小华邮票枚数=小林邮票枚数×(1-1/5 )。
又如:摩托车的速度比汽车的快1/12,是把汽车速度看作单位“1”,转换成基础型句式是:摩托车比汽车快的速度是汽车的1/12;摩托车速度是汽车的(1+1/12)倍。
从而得出相等关系:摩托车比汽车快的速度=汽车速度×1/12;摩托车速度=汽车速度×(1+1/12)。
三、“隐蔽型”句式
指承前省略或省略单位“1”的句式。
可以把它补充完整,转换成基础型句式或复杂型句式,然后仿照上面方法进行分析。
如“杨树的棵数是槐树的2/3,又是柳树的2/7”,第二句应补充完整为“杨树又是柳树的2/7”。
又如“降价2/7”应补充完整为“现在比原来降价2/7”或“降价的部分是原价的2/7”,“超额1/5” 应补充完整为“实际比计划超额1/5”或“超额部分是计划的1/5”
等,这样学生自然能找出单位“1”,找出相等关系,然后列式解答。
分析:关键句是“体积增加1/10”,补充完整是“冰比水增加1/10”,把水的体积看作“1”,冰比水增加的部分是水的1/10,冰的体积是水的(1+1/10),相等关系:①增加的部分=水×1/10;
②冰的体积=水的体积×(1+1/10);③冰的体积=水的体积+冰比水增加的体积。