运输问题的优化模型概论

运输问题的优化模型概论
运输问题的优化模型概论

运输方案问题的优化模型

摘要:本文研究运输最优化问题。运输问题(Transportation Problem)是一个典型的线性规划问题。一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。引入x变量作为决策变量,建立目标函数,列出约束条件,借助LINGO软件进行模型求解运算,得出其中的最优解,使得把某种产品从2个产地调运到3个客户的总费用最小。

关键词:LINGO软件运输模型最优化线性规划

1问题重述与问题分析

1、1 问题重述

要把一种产品从产地运到客户处,发量、收量及产地到客户的运输费单价如表1所示。

表1 运输费用表

客户1 客户2 客户3 发量产地1 10 4 12 3000 产地2 8 10 3 4000 需求量2000 1500 5000

这是一个供求不平衡问题,产品缺少1500个单位,因此决定运输方案应按下列目标满足要求:

第一目标,客户1为重要部门,需求量必须全部满足;

第二目标,满足其他两个客户至少75%的需要量;

第三目标,使运费尽量少;

第四目标,从产地2到客户1的运量至少有1000个单位。

1、2 问题分析

运输方案就是安排从两个产地向三个客户运送产品的最佳方案,目标是使运费最少。而从题目来看产品的总量只有7000个单位,客户的需求量却有8500个单位,产品明显的缺了1500各单位,所以至少要按以下要求分配运输,首先

客户1为重要部门,需求量必须全部满足,从产地2到客户1的运量至少有1000个单位,即至少向客户1发2000个单位,且从产地2向客户1发的要大于等于1000个单位;其次满足其他两个客户至少75%的需要量,即至少得向客户2发1125个单位,至少向客户3发3750个单位。最佳的运输方案就是满足了要求中的发量,而让运输费用最少的方案。

2、模型的假设

1)运输过程中道路畅通,无交通事故、交通堵塞等发生,运输车行驶正常;2)从产地到客户整个路途中,所走的路程都是最短的;

3)每一个产地都有一个固定的供应量,所有的供应量都必须配送到各个销地;4)每一个销地都有一个固定的需求量,整个需求量都必须由产地满足;

5)从任何一个产地到任何一个销地的物品运输成本和所运输的数量成线性比例关系;

6)这个成本就等于运输的单位成本乘以运输的数量。

3符号说明

A,2A表示该产品的两个产地;

1

②1B ,2B ,3B 表示该产品的客户; ③i a 表示产地i A 的产量; ④j b 表示销地j B 的销量;

⑤ij c 表示把物资从产地i A 运到销地j B 的单位运价; ⑥ij x 表示把物资从产地i A 运到销地j B 的运输量; ⑦min Z 表示将物资从产地i A 运到销地j B 总费用的最小值。

4、模型的建立与求解

设计运输方案,让运输费用最少而又满足客户的需求量,要解决这个问题,我们必须针对题目中的约束条件进行分析。我们要让运输费用最少就是在满足需求的情况下把尽多的产品发给运费单价最少的客户。设ij c 为从产地i A 到客户

j B 运费的单价,ij x 为从产地i A 到客户j B 的运输量,因此总运费为

∑∑==m i n

j ij ij x c 11

第i 个产地的运出量应小于或等于该地的生产量,即: i n

j ij a x ≤∑=1

第j 个销地的运入量应等于该地的需求量,即:

j m

i ij

b x

=∑=1

因此,运输问题的数学表达式为:

min

∑∑==m i n

j ij

ij x

c 11

..t s i n

j ij a x ≤∑=1

m i ,,2,1 =

j m

i ij b x =∑=1

n j ,,2,1 =

0≥ij x m i ,,2,1 = n j ,,2,1 =

称具有形如式以上式子的线性规划问题为运输问题.

∑∑==≠n

j j

m i i b

a 1

1

即运输问题的总产量不等于总需求量,这样的运输问题称为产销不

平衡的运输问题。 从题目中可以看出客户的需求量大于产量,所以属于产销不平衡的问题。由于总生产量小于总需求量,虚设产地3,发量为1500个单位,到各个客户的运输单价为0。绘制虚设产地以后的产地运到客户处,发量、收量及产地到客户的运输费单价如下表所示。

客户1 客户2 客户3 发量 产地1 10 4 12 3000 产地2 8 10 3 4000 产地3 0 0 0 1500 需求量

2000

1500

5000

很明显,决策变量为产地1,产地2,产地3三个产地分别向三个客户的发量。由上分析,问题的目标是运输费用最少,于是有目标函数:

;312104810231322122111x x x x x x MinZ +++++=

约束条件有两类:一类是产地的生产量限制,另一类是个客户的需求量限制。由于产地的产量总能发出并获利,产地的产量限制可以表示为:

150040003000

333231232221131211<=++<=++<=++x x x x x x x x x

考虑到个客户的需求量,需求量限制可以表示为:

5000

15002000

332313322212312111<=++<=++<=++x x x x x x x x x

又因为实际总产地的发量小于总客户的需求量即共不应求,由题目客户1为重要部门,需求量必须全部满足;满足其他两个客户至少75%的需要量;使运费尽量少;从产地2到客户1的运量至少有1000个单位,可知需求量的限制可以表示为:

100

37501125200021332313322212312111>=>=++>=++>=++x x x x x x x x x x

利用运输问题的求解方法,用LINGO 软件求解,在LINGO 中输入:

Minz=10*x11+8*x21+4*x12+10*x22+12*x13+3*x23; x11+x21=2000;

x11+x12+x13<=3000;

x21+x22+x23<=4000;

x31+x32+x33=1500;

x21>=1000;

x12+x22+x32>=1125;

x13+x23+x33>=3750;

x11+x12+x13+x21+x22+x23+x31+x32+x33<=8500; end

gin 9

运行结果为:

数学建模飞机运输问题

多变量有约束最优化问题 摘要 本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。 对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。 问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。 关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

运输优化模型参考

运输 问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i 个客户

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

运输问题优化模型

运输方案问题的优化模型 摘要:本文研究运输最优化问题。运输问题(Transportation Problem)是一个典型的线性规划问题。一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。引入x变量作为决策变量,建立目标函数,列出约束条件,借助LINGO软件进行模型求解运算,得出其中的最优解,使得把某种产品从2个产地调运到3个客户的总费用最小。 关键词:LINGO软件运输模型最优化线性规划

1问题重述与问题分析 1、1 问题重述 要把一种产品从产地运到客户处,发量、收量及产地到客户的运输费单价如表1所示。 表1 运输费用表 客户1 客户2 客户3 发量产地1 10 4 12 3000 产地2 8 10 3 4000 需求量2000 1500 5000 这是一个供求不平衡问题,产品缺少1500个单位,因此决定运输方案应按下列目标满足要求: 第一目标,客户1为重要部门,需求量必须全部满足; 第二目标,满足其他两个客户至少75%的需要量; 第三目标,使运费尽量少; 第四目标,从产地2到客户1的运量至少有1000个单位。 1、2 问题分析 运输方案就是安排从两个产地向三个客户运送产品的最佳方案,目标是使运费最少。而从题目来看产品的总量只有7000个单位,客户的需求量却有8500个单位,产品明显的缺了1500各单位,所以至少要按以下要求分配运输,首先

客户1为重要部门,需求量必须全部满足,从产地2到客户1的运量至少有1000个单位,即至少向客户1发2000个单位,且从产地2向客户1发的要大于等于1000个单位;其次满足其他两个客户至少75%的需要量,即至少得向客户2发1125个单位,至少向客户3发3750个单位。最佳的运输方案就是满足了要求中的发量,而让运输费用最少的方案。 2、模型的假设 1)运输过程中道路畅通,无交通事故、交通堵塞等发生,运输车行驶正常;2)从产地到客户整个路途中,所走的路程都是最短的; 3)每一个产地都有一个固定的供应量,所有的供应量都必须配送到各个销地;4)每一个销地都有一个固定的需求量,整个需求量都必须由产地满足; 5)从任何一个产地到任何一个销地的物品运输成本和所运输的数量成线性比例关系; 6)这个成本就等于运输的单位成本乘以运输的数量。 3符号说明 A,2A表示该产品的两个产地; ① 1

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

管道运输与订购优化模型

钢管订购和运输优化模型 要铺设一条1521A A A →→→Λ的输送天然气的主管道, 如图一所示(见反面)。经筛选后可以生产这种主管道钢管的钢厂有721,,S S S Λ。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。 为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: i 1 2 3 4 5 6 7 i s 800 800 1000 2000 2000 2000 3000 i p 160 155 155 160 155 150 160 1单位钢管的铁路运价如下表: 里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 20 23 26 29 32 里程(km) 501~600 601~700 701~800 801~900 901~1000 运价(万元) 37 44 50 55 60 1000km 以上每增加1至100km 运价增加5万元。 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A Λ,而是管道全线)。

问题: (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 思考题: (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用 影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并 给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构 成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出 模型和结果。 7

最优化运输问题

摘要:根据运输问题的基本特征,运用最优化的线性规划解决问题,通过实例对运输问题进行优化分析,建立运输问题的线性规划数学模型。将模型应用于一些特殊的运输问题,从而得到最优化的方案,提高实际运输工作中的经济效益。关键词:最优化;运输问题;线性规划 1 运输问题的特征 运输问题关心的是以最低的总配送成本把供应中心的任何产品运送到每一个接收中心。每一个出发地都有一定供应量配送到目的地,每一个目的地都需要一定的需求量。 需求假设:从任何一个出发地到任何一个目的地的货物配送成本和所配送的数量成线性比例关系。 运输问题所需要的数据仅仅是供应量、需求量和单位成本。这些就是模型参数。如果一个问题可以完全描述成表1所示的参数表形式,并且符合需求假设和成本假设,那么这个问题(不管其中是否涉及到运输)都适用于运输问题模型,最终目的都是要使配送的总成本最小。这个模型的参数都包含在参数表中。 下面就通过例题来说明。 A公司是一家汽车生产商,A1、A2是它的工厂,生产的轿车用卡车把它们运送到三个分销仓库:A3、A4、A5。在下表中列有下列数据:每辆轿车从每个工厂到每个分销仓库所需的运输成本(C ij),每个工厂的供应量,以及每个经销商对轿车的需求量。求能使运输成本最低的从每个工厂到每个分销仓库运输轿车的数量以及最低的运输成本。 表 1 A公司的运输数据表 解:设X ij(i=1,2;j=1,2,3);为从每个工厂到每个经销商运输轿车的数量,目

标是为了找出能使总运输成本最低的从每个工厂到每个经销商运输轿车的数量。所以, 目标函数为C=200X11+100X12+300X13+400X21+300X22+200X23 约束条件是: X11+X12+X13=3000 X21+X22+X23=5000 X11+X21=3000 X12+X22=4000 X31+X32=1000 X ij(i=1,2,j=1,2,3)≥0 用微机很快就可以得出决策变量的下列最优值以及最低的运输成本200万元。 表2 A公司决策变量的最优值表 由上面的例题可以看出,对于一般的运输问题,首先是建立线性规划的模型,模型中包含的内容主要是目标函数和约束条件;然后再应用微机求解。 2 选址 许多公司的管理人员都面临着一个非常重要的决策:在什么地方设置一个新的重要设施。设施有可能是一个新的工厂、一个新的配送中心、一个新的管理中心或者其他的建筑物。一般来说,一个建筑物都有几个可供选择的地点。而且,在经济全球化的今天,这些可供选择的潜在地点很有可能已经超越了国界而在另一个国家中。在形成决策的过程之中包含了许多很重要的因素,其中一个就是运输成本。 A公司是一家大型石油公司。公司拥有大型配送网络。把石油运送到公司的

数学建模运输优化模型

2012年数学建模培训第二次测试论文 题目运输优化模型 姓名马鹏 系(院)数学系 专业信息与计算科学、应用数学 2012 年8 月27 日 运输优化模型

[摘要]在社会的经济生产活动中,产地(厂家)与客户都会想方设法合理调拨资源、降低运输费用,实现利益最大化,完成资源优化配置。本文在运输费单价恒定,各产地发量一定,各客户的需求量也一定的条件下,努力解决多个特定目标实现问题。力求最优的运输方案。在确定问题为不平衡的运输问题时,先虚设一个产地,将问题装华为平衡运输问题,将问题转化为目标规划问题,按照目标规划问题的建模思想逐步建立模型。 本文的主要特点在于,将不平衡的线性规划问题合理地转化为目标规划问题,在求解时充分利用LINGO软件求解。 关键词: lingo 目标规划线性规划运输优化问题运费最少 一.问题重述

运输功能是整个现代物流七大基本功能之一,占有很重要的地位,运输成本在整个物流系统中所占的比重也很大,运输成本的有效控制对物流总成本的节约具有举足轻重的作用。通过物流流程的改善能降低物流成本,能给企业带来难以预料的效益,影响运输成本的因素是多样化、综合性的,这就要求对运输成本的分析要采用系统的观点,进行综合分析。由于影响物流运输成本的因素很多,控制措施既涉及运输环节本身,也涉及供应链的整个物流流程。要想降低物流运输成本,就必须运用系统的观点和方法,进行综合分析,发现问题,解决问题,使物流运输活动更加优化、物流运输成本更加合理化。 本文已知把一种产品从产地一、二运到客户1、2、3处,产地的发量、客户的收量及各产地到各客户的运输单价已知。本文要解决问题是:客户1为重要部门,必须全部满足需求量;满足客户2、3至少75%的的需求量;使总运费尽量少;从产地2到客户1的运量至少有1000个单位。 二.问题分析 根据题目中所给出的条件知:有现成的两个产地和需要产品的三个客户。且两个产地的产量不同,运送到各个客户的运费单价不同。三个客户所需的货物量不同。而三个客户对两个产地的总需求为2000+1500+5000=8500(单位),而两个产地总的发量为3000+4000=7000(单位),故需求量大于发量,属于需求量和发量不平衡问题。且提出四个不同的目标。故使用目标规划实现建模。首先设置目标约束的优先级,建立目标约束按目标的优先级,写出相应的目标规划模型 。再接着使用LINGO 软件实现模型的求解,并作出相应结果的分析。 三.模型假设 (1) 产品的运输过程不存在任何的导致产品发量和产品收量不相符的问题。产 品安全送到客户处。即有:产品的发量就等于产品的收量。 (2) 产品的运输单价始终恒定,不存在中途因为某种原因而导致产品的单价变 化问题。即运费只取决于所运输的产品的数量。 (3) 产地的生产量(即发量)有极限值,不可能超出本产地正常的生产范围。 (4) 客户需求量在一定的范围内或或是特定的具体值。 四.符号说明 基于题目及所要建立的模型所要用到的变量及参数,作如下符号说明: (1)产地用i A (2,1i =其中)表示,表示第产地i ;)2,1(=i a i 表示其发量; (2)客户用j B (其中j=1,2,3)表示,表示客户j;)3,2,1(=j b j 表示其需求量; (3)用ij c 1,2,3j 2;,1i ==其中表示产地i A (2,1i =其中)往客户j B (其中j=1,2,3)处运输产品的单位费用; (4)用z 表示总的运输费用; (5)用ij x 1,2,3j 2;,1i ==其中表示产地i A (2,1i =其中)运往客户j B (其

简单的优化模型

第三章 部分习题 1. 在3.1节存储模型的总费用中增加购买货物本身的费用,重新确定最优定货周期和定货批量。证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优定货周期和定货批量都比原来结果减小 3. 在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型。 4. 在3.4节`最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型。 7. 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。 将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离 ,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论; (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量 (2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0 30,0==θθ时的总淋雨量。 (3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为?,如图2建立总淋雨量与速度v 及参数?,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。 (4)以总淋雨量为纵轴,速度v 为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义。 (5)若雨线方向与跑步方向不在同一平面内,模型会有什么变化。

运输优化模型参考精选

运输 问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

数学模型程序代码-Matlab-姜启源-第三章-简单的优化模型

第3章简单的优化模型 1. 生猪的出售时机p63~65 目标函数(生猪出售纯利润,元): Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 其中,t≥0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。 求t使Q(t)最大。 1.1(求解)模型求解p63 (1) 图解法 绘制目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 的图形(0 ≤t≤ 20)。其中,g=0.1, r=2。 从图形上可看出曲线Q(t)的最大值。 (2) 代数法 对目标函数 Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640 用MATLAB求t使Q(t)最大。其中,r, g是待定参数。(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解) 然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。 要求: ①编写程序绘制题(1)图形。

②编程求解题(2). ③对照教材p63相关内容。 相关的MATLAB函数见提示。 ★要求①的程序和运行结果:程序: 图形: ★要求②的程序和运行结果:程序:

运行结果: 1.2(编程)模型解的的敏感性分析p63~64 对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。 (1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。 (2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t 的关系图形(见教材p65)。 要求:分别编写(1)和(2)的程序,调试运行。 ★给出(1)的程序及运行结果: 程序:

物流系统优化——定位——运输路线安排问题LRP研究评述

——第6届全国青年管理科学与系统科学学术会议论文集 2001年·大连 437 物流系统优化中的定位—运输路线安排问题 (LRP)研究评述* 林岩 胡祥培** (大连理工大学系统工程研究所, 116023) 摘要 本文概述了物流优化问题中的定位—运输路线安排问题 (Location-Routing Problems, LRP )的发展历程,并对LRP 的分类和解决方 法加以评述,最后就这一问题的发展方向进行简单地探讨。 关键词 LRP 物流 系统优化 运筹学 1 引言 新技术的迅速发展,特别是电子商务的风起云涌,为我国经济的快速发展提供了契机。目前我国电子商务得到政府和民众的支持,发展势头强劲,但是,由于它是一套全新的技术,同时还是一种全新的管理理念,所以其发展过程中必然存在一些难题。在电子商务“三流”(信息流、物流、资金流)中,随着网络基础设施建设的成熟、电子商务网站的蓬勃发展以及有效利用网络资源观念的普及,信息流的发展已经比较成熟了;而随着各大银行纷纷开展网上业务,以及支付网关的建立和加密技术的成熟,网上支付已经在许多网站上成为现实;然而,我国传统的物流体系是在计划经济环境下建立、发展起来的,与目前的电子商务环境已经无法相容。现今物流体系的落后现状已经成为我国社会经济快速发展的重要制约因素之 一。所以对物流系统优化的研究将会具有很大的现实意义。 国外许多学者在电子商务出现之前就已经研究物流系统优化的问题了,为各类实际问题构建了优化模型,并形成了许多解决问题的算法。依据实际问题的不同,可以对物流系统优化问题进行分类,比如,运输车辆路线安排问题(VRP )、定位—配给问题(LA )、定位—运输路线安排问题(LRP )等等,其中LRP 更贴近目前的物流系统复杂的实际特征,所以对它的研究是十分有意义的。 本文先从VRP 和LA 的集成来探讨LRP 的由来,然后讨论LRP 的分类,同时探讨LRP 的研究现状,并对LRP 的解决方法进行概述,最后就LRP 的未来发展方向作简要的讨论。 2 从VRP 、LA 到LRP ——物流系统的集成 依据实际问题的不同,可以对物流系统优化问题进行分类,比如确定设施(指的是物品流动的出发点和终到点,如配送中心、仓库、生产工厂、垃圾回收中心等)位置、运输路线 * 国家自然科学基金重点项目(70031020) ** 林岩, 硕士研究生, 1972年出生, 主要研究方向: 电子商务, 信息系统工程。 胡祥培, 1962年出生, 教授,博导, 主要研究方向: 电子商务, 智能运筹学, 信息系统集成。

垃圾运输问题模型

关于垃圾运输问题的数学模型 摘要 本文对于垃圾运输问题的优化,通过运用图论的TSP问题的有关知识对题目给出的坐标数据进行了处理,根据从最远点开始运载垃圾运输费用最低的原则,以及不走回路的前提,在条件时间约束下,建立了运输车和铲车的调度优化模型,得到运输车和铲车的安排路线和时间,在垃圾运输问题上,安排了六辆运输车,三辆铲车的最少调动车辆数目,达到最少运输费用。 关键词:哈密顿图;TSP问题;垃圾集中点;重载起点;运输路线

1 问题重述 某城区有36个垃圾集中点,每天都要从垃圾处理厂(第 37 号节点)出发将垃圾运回。现用一种载重 6 吨的运输车到期每个垃圾点载运垃圾,并需要用10 分钟的时间装车,运输车平均速度为 40 公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作 4 小时。运输车重载运费 1.8 元 / 吨公里;运输车和装垃圾用的铲车空载费用 0.4 元 / 公里;并且假定街道方向均平行于坐标轴。要求给出满意的运输调度方案,使总运费最少。问题: 1. 运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用) 2. 铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用) 垃圾集中点坐标数据表如下表1: 表1:垃圾点地理坐标数据表 2 模型假设 2.1假设运输车重载与空载行走时间相同; 2.2假设运输车在工作过程中没有任何耽误; 2.3假设铲车的速度与运输车的速度一样;

2.4只要在满足每辆运输车在每天平均工作四小时的前提下,假设运输车工作时间允许超过四小时; 2.5假设运输车每天安排所走的路线不是固定不变的,有一个值班制度,使每辆运输车每天平均工作大约四小时。 3 符号说明 k T :第k 个垃圾集中点的垃圾量,36,,2,1 =k ; k X :第k 个垃圾集中点的横坐标,36,,2,1 =k ; k Y :第k 个垃圾集中点的纵坐标,36,,2,1 =k ; L :垃圾运输路线总条数; i C :第i 条路线上垃圾集中点的个数,L i ,,2,1 =; N :安排运输车的总数量; ij X :第i 条路线上的第j 个垃圾集中点的横坐标,i C j L i ,2,1,,,2,1 ==; ij T :第i 条路线上的第j 个垃圾集中点的垃圾量,i C j L i ,2,1,,,2,1 ==; i h :第i 条路线所需要的总时间; n H :第n 辆车的运输总时间; 1W :运输车空载的总费用; 2W :运输车重载的总费用; W :运输车的总费用; 1Q :铲车1的空载费用; 2Q :铲车2的空载费用; 3Q :铲车3的空载费用; Q :全部铲车空载的总费用。 4 运输车调度优化模型 4.1 确定运输车路线算法 由于最远的垃圾集中点的运输时间不超过运输车每天平均工作时间,所以可以先不考虑时间的约束。从而建立如下算法: 1) 确定重载起点 由于每个垃圾集中点的垃圾量及其坐标是不变,重载运输的费用是不变的,所以为了使总运输费用W 最少,只要使空载的费用最少,即尽量安排较远的垃圾集中点在同一路线上,从而确定重载起点1i X . 2)确定运输车路线走向 要求运输时走最短的路线,以及运输费用最低,而且由于运输车的重载费用 1.8元/吨是空载费用0.4元/吨的4.5倍,为了使运输总费用W 最少,那只能从最远的点(1=j )开始运载垃圾,下一个点编号为1+j ,走一条路线,向垃圾处理站(坐标原点)方向运回。顺次经过的点遵循满足条件: ?????≥≥++1 1ij ij ij ij Y Y X X 即其横坐标以及纵坐标均不超过前一点的横、纵坐标,并且各点横、纵坐标递

图与网络优化模型

第十章 图与网络优化模型 在图论中通常用V 表示点,E 表示边(无向),A 表示弧(有向),G 表示图,点和边构成的图称为无向图,G=(V ,E ),点和弧构成的图称为有向图,G=(V ,A)。 对图G 的边(或弧)标上权数,称为赋权图。 求1到7的最短路。 本图是个有向图,弧上的数字不妨理解为距离。目前用于求解最短路的算法有多种,如:动态规划法,Dijkstra 算法,0-1规划方法等。 下面只介绍0-1规划法 设1为起点,7为终点。引入1,0=ij x 表示:若弧(i,j)在最短路上,1=ij x ,否则,0=ij x Z 为目标函数上各弧的路程之和。 起点1必定有一条弧出发,所以 12 1=∑=n j j x 终点n 必定有一条弧到达,所以11 1 =∑-=n i in x 其它点有两种情况: (1) 该点不在最短路上,即无进线弧,也无出线弧。满足: 0,1=∑≠=n k i i ik x , 且0,1=∑≠=n k i i ki x (2) 该点在最短路上,即有进线弧,也有出线弧。满足: 1,1=∑≠=n k i i ik x ,且 1,1=∑≠=n k i i ki x 改写上述两个等式为: 0,1 ,1==∑∑=≠=ii n j kj n k i i ik x x x

???? ??? ????????===<<==== ∑∑∑∑∑=====1,0,...,2,1,01,11..min 11 1111 ,ij ii n i ji n i ij n i in n i i n j i ij ij x n i x n j x x x x t s x w Z model : sets : city/1..7/;!定义7个城市; links(city,city):dist,x;!定义各城市之间的距离表(若城市i 到城市j 无路,用一个大数表示),决策变量; endsets data : dist=0 2 10 1000 1000 1000 1000 1000 0 7 3 1000 1000 1000 1000 1000 0 1000 4 1000 1000 1000 1000 1000 0 1000 1000 8 1000 1000 5 1000 0 3 7 1000 1000 1000 1000 1000 0 12 1000 1000 1000 4 1000 3 0 ; enddata n=@size (city); min =@sum (links:dist*x); @sum (city(i):x(1,i))=1; @sum (city(i):x(i,n))=1; @for (city(i)|i#gt#1 #and# i#lt#n : @sum (city(j):x(i,j))=@sum (city(j):x(j,i))); @for (city(i):x(i,i)=0); @for (links:@bin (x)); end 10.2 旅行售货员TSP 模型

简单的优化模型.

第三章 简单的优化模型 1.在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型和允许缺货模型中找结果都与原来的一样. 解:设购买单位重量货物的费用为k ,对于不允许缺货模型,每天平均费用为 c (T )=c1/T+c2rT/2+kr,T,Q 的[最优结果不变。对于允许缺货模型,每天平均费用为c(T,Q)=1/T[c1+c2Q^2/2r+c3(rT-Q)^2/2r+kQ],利用 0,0=??=??Q c T c ,可求出T,Q 的最优结果为 3 2))32(23323212(*,)32332212(*21222212 c c kr c c c r k c c c c c r c Q c c k c c c rc c T +-+-+=-+= T*,Q*均比不考虑费用k 时的结果减少。 3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型. 解:不妨设1)(' +=b b λλ,表示火势b 越大,灭火速度λ越小,分母b+1中的1是防止0 →b 时∞→λ而加的。最优解为 .)1()32)1]()1(221[('212'2'λ βλβλ+++++=b c b b b c b c x 4.在3.4节最优价格模型中,如果考虑到成本q 随着产量x 的增加而降低,试做出合理的假设,重新求解模型. 解:不妨设k kx q x q ,)(0-=是产量增加一个单位时成本的降低。最优价格为.2)1(2*0b a k b ka q p +--= 5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设q=q0+βt , β为增长率.又设单位时间的销售量为x=a-bp (p 为价格).今将销售期分为0

第九章网络优化模型

教学要求: b拿握图爲基础,拿握最蔻路问題,最大流问題和最小费用流问題等网络优化栈型及其基本算出O b会应用模矍和方出解决一些管理中的基本问題

口目录口图与阿络 口树 □最短珞问题 口最丸浇问题 □最小赛用济问题

一、图的概念及分类 图是由作为研克对象的有限个集合和表达这些顶A之间关糸的m条线的集合组成的丿 记顶点集合^V={v lz v2,……v n},线集合%L={—???lm} 图则记为G = (V, L),线又分为孤和边,顶点也称为结点孤是由一对有序的顶点组成,表示两个顶点之间可能运动的方向取旖孤的方向就变成了边,边是只要任两点之间有连线,两个方向均可使用,孤可作为城市道路的单行道,边则是双行道

顶点、孤.有向图■无向图■ <>道路.环、连通图、连通子 图、次的基本概I 念 6—do 3 O 1 5 3 2 次:以3点为 顶点的边的条 数隸为顶点的 次

二?网络 点或边带有禁种数量指捺的图叫网划图、简称网修。 ?与点或边有关的禁些数量指栋,我们经常称之为权,权可以代蔻如距离、费用.彖量等。左图可以看作: A从发色厂(节点1丿向禁城市(节点6丿输送赳力,必须通过中转誌(节点2, 3, 4, 5丿转送,边上数字代表两节点问的距禽。色力公司希望迄择合适的中转哉,使从色厂到城市的传输路线最短。 —个输油管道网。节点1表示管道的起点,节点6表示管道的终点,节点2到5表示中转站,?务边的数字表示该段管道能通过的最大输送量。应怠样安排输油线路,使从节点1到节点6的总输送量最丸? > 一張城市分布图。现蛊要蛊各城市之间架设色话线,应如何架设,使各城市 之间既能通话,又使总的架设路线最短?

运输问题论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):宁波工程学院 参赛队员(打印并签名) :1. 焦跃强 2. 张爽爽 3. 王一迎 指导教师或指导教师组负责人(打印并签名):数模组 日期: 2010 年 9 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

运输问题的优化模型 摘 要 本文是一个对厂家到连锁店的供货运输问题。厂方为了能尽量减少运输成本,必然会面对货车的路线选择的问题,因此如何快速、高效地从众多可行路线中选出最优路线成为了解决此问题的关键。 问题一要求满足8个连锁店的供货需求,求运输车的线路问题。问题一的第1小题采用最短路模型里的Floyd 算法得出结果如下:91v v →的路线9v -1v , 92v v →的路线9v -1v -2v ,93v v →的路线9v -5v -3v ,94v v →的路线9v -8v -6v -4v ,95v v →的路线9v -5v ,96v v →的路线9v -8v -6v ,97v v →的路线9v -5v -7v ,98 v v →的路线9v -8v 。第2小题在解决第1小题的基础上用哈密尔顿回路解决增加量的运输线路。结果如下:9v -1v -9v -1v -2v -1v -9v -5v -3v -5v -9v -8v -6v -4v -6v -8v -9v - 5v -9v -8v -6v -8v -9v -5v -7v -5v -9v -8v -9v -5v -7v -8v -6v -4v -2v -3v -1v -9v ,得出 最短路程为2079公里。第3小题考虑到油耗的问题,采用避圈法来求解最节油的路程,油耗公式为0.1??车总质量车驶过的路程,求得油耗量915,路径为 9v -5v -3v -1v -2v -4v -6v -7v -8v -9v 问题二由于数据是各连锁店不定期日销售量,因此,要进行数据处理:先假设数据是服从正态分布的,然后采用卡方检验证实了我们的假设是正确的。然后用图论软件包求出最小生成树,进行分析计算,得出周平均总公里数3864公里,后改进得结果2736公里。 问题三是对整个运输问题的进一步改进和扩展,因此,在原模型的基础上考虑中转站进去,在求最短公里路之后与第二题相比较得出最优模型。 关键词:最短路模型,Floyd 算法,哈密尔顿圈,旅行商模型,最小生成树,卡方检验

相关文档
最新文档