线代1向量的内积长及正交性
合集下载
§1 向量的内积、长度及正交性

α ⋅ β = 18 = 2 解 ∵ cosθ = 3 2⋅6 2 α β π ∴θ = .
4
三、正交向量组的概念及求法
1 正交的概念
当 ( x, y ) = 0 时 , 称向量 x 与 y 正交 .(orthogonal)
由定义知, 若 x = θ , 则 x 与任何向量都正交 .
2 正交向量组的概念 若一非零向量组中的向量两两正交, 若一非零向量组中的向量两两正交,则称该向 非零向量组中的向量两两正交 量组为正交向量组. 量组为正交向量组. 正交向量组
也为R 也为 4的一个规范正交基 .
6 求规范正交基的方法
设α 1 ,α 2 ,⋯ ,α r 是向量空间 V的一个基 , 要求 V 的一个规范正交基 , 就是要找一组两两正交 的单 位向量 e1 , e 2 ,⋯ , e r , 使e1 , e 2 ,⋯ , e r 与α 1 ,α 2 ,⋯ ,α r 等 价, 这样一个问题 , 称为 把α1,α2 ,⋯,αr 这个基规
把基础解系正交化,即合所求. 把基础解系正交化,即合所求.亦即取
a2 = ξ 1 ,
a3 = ξ −
2
(ξ ,ξ ) (ξ ,ξ
1 1 2 1
ξ. )
1
其中(ξ ,ξ ) = 1, (ξ ,ξ ) = 2, 于是得
1 2 1 1
1 0 1 1 a2 = 0 , a3 = 1 − 0 = − 1 − 1 2 − 1
e , e , e 即为所求 .
1 2 3
例4 已知 α1 = (1,1,1) , 求非零向量 α 2 , α 3使α1 , α 2 , α 3
T
两两正交.
线性代数正交规范化ppt课件

x1x2x30. 它的基础解系为
1 0
1 0 ,2 1 .
1 1
把基础解系正交化,即合所求.亦即取
a21, a32[[11,,12]]1.
其 [1 ,中 2 ] 1 ,[1 ,1 ]2 ,于是得
1 a2 0 , 1
0 1 1 1 1 a311201221.
四、正交矩阵与正交变换
rr
其中
e ieiT[, i]
6 求规范正交基的方法
设1,2,,r是向量空V的 间一个,要 基求V
的一个规范正,就交是基要找一组两的 两单 正交
位 向 量 e1,e2,,er ,使e1,e2,,er与1,2,,r等
价,这样一个问 ,称题 为把 1,2,,r这个基
范正 . 交化 若 a 1,a2, ,ar为向 V 的 量一 空 , 个 间基
则有 [1 ,3 ] [2 ,3 ] 0
即
[[ 2 1,, 3 3]] x x1 1 2 xx 22xx 3300
解之得 x 1 x 3,x 2 0 .
若令 x31,则有 3
x1 x2
1 0
x3 1
由上可知1,2,3构成三维空间的一设n维向量 e1,e2,,er是向量空 V(V间
1 1 4
例3
设a1
2,a2
3,a31,试
用
施密
1
1
0
特正交化过程量 把规 这范 组正 .向交化
解
取 b1a1;
1 1
b2
a2 [a2,b21]b1
b1
3 1
4 6
2 1
5 3
1 1 1
;
b3a3[a3,b21]b1[a3,b22]b2
b1
1 0
1 0 ,2 1 .
1 1
把基础解系正交化,即合所求.亦即取
a21, a32[[11,,12]]1.
其 [1 ,中 2 ] 1 ,[1 ,1 ]2 ,于是得
1 a2 0 , 1
0 1 1 1 1 a311201221.
四、正交矩阵与正交变换
rr
其中
e ieiT[, i]
6 求规范正交基的方法
设1,2,,r是向量空V的 间一个,要 基求V
的一个规范正,就交是基要找一组两的 两单 正交
位 向 量 e1,e2,,er ,使e1,e2,,er与1,2,,r等
价,这样一个问 ,称题 为把 1,2,,r这个基
范正 . 交化 若 a 1,a2, ,ar为向 V 的 量一 空 , 个 间基
则有 [1 ,3 ] [2 ,3 ] 0
即
[[ 2 1,, 3 3]] x x1 1 2 xx 22xx 3300
解之得 x 1 x 3,x 2 0 .
若令 x31,则有 3
x1 x2
1 0
x3 1
由上可知1,2,3构成三维空间的一设n维向量 e1,e2,,er是向量空 V(V间
1 1 4
例3
设a1
2,a2
3,a31,试
用
施密
1
1
0
特正交化过程量 把规 这范 组正 .向交化
解
取 b1a1;
1 1
b2
a2 [a2,b21]b1
b1
3 1
4 6
2 1
5 3
1 1 1
;
b3a3[a3,b21]b1[a3,b22]b2
b1
1向量的内积及正交性

n
|| || ( ) ai2 i 1
则|| || 称为向量 的范数 (或长度). 特别地, 当|| || 1时, 称 为单位向量.
向量范数具有下列性质(其中 与 是向量, k 是数)
1) 非负性: 当 0 时, || || 0 ; 当 0 时, || || 0 ;
15 , 2 15 , 15 15
15 , 5
15 15
.
由施瓦兹(Schwarz)不等式, 即[ ]2 [ ] , 当 0 , 0 时, 可得
[ ] 1. || || || ||
定义 1.3 设 是两个 n 维非零向量,称 arccos [ ] 为向量 的夹角. || || || ||
2 2 2 2 .
又 0,所以|| |||| || || || .
证毕
注 1°当 || || 0 时, 用非零向量 的长度去乘以向量 ,得到一个单位向量,这一过
程通常称为把向量 单位化. 即
0 1 , || ||
所含有的向量个数不会超过.
定义 1.6 若向量空间V 的一组基是正交向量组, 则该组基称为向量空间的正交基. 若 向量空间V 的一组基是正交的单位向量组, 则该组基称为向量空间的规范正交基(或标准正
交基).
注
1°如向量组
e1
1 , 2
1 2
T
,
0,
0
, e2
Hale Waihona Puke 1, 21 2例 1.5 用施密特正交化方法,将向量组正交规范化
|| || ( ) ai2 i 1
则|| || 称为向量 的范数 (或长度). 特别地, 当|| || 1时, 称 为单位向量.
向量范数具有下列性质(其中 与 是向量, k 是数)
1) 非负性: 当 0 时, || || 0 ; 当 0 时, || || 0 ;
15 , 2 15 , 15 15
15 , 5
15 15
.
由施瓦兹(Schwarz)不等式, 即[ ]2 [ ] , 当 0 , 0 时, 可得
[ ] 1. || || || ||
定义 1.3 设 是两个 n 维非零向量,称 arccos [ ] 为向量 的夹角. || || || ||
2 2 2 2 .
又 0,所以|| |||| || || || .
证毕
注 1°当 || || 0 时, 用非零向量 的长度去乘以向量 ,得到一个单位向量,这一过
程通常称为把向量 单位化. 即
0 1 , || ||
所含有的向量个数不会超过.
定义 1.6 若向量空间V 的一组基是正交向量组, 则该组基称为向量空间的正交基. 若 向量空间V 的一组基是正交的单位向量组, 则该组基称为向量空间的规范正交基(或标准正
交基).
注
1°如向量组
e1
1 , 2
1 2
T
,
0,
0
, e2
Hale Waihona Puke 1, 21 2例 1.5 用施密特正交化方法,将向量组正交规范化
1向量的内积长度及正交性

且当且仅当 ai 0(i 1,即2 , n)时, 0 成立,。 0
2. 向量的长度
a1
定义 2
设
n 维向量
a2 ,
an
规定 的长度(或范数)为
[ , ] a12 a22 an2
返回 上页 下页
1
2
例1
已知
21,
13,
0
0
计算两个向量单位化后的内积.
三、正交矩阵、正交变换
1. 正交矩阵
定义 5 若 n 阶方阵 A 满足 ATA=E,则 A 为正交矩阵. 根据定义,容易证明如下正交矩阵的性质: 设 A, B 皆为 n 阶正交矩阵,则
① A1 AT ; ② A1(即 AT) 也是正交矩阵; ③ AB 也是正交矩阵; ④ A 1或1;
返回 上页 下页
(2) 由于 Ax x 亦可写成齐次线性方程组 ( A E)x O
因此,使得 ( A E)x O 有非零解的 值都是矩
阵 A 的特征值.
即,使得 A E 0的 值都是矩阵 A 的特征值.
返回 上页 下页
定义 2 设 n 阶矩阵 A (aij ) ,记
f () A E
a11 a12
相似矩阵及二次型
§1 向量的内积、长度及正交性
上堂课主要内容:
1、内积:对向量
a1
aan2 ,
b1
b2
bn
, a1b1 a2b2 anbn
2、向量的长度:设
a1
a2
an
, a12 a22 an2
3、单位向量:当 1 时,称为单位向量
解 12 22 (1)2 02 6 14
,
,
1 2 2 (3) (1)1 0 0 6 14
《线性代数及其应用》第六章 正交性和最小二乘法

§2 正交集
定义 ¡ n 中的向量集合 u1,..., up 称为正交向量集,如果
集合中的任意两个不同向量都正交,即
当 i j 时, ui uj 0.
定理4 如果 S u1,..., up 是由 ¡ n 空间中非零向量构成的
正交集,那么S 是线性无关集,因此构成所生成的子空间S 的一个基.
证:如果 0 c1u1 L cpu p 对于任意数 c1,…,cp 成立, 0 0gu1 (c1u1 c2u2 L cpu p )gu1
(c1u1)gu1 (c2u2 )gu1 L (cpu p )gu1
c1(u1gu1) c2 (u2 gu1) L cp (u p gu1)
中的每个向量y , 线性组合 y c1u1 L cpu p
中的权值可以由
cj
ygu j u j gu j
( j 1,K , p) 计算.
证明提示:通过正交条件,由 yguj 的表达式中求解 c j .
正交投影
对 ¡ n 中给出的非零向量u , 考虑¡ n 中一个向量y 分解为两 个向量之和的问题,一个向量是向量u 的数量乘积,另一个 向量与u垂直. 我们期望写成
和正交性,这个性质对很多计算机算法非常重 要.
正交矩阵
定义 4 设 U 为 n 阶可逆的方阵, 且U 1 U T , 则称 A 为正交矩阵.
正交矩阵的性质
(1) 若矩阵 U 为正交矩阵, 则 |U| = ; (2) 方阵 U 为正交矩阵的充要条件是 UU T U TU I; (3)方阵 U为正交矩阵的充要条件是 U 的
正交向量
当向量u 和向量v 看作几何点时,通过这些点和原点的两条直
线相互垂直的充分必要条件是 u v=0.
下面给出¡ n空间中两个向量互相垂直(或正交)的一般定义:
线性代数5.1向量内积

当 [ x , y ] = 0,称向量 x 与 y 正交. 显然,若x = 0,则x与任何向量都正交.
下面讨论正交向量组的性质. 所谓正交向量组, 是指一组两两正交的非零向量.
定理 5.1 正交向量组是线性无关的. 证明
首页 上页 下页 返回 结束
例 5.1 试求一个非零向量a3 ,使它与向量
1 1
首页 上页 下页 返回 结束
1 1 4
例 5.2
设
a1
21
,a2
3 1
,a3
1 0
,
试用施密特正交化过程把这组向量规范正交化.
解 取 b1=a1,
1 1 1
b2
a2
[ a2 [ b1
证明 A = ( a1 , a2 ,…, an ) 为正交矩阵等价于
A A E, 即
AT
A
a1T a2T
M
a1 ,a2 ,L
,an
a1Ta1 a2Ta1
M
a1Ta2 a2Ta2
M
L L
anT
anTa1
anTa2
L
a1Tan a2Tan
M
xn
yn
令
x, y x1y1 x2 y2 L xn yn,
[ x , y ] 称为向量 x 与 y 的内积.
内积是两个向量的一种运算,用矩阵记号表示
[ x , y ] = xT y.
首页 上页 下页 返回 结束
下面讨论正交向量组的性质. 所谓正交向量组, 是指一组两两正交的非零向量.
定理 5.1 正交向量组是线性无关的. 证明
首页 上页 下页 返回 结束
例 5.1 试求一个非零向量a3 ,使它与向量
1 1
首页 上页 下页 返回 结束
1 1 4
例 5.2
设
a1
21
,a2
3 1
,a3
1 0
,
试用施密特正交化过程把这组向量规范正交化.
解 取 b1=a1,
1 1 1
b2
a2
[ a2 [ b1
证明 A = ( a1 , a2 ,…, an ) 为正交矩阵等价于
A A E, 即
AT
A
a1T a2T
M
a1 ,a2 ,L
,an
a1Ta1 a2Ta1
M
a1Ta2 a2Ta2
M
L L
anT
anTa1
anTa2
L
a1Tan a2Tan
M
xn
yn
令
x, y x1y1 x2 y2 L xn yn,
[ x , y ] 称为向量 x 与 y 的内积.
内积是两个向量的一种运算,用矩阵记号表示
[ x , y ] = xT y.
首页 上页 下页 返回 结束
线性代数课件4-3向量的内积和Schmidt正交化

向量内积的结果是一个标量,表示两个向量的相似程度。
向量内积的性质
非负性
$mathbf{u} cdot mathbf{v} geq 0$,当且仅当
$mathbf{u}$与$mathbf{v}$同 向或反向时取等号。
交换律
$mathbf{u} cdot mathbf{v} = mathbf{v} cdot mathbf{u}$。
线性代数课件4-3向量 的内积和schmidt正 交化
contents
目录
• 向量的内积 • Schmidt正交化 • 向量的模 • 向量的外积
01
向量的内积
向量内积的定义
向量内积的定义为两个向量之间的点乘,记作$mathbf{u} cdot mathbf{v}$,计 算公式为:$mathbf{u} cdot mathbf{v} = u_1v_1 + u_2v_2 + cdots + u_nv_n$,其中$mathbf{u} = (u_1, u_2, ldots, u_n)$和$mathbf{v} = (v_1, v_2, ldots, v_n)$。
1
正交化后的向量组是正交的,即任意两个不同向 量的点积为0。
2
正交化后的向量组是单位向量组,即每个向量的 模长为1。
3
正交化后的向量组是线性无关的,即不存在不全 为零的系数使得这些系数的线性组合等于零向量 。
Schmidt正交化的计算方法
首先,将非正交向量组进行单位化,使得每个 向量的模长为1。
然后,通过线性变换将每个向量与其余向量进 行正交化,使得任意两个不同向量的点积为0。
计算步骤
02
03
注意事项
首先计算各个分量,然后根据这 些分量构造向量c。
向量内积的性质
非负性
$mathbf{u} cdot mathbf{v} geq 0$,当且仅当
$mathbf{u}$与$mathbf{v}$同 向或反向时取等号。
交换律
$mathbf{u} cdot mathbf{v} = mathbf{v} cdot mathbf{u}$。
线性代数课件4-3向量 的内积和schmidt正 交化
contents
目录
• 向量的内积 • Schmidt正交化 • 向量的模 • 向量的外积
01
向量的内积
向量内积的定义
向量内积的定义为两个向量之间的点乘,记作$mathbf{u} cdot mathbf{v}$,计 算公式为:$mathbf{u} cdot mathbf{v} = u_1v_1 + u_2v_2 + cdots + u_nv_n$,其中$mathbf{u} = (u_1, u_2, ldots, u_n)$和$mathbf{v} = (v_1, v_2, ldots, v_n)$。
1
正交化后的向量组是正交的,即任意两个不同向 量的点积为0。
2
正交化后的向量组是单位向量组,即每个向量的 模长为1。
3
正交化后的向量组是线性无关的,即不存在不全 为零的系数使得这些系数的线性组合等于零向量 。
Schmidt正交化的计算方法
首先,将非正交向量组进行单位化,使得每个 向量的模长为1。
然后,通过线性变换将每个向量与其余向量进 行正交化,使得任意两个不同向量的点积为0。
计算步骤
02
03
注意事项
首先计算各个分量,然后根据这 些分量构造向量c。
线性代数中内积空间与正交性

线性代数中内积空间与正交性内积空间是线性代数中一个重要的概念,它是向量空间上定义了一个内积运算的结构。
内积空间的重要性在于它使得我们可以定义向量之间的夹角和长度,同时也为后续讨论正交性提供了基础。
一、内积空间的定义与性质内积空间的定义:设V为一个n维线性空间,对于任意的u、v、w ∈ V和任意的实数a,满足以下条件的运算称为内积:1. u·v = v·u (对称性)2. (au)·v = a(u·v) (齐次性)3. (u+v)·w = u·w + v·w (加法性)4. u·u ≥ 0,当且仅当u为零向量时,u·u = 0。
(正定性)内积空间的性质:1. 内积的线性性:对于任意的u、v ∈ V和任意的实数a、b,有(au+bv)·w = a(u·w) + b(v·w)。
2. 内积的非负性:对于任意的u ∈ V,有u·u ≥ 0,并且当且仅当u 为零向量时,u·u = 0。
3. 内积的正定性:对于非零向量u ∈ V,有u·u > 0。
二、向量间的夹角与正交性1. 夹角:在内积空间中,可以利用内积的定义计算向量之间的夹角。
设有u和v为非零向量,则它们的夹角θ可由以下公式计算得出:cosθ = (u·v) / (||u|| ||v||)其中,||u||表示向量u的长度(模)。
2. 正交性:若向量u和v的内积为零,则称它们为正交向量。
即,若u·v = 0,则称u与v正交。
另外,若向量空间中的每一对非零向量都是正交的,则称该向量空间为正交向量空间。
正交向量空间的一个重要性质是:任意向量空间都可以通过正交化的方法,将其转化为正交向量空间。
三、内积空间的应用1. 几何学中的内积:在几何学中,内积可以用于计算向量之间的夹角、判断向量之间的正交性等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10,
3
10,
4
0 0
.
0
0
0
1
也为R4的一个规范正交基.
7、 求规范正交基的方法
设1 , 2 , , r是向量空间V的一个基,要求V
的一个规范正交基,就是要找一组两两正交的单
位向量e1 ,e2 , ,er ,使e1 ,e2 , ,er与1 , 2 , , r等 价,这样一个问题,称为 把1,2 , ,r 这个基规
1
0 0
2
, e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2 1 2
由于
[ei ,e j ] 0, [ei ,e j ] 1,
i j且i, j 1,2,3,4. i j且i, j 1,2,3,4.
所以 e1 ,e2 ,e3 ,e4为R4的一个规范正交基.
同理可知
范正交化.
下面介绍施密特正交化方法(Gram-Schmidt orthogonalization’s method )
若a1 ,a2 , ,ar为向量空间V的一个基,
(1) 正交化 , 取 b1 ,a1
b2
a2
b1 , a2 b1 , b1
b1
,
b3
a3
[b1 ,a3 [b1 ,b1
解 先正交化,取
b1 a1 1,1,1,1
§1 向量的内积、长度及正交性
一、内积的定义及性质 二、向量的长度及性质 三、正交向量组的概念及求法 四、正交矩阵与正交变换
一、内积的定义及性质
x1
1.定义1 设有 n维向量
x
x2 ,
令 x, y x1 y1 x2 y2 xn yn xn
y1
y
y2 ,
yn
称x, y为向量 x与 y的内积 . (Inner product)
] ]
b1
[b2 [b2
, ,
a3 b2
] ]
b2
br
ar
[b1 [b1
,ar , b1
] ]
b1
[b2 [b2
, ,
ar b2
] ]
b2
[br1 ,ar ] [br1 ,br1 ]
br
1
那么b1 , ,br两两正交,且b1 , ,br与a1 , ar等价.
(2)
单位化 ,
取 e1
b1 b1
,
e2
由定义知,若 x ,则 x 与任何向量都正交.
2、正交向量组的概念 若一非零向量组中的向量两两正交,则称该向 量组为正交向量组.
3、 正交向量组的性质
定理1 若 n 维向量 α1,α2 , ,αr 是一组两两正交的 非零向量 , 则 α1,α2 , ,αr 线性无关.
证明 设有 1,2 , ,r 使 11 22 r 0
例 求向量 1,2,2,3与 3,1,5,1的夹角.
解
cos
18 2 3 26 2
.
4
三、正交向量组的概念及求法
1、正交的概念 当 [ x, y] 0 时 , 称向量 x 与 y 正交. (orthogonal)
例如 (0,1,1,1)T 与 (8,1,2,1)T [ , ] 0 , 向量 与 正交 .
(4) [ x, x] 0,且当 x 时有[ x, x] 0.
二、向量的长度及性质
1.定义2 令 x [ x, x] x12 x22 xn2 ,
称 x 为n维向量 x的长度或范数 . (norm)
向量的长度具有下述性质:
1. 非负性 当 x 时, x 0;当 x 时, x 0; 2. 齐次性 x x ; 3. 三角不等式 x y x y .
2.单位向量及 n 维向量间的夹角
1 当 x 1时,称 x为单位向量 .
例
1, 3
1 , 3
1 3
,
1 ,0, 2
1 2
,0
2 将向量 单位化: 1 .
例 1,2,3,
1 1,2,3
14
3 当 x 0, y 0时, arccos x, y
xy 称为n维向量x与y的夹角 .
说明 1. nn 4 维向量的内积是3维向量数量积
的推广,但是没有3维向量直观的几何意义.
2. 内积是向量的一种运算, 如果 x , y 都是 列向量 ,内积可用矩阵记号表示为 : [ x, y] xT y
2.内积的运算性质
其中 x , y , z 为 n 维向量 , 为实数 :
(1) x, y y, x; (2) x, y x, y; (3) x y, z x, z y, z;
x1 x1
x2 x3 0 2x2 x3 0
解之得 x1 x3 , x2 0.
若令 x3 1,则有
x1 1
3 x2 0
x3 1
由上可知1 ,2 ,3构成三维空间的一个正交基.
6、 规范 (标准)正交基
定义 设n维向量 e1,e2 , ,er是向量空间 V (V
Rn )的一个基,如果e1,e2 , ,er两两正交且都是单位 向量,则称e1,e2 , ,er是V的一个规范正交基.
例如
1 2 1 2 0 0
e1
1
0 0
2 ,e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2
1 2
1 2 1 2 0 0
e1
以a1T 左乘上式两端,得 11T1 0 由 1 0 1T1 1 2 0, 从而有1 0 .
同理可得2 r 0. 故1,2 , ,r线性无关.
4、 正交单位向量组 每个向量都是单位向量的正交向量组.
5、 向量空间的正交基
若1,2 , ,r是向量空间V的一个基,且1,2 ,
,r是两两正交的非零向量组,则称1,2 ,
b2 b2
,
, er
br br
,
那么 e1 ,e2 , ,er为V的一个规范正交基 .
上述由线性无关向量组a1 , ,ar构造出正交 向量组b1 , ,br的过程,称为施密特正交化过程 .
例2 用施密特正交化方法,将向量组
a1 (1,1,1,1),a2 (1,1,0,4),a3 (3,5,1,1) 正交规范化.
,
是
r
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
1
2 2
1
正交,试求 3 使1 ,2 ,3构成三维空间的一个正交
基.
解 设3 x1, x2 , x3 T 0,且分别与1,2正交.
则有 [1 , 3 ] [ 2 , 3 ] 0
即
[[21,,33
] ]