计算机图形学画圆的程序
画圆环算法c程序

画圆环算法c程序全文共四篇示例,供读者参考第一篇示例:画圆环是计算机图形学中常见的基本图形之一,常用于游戏开发、动画制作等领域。
在计算机中,画圆环的算法有多种,其中最常用的是中点画圆算法。
本文将介绍使用C语言实现中点画圆算法的程序,并进行详细分析和讲解。
1. 算法原理中点画圆算法是一种简单而高效的算法,其基本原理是通过逐渐逼近圆形的方法,利用对称性和中点的位置进行迭代计算。
具体步骤如下:(1)给定圆的半径r和圆心坐标(x0, y0),设置初始点P(0, r)作为起点,并计算判别式d=1-r。
(2)在每次迭代中,分别取直线y=x和y=-x两侧的中点,分别计算两种情况下的判别式值,并根据判别式值的大小决定下一个中点的位置。
(3)重复进行上述步骤,直到计算完整个圆的一周。
2. C程序实现下面是使用C语言实现中点画圆算法的程序代码:```c#include <stdio.h>#include <graphics.h>void plot_circle_points(int x0, int y0, int x, int y) { // 绘制圆的八个对称点putpixel(x0 + x, y0 + y, WHITE);putpixel(x0 - x, y0 + y, WHITE);putpixel(x0 + x, y0 - y, WHITE);putpixel(x0 - x, y0 - y, WHITE);putpixel(x0 + y, y0 + x, WHITE);putpixel(x0 - y, y0 + x, WHITE);putpixel(x0 + y, y0 - x, WHITE);putpixel(x0 - y, y0 - x, WHITE);}void midpoint_circle(int x0, int y0, int r) { int x = 0, y = r;int d = 1 - r;plot_circle_points(x0, y0, x, y); while (x < y) {if (d < 0) {d = d + 2 * x + 3;x++;} else {d = d + 2 * (x - y) + 5;x++;y--;}plot_circle_points(x0, y0, x, y);}}delay(5000);closegraph();return 0;}```以上是一个简单的使用C语言实现中点画圆算法的程序代码。
计算机图形学--圆的生成算法的实现

三、实验结果分析 1、显示圆上的 8 个对称点的算法如下:
void CirclePoints(int x,int y,int color) {
putpixel(x,y,color); putpixel(y,x,color); putpixel(-x,y,color); putpixel(y,-x,color); putpixel(x,-y,color); putpixel(-y,x,color); putpixel(-x,-y,color); putpixel(-y,-x,color); }
2 ) 7+ 3 2 7( 2 1)
5=2R-3R/
2
5(2R-3R/ 2 )/(R/ 2 ) 4.8
通过实际的程序运行进行比较,结论是中点画圆法速度比较快, 就算法本身而言,该算法仍可以在某些方面进行改进,如其中的浮点 运算改为整数运算等,执行速度将更快。生成直线和圆这类基础算法 在编程时要被无数次的调用,可能每生成一帧画面就要被调用成百上 千次,因此其执行速度是至关重要的。而这类基础算法的长度都很短, 即使多用一些分支,多用一些变量和语句,一般来说只不过是增加几 十个语句,这样的空间增加与算法极其重要的速度来比较是相对次要 的因素。因此在开发图形学的基础算法时,如果有可能提高算法的速 度,应不惜多占用一些存储空间。
2
{ int i,j; for(i=-n/2;i<=n/2;i++) for(j=-n/2;j<=n/2;j++) putpixel(x+j,y+i,color);
} void putpixelt(int x,int y,int color,int i) {int a[8]={1,1,1,1,0,0,0,0}; if(a[i%8])putpixel(x,y,color); } void EllipsePoints(int x,int y,int color) { putpixel(xo+x,yo+y,color);
计算机图形学--圆的生成算法的实现

实验三:圆的生成算法的实现班级 08信计2 学号 64 姓名刘辉分数一、实验目的和要求1.理解圆生成的基本原理,掌握几种常见的圆生成算法。
2.利用Visual C++ 实现圆生成的中点画圆的算法。
3.利用Visual C++ 实现圆的Bresenham算法。
4.简单了解其他算法。
二、实验内容:1.利用中点画图算法,在屏幕上生成任意一段圆弧。
2.利用图的对称性,将(1)题生成的圆弧扩展为一个整圆。
3.利用bresebham算法设计出一段圆弧。
三、实验步骤:1.预习教材关于圆的生成原理。
2.仿照教材关于圆生成的中点画圆算法和bresenham算法,使用C++实现该算法。
3.调试、编译、运行程序。
利用bresenham算法生成圆的代码:#include<graphics.h>#include<stdio.h>#include<conio.h>void BresenhemCircle(int centerx, int centery, int radius, int color, int type);void main(){int drive=DETECT,mode;int i,j;initgraph(&drive,&mode,"");BresenhemCircle(300,200,100,150,0);getch();closegraph();}void BresenhemCircle(int centerx, int centery, int radius, int color, int type) {int x =type = 0;/*初始横坐标为原点*/int y = radius; /*初始纵坐标远离原点*/int delta = 2*(1-radius);int direction;while (y >= 0){getch();if (!type)/*执行*/{/*在上半圆画两点*/putpixel(centerx+x, centery+y, color);putpixel(centerx-x, centery+y, color);/*在下半圆画两点*/putpixel(centerx-x, centery-y, color);putpixel(centerx+x, centery-y, color);getch();}else{line(centerx+x, centery+y, centerx+x, centery-y); line(centerx-x, centery+y, centerx-x, centery-y); getch();}if (delta < 0){if ((2*(delta+y)-1) < 0)direction = 1;elsedirection = 2;}else if(delta > 0){if ((2*(delta-x)-1) > 0)direction = 3;elsedirection = 2;}elsedirection=2;switch(direction){case 1:x++;delta += (2*x+1); break;case 2:x++;y--;delta += 2*(x-y+1); break;case 3:y--;delta += (-2*y+1); break;}}}实验结果:四、实验结果分析:Bresenham画圆算法是最有效的算法之一,通过画出八分之一的圆周,对称得到整个圆周,第一想先的图形,让X轴量平均增加,通过选择理想的Y轴坐标,确定得到整个图形,算法的实现简单,且时间复杂度较低。
计算机图形学圆弧生成算法具体程序实现

e=1-r;
this->CirclePoints(x,y,color,pDC);
while(x<=y)
{
if(e<0)
{
e+=2*x+3;
}
else
{
e+=2*(x-y)+5;
y--;
}
x++;
this->CirclePoints(x,y,color,pDC);
}
}
实验结果:
六:椭圆的绘制
(1):基本原理
while(dx<dy)
{
x++;
dx+=twobb;
if(d<0)
{
d+=bb+dx;
}
else
{
dy-=twoaa;
d+=bb+dx-dy;
y--;
}
pDC->SetPixel(xc+x,yc+y,color);
pDC->SetPixel(xc+x,yc-y,color);
pDC->SetPixel(xc-x,yc+y,color);
d =F(1,b-0.5)= b + a (b-0.5) -a b
= b + a (-b+0.25)
其中,每一步的迭代过程中需要随时的计算和比较从上部分转入下部分的条件是否成立,从而将逼近方向由x改为y。
2.代码实现及结果:
#include "math.h"
class CCircle
{
protected:
}
C语言画圆椭圆

C语言画图实验代码,包含画直线,画圆,椭圆#include "graphics.h"#include "conio.h"#include "dos.h"#include "math.h"#include "stdio.h"/* 直线中点算法*/void midpointline(int x0,int y0,int x1,int y1,int color ) {int x,y;int a,b,c,d,d1,d2;a=(y0-y1);b=(x1-x0);d=a+a+b;d1=a+a;d2=a+b+a+b;x=x0;y=y0;putpixel(x,y,color);while(x<x1){if(d<0){x++;y++;d+=d2;}else{x++;d+=d1;}putpixel(x,y,color);}}/* 直线DDA算法*/DDA_line(int x1,int y1,int x2,int y2,int color) {int i;float increx,increy,x,y,length,xx,yy;if(abs(x2-x1)>abs(y2-y1))length=abs(x2-x1);elselength=abs(y2-y1);increx=(x2-x1)/length;increy=(y2-y1)/length;x=x1;y=y1;for(i=1;i<=length;i++)yy=y+0.5;putpixel((int)xx,(int)yy,color);x=x+increx;y=y+increy;}}/* 椭圆中点算法*/void MidBresenhamllipse(double a,double b,int color) { double x,y, d1,d2;x=0;y=b;d1=b*b+a*a*(-b+0.25);putpixel(x+300,y+200,color); putpixel(-x+300,-y+200,color); putpixel(-x+300,y+200,color); putpixel(x+300,-y+200,color); while(b*b*(x+1)<a*a*(y-0.5)) {if(d1<=0){d1+=b*b*(2*x+3);x++;}else{d1+=b*b*(2*x+3)+a*a*((-2)*y+2); x++;y--;}putpixel(x+300,y+200,color);putpixel(-x+300,-y+200,color);putpixel(-x+300,y+200,color);putpixel(x+300,-y+200,color);}d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b; while(y>0){{d2+=b*b*(2*x+2)+a*a*(-2*y+3);x++;y--;}else{d2+=a*a*(-2*y+3);y--;}putpixel(x+300,y+200,color);putpixel(-x+300,-y+200,color);putpixel(-x+300,y+200,color);putpixel(x+300,-y+200,color);}}/* 参数法画椭圆*/void cs_ellipse(int x0,int y0,int a,int b,int dt) {int x,y,n,i;float t=0,t1;t1=dt*0.0174533;n=360/dt;moveto(x0+a,y0);for(i=1;i<n;i++){t=t+t1;x=x0+a*cos(t);y=y0+b*sin(t);lineto(x,y);}lineto(x0+a,y0);}void cs_Ellipse(int x0,int y0,int a1,int b1,int color1) { int i,x=x0,y=y0,a=a1,b=b1,color=color1;cs_ellipse(x,y,a,b,1);}/* 中点Bresenham算法画圆*/void BresenhemCircle(int x0,int y0,double r,int color) {int x,y,d;x=0;y=(int)r;d=(int)(3-2*r);while(x<y){cirpot(x0,y0,x,y,color);if(d<0)d+=4*x+6;else{d+=4*(x-y)+10;y--;}x++;}if(x==y)cirpot(x0,y0,x,y,color);}int cirpot(int x0,int y0,int x,int y,int color){putpixel((x0+x),(y0+y),color);putpixel((x0+y),(y0+x),color);putpixel((x0+y),(y0-x),color);putpixel((x0+x),(y0-y),color);putpixel((x0-x),(y0-y),color);putpixel((x0-y),(y0-x),color);putpixel((x0-y),(y0+x),color);putpixel((x0-x),(y0+y),color);return(0);}/* 参数法画圆*/void cs_circle(int x0,int y0,int r,int dt) {int x,y,n,i;float t=0,t1;t1=dt*0.0174533;n=360/dt;moveto(x0+r,y0);for(i=1;i<n;i++){t=t+t1;x=x0+r*cos(t);y=y0+r*sin(t);lineto(x,y);}lineto(x0+r,y0);}void cs_Circle(int x0,int y0,int r1,int color1) {int i,x=x0,y=y0,r=r1,color=color1;cs_circle(x,y,r,1);}void fun(){printf("*********************************************************** *\n");printf("* input '1' ues midpointline painting line ! *\n");printf("* input '2' ues DDA_line painting line! *\n");printf("* input '3' ues system function painting line ! *\n");printf("* input '4' ues midBresenham painting elliptic ! *\n");printf("* input '5' ues parametric painting elliptic ! *\n");printf("* input '6' ues system function painting elliptic ! *\n");printf("* input '7' ues midBresenham painting circle ! *\n");printf("* input '8' ues midBresenham painting circle ! *\n");printf("* input '9' ues parametric painting circle ! *\n");printf("* input 'a' print all graphics!!! *\n");printf("* input 'E' exit system! *\n");printf("*********************************************************** *\n"); }/*主函数块*/void main(){int gdriver=DETECT,gmode;/*setbkcolor(9);*/char c;initgraph(&gdriver,&gmode,"c:\tc");fun();scanf("%c",&c);do{switch(c){case '1': midpointline(120,220,200,160,20);break; case '2': DDA_line(110,120,200,340,10);break; case '3': line(110,120,200,240);break;case '4': MidBresenhamllipse(34,55,6);break;case '5': cs_Ellipse(120,240,20,120,21);break; case '6': ellipse(110,250,0,360,100,40);break;case '7': BresenhemCircle(100,100,50,4);break; case '8': circle(100,100,67);break;case '9': cs_Circle(100,100,23,2);break;case 'a': midpointline(120,220,200,160,20); DDA_line(110,120,200,340,10);line(110,120,200,240);MidBresenhamllipse(34,55,6);cs_Ellipse(120,240,20,120,21);ellipse(110,250,0,360,100,40); BresenhemCircle(100,100,50,4);circle(100,100,67);cs_Circle(100,100,23,2);break;}printf("input any key to continue!!!!\n"); getch();cleardevice();fun();scanf("%c",&c);}while(c!='E');printf("exit system!\n"); closegraph();}。
计算机图形学-直线、圆、椭圆的生成

2014-9-5
中点画线法
假设直线方程为:ax+by+c=0 其中a=y0-y1, b=x1-x0, c=x0y1-x1y0 由常识知:
F x, y 0 F x, y 0 F x, y 0 点在直线上面 点在直线上方 点在直线下方
P2
Q
P=(xp,yp) P1
2014-9-5 浙江大学计算机图形学 28
圆的扫描转换
圆的扫描转换是在屏幕像素点阵中确定最佳逼近于 理想圆的像素点集的过程。圆的绘制可以使用简单方程 画圆算法或极坐标画圆算法,但这些算法涉及开方运算 或三角运算,效率很低。主要讲解仅包含加减运算的顺 时针绘制 1/8 圆的中点 Bresenham 算法原理,根据对称 性可以绘制整圆 。
2014-9-5 浙江大学计算机图形学 22
设图中xi列上已用(xi,yir)作为表示直线的点, 又设B点是直线上的点,其坐标为(xi+1,yi+1),显然 下一个表示直线的点( xi+1,yi+1,r)只能从图中的C 或者D点中去选。设A为CD边的中点。 若B在A点上面 则应取D点作为( xi+1,yi+1,r),否则应取C点。
P=(xp,yp ) P1 浙江大学计算机图形学
16
中点画线法
若d<0->M在直线下方->取P2; 此时再下一个象素的判别式为 d2= F(xp+2, yp+1.5) =a(xp+2)+b(yp+1.5)+c = a(xp +1)+b(yp +0.5)+c +a +b =d+a+b ; 增量为a+b
计算机图形学画圆方法

浙江大学城市学院实验报告课程名称计算机图形学实验项目名称画圆方法实验成绩指导老师(签名)日期一. 实验目的和要求通过实验加深对Bresenham圆生成算法的理解。
二. 实验内容和原理(1)数据输入项(或者函数参数)为:圆心坐标与半径(2)输出圆。
三. 实验设计与分析Besenham圆①创建一个application,将其全部保存,②双击划圆按扭,定义参数如下:x,y,x0,y0,r,direction : integer;delta,delta1,delta2 : integer;color1 : integer;③编写代码如下if self.Edit1.Text = '' thenbeginApplication.MessageBox('圆心坐标X没有输入!','提示',0);abort;endelse if self.Edit2.Text = '' thenbeginApplication.MessageBox('圆心坐标Y没有输入!','提示',0);abort;endelse if self.Edit3.Text = '' thenbeginApplication.MessageBox('圆半径没有输入!','提示',0);abort;endelsex0:= strtoint(Edit1.Text);y0:=strtoint(Edit2.Text);r:=strtoint(Edit3.Text);x:=0;y:=r;delta:=2*(1-r);color1:= clGreen;while y>=0 dobeginimage1.canvas.Pixels[x0+x,y0+y]:=color1;image1.canvas.Pixels[x0-x,y0+y]:=color1;image1.canvas.Pixels[x0+x,y0-y]:=color1;image1.canvas.Pixels[x0-x,y0-y]:=color1;if delta<0 thenbegindelta1:=2*(delta+y)-1;if delta1<=0 then direction:=1else direction:=2;endelse if delta>0 thenbegindelta2:=2*(delta-x)-1;if delta2<=0 then direction:=2else direction:=3;endelsedirection:=2;case direction of1 : begininc(x);delta:=delta+2*x+1;end;2 : begininc(x);dec(y);delta:=delta+2*(x-y+1);end;3 : begindec(y);delta:=delta+(-2*y+1);end;end;end;end;④双击演示按扭,定义参数如下:x,y,x0,y0,r,direction : integer;delta,delta1,delta2 : integer;color1 : integer;⑤编写代码如下if self.Edit1.Text = '' thenbeginApplication.MessageBox('圆心坐标X没有输入!','提示',0);abort;endelse if self.Edit2.Text = '' thenbeginApplication.MessageBox('圆心坐标Y没有输入!','提示',0);abort;endelse if self.Edit3.Text = '' thenbeginApplication.MessageBox('圆半径没有输入!','提示',0);abort;endelsex0:= strtoint(Edit1.Text);y0:=strtoint(Edit2.Text);r:=strtoint(Edit3.Text);x:=0;y:=r;delta:=2*(1-r);color1:= clGreen;while y>=0 dobeginimage1.canvas.Pixels[x0+x,y0+y]:=color1;image1.canvas.Pixels[x0-x,y0+y]:=color1;image1.canvas.Pixels[x0+x,y0-y]:=color1;image1.canvas.Pixels[x0-x,y0-y]:=color1;if delta<0 thenbegindelta1:=2*(delta+y)-1;if delta1<=0 then direction:=1else direction:=2;endelse if delta>0 thenbegindelta2:=2*(delta-x)-1;if delta2<=0 then direction:=2else direction:=3;endelsedirection:=2;case direction of1 : begininc(x);delta:=delta+2*x+1;end;2 : begininc(x);dec(y);delta:=delta+2*(x-y+1);end;3 : begindec(y);delta:=delta+(-2*y+1);end;end;end;⑥双击退出按扭,编写代码如下:Close;⑦双击清屏按扭,编写代码如下:image1.Canvas.Brush.Color:=clwhite;image1.Canvas.FillRect(Rect(0,0,350,250));Form3.Edit1.Clear;Form3.Edit2.Clear;Form3.Edit3.Clear;⑧保存,完成。
计算机图形学圆的生成算法的实现

申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
OnMidpointellispe
表1 生成圆和椭圆的菜单项资源及消息处理函数
<3)添加程序代码
在CMyView.cpp文件中相应的位置添加各算法的程序代码,在Visual C++的MFC中绘制图形,一般可以调用一个“CDC”类,从CDC开始,添加代码。5PCzVD7HxA
中点算法画圆。利用中点画圆算法画出圆心在 、半径为R的圆,其VC程序设计代码如下:
pDC->SetPixel(y+x0,x+y0,color>。
pDC->SetPixel(-y+x0,x+y0,color>。
pDC->SetPixel(-y+x0,-x+y0,color>。
pDC->SetPixel(y+x0,-x+y0,color>。
}
ReleaseDC(pDC>。
}
Bresenham算法画圆。利用Bresenham画圆算法画出圆心在 、半径为R的圆,其VC程序设计代码如下:jLBHrnAILg
pDC->SetPixel(x+x0,-y+y0,color>。
}
ReleaseDC(pDC>。
}