第四章 分子动力学模拟方法

合集下载

分子动力学模拟实验步骤

分子动力学模拟实验步骤

分子动力学模拟实验步骤
嘿,朋友们!今天咱来聊聊分子动力学模拟实验步骤这档子事儿。

咱先得有个明确的目标吧,就好比你要去个地方,得知道去哪儿呀!这分子动力学模拟实验也一样,你得清楚自己要研究啥。

然后呢,就是选个合适的模型啦。

这就像你出门得挑双合脚的鞋子,模型不对,那后面的路可就不好走咯。

得仔细琢磨琢磨,找个能准确反映实际情况的模型。

接下来,设置好各种参数。

这可不能马虎,就跟你调电视音量似的,得恰到好处。

温度啊、压力啊、粒子间的相互作用啥的,都得考虑周全。

再之后,让计算机开始运算吧!这计算机就像个勤劳的小蜜蜂,嗡嗡嗡地帮咱干活。

咱就等着看它给出的结果。

在这过程中,你得时刻盯着点,看看有没有啥不对劲的地方。

这就好比你煮汤的时候得时不时看看火,别煮糊了呀。

等计算机算完了,就该分析结果啦。

这可需要点真本事,得从那些密密麻麻的数据里找出有用的信息。

这就像在一堆沙子里找金子,得有耐心,还得有好眼神。

分析完结果,要是不满意咋办?那就重新来呗!别灰心,科学家们不都是这样一点点摸索过来的嘛。

你说这分子动力学模拟实验像不像搭积木?一块一块地往上搭,搭错了就重新来,直到搭出你想要的那个城堡。

这中间的乐趣和挑战,只有试过才知道呀!
总之,分子动力学模拟实验可没那么简单,但也绝对不是高不可攀的。

只要咱一步一个脚印,认真去做,肯定能发现其中的奥秘。

大家加油干吧,说不定下一个重大发现就是你做出来的呢!
原创不易,请尊重原创,谢谢!。

分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用摘要: 介绍了分子动力学模拟的基本原理及常用的原子间相互作用势, 如Lennard-Jones势; 论述了几种常用的有限差分算法, 如Verlet算法; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。

关键词: 分子动力学模拟; 原子间相互作用势; 有限差分算法;分子学是一门结合物理,和化学的综合技术。

分子学是一套方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的量和其他宏观性质。

从统计物理学中衍生出来的分子动力学模拟方法(Molecular Dynamics Simulation, MDS) , 实践证明是一种描述纳米科技研究对象的有效方法, 得到越来越广泛的重视。

所谓分子动力学模拟, 是指对于原子核和电子所构成的多体系统, 用计算机模拟原子核的运动过程, 从而计算系统的结构和性质, 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动。

它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段, 称之为“计算机实验”手段, 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

科学工作者在长期的科学研究实践中发现,当实验研究方法不能满足研究工作的需求时,用计算机模拟却可以提供实验上尚无法获得或很难获得的重要信息;尽管计算机模拟不能完全取代实验,但可以用来指导实验,并验证某些理论假设,从而促进理论和实验的发展。

特别是在材料形成过程中许多与原子有关的微观细节,在实验中基本上是无法获得的,而在计算机模拟中即可以方便地得到。

这种优点使分子动力学模拟在材料研究中显得非常有吸引力。

分子动力学模拟就是用计算机方法来表示统计力学,作为实验的一个辅助手段。

分子模拟就是对于原子核和电子所构成的多体系统,求解运动方程(如牛顿方程、哈密顿方程或拉格朗日方程),其中每一个原子核被视为在全部其它原子核和电子作用下运动,通过分析系统中各粒子的受力情况,用经典或量子的方法求解系统中各粒子在某时刻的位置和速度,以确定粒子的运动状态,进而计算系统的结构和性质。

分子动力学模拟pdf

分子动力学模拟pdf

分子动力学模拟pdf
分子动力学模拟(MD)是一种计算模拟方法,用于研究原子和
分子在时间尺度上的运动和相互作用。

在MD模拟中,原子和分子的
运动根据牛顿运动定律进行模拟,通过数值积分来计算它们在给定
势能场中的轨迹。

这种模拟方法已经被广泛应用于研究液体、固体
和气体系统的性质,以及生物分子的结构和动力学行为。

关于MD模拟的结果,通常会生成大量的数据,这些数据可以以
各种格式存储,其中PDF(便携式文档格式)是一种常用的格式之一。

将MD模拟结果存储为PDF文件可以方便地进行分享和阅读,因
为PDF文件在不同操作系统和设备上都具有良好的兼容性和可移植性。

在MD模拟结果的PDF文件中,通常会包含模拟系统的基本信息,如初始构象、势能函数、模拟时间等,以及模拟过程中原子或分子
的轨迹、动力学性质的统计分析结果等。

这些信息可以帮助其他研
究人员理解模拟的条件和结果,从而验证模拟的可靠性,并进一步
探索系统的性质和行为。

总之,将分子动力学模拟的结果存储为PDF文件是一种方便有
效的方式,可以促进研究者之间的交流和合作,也有利于结果的长期保存和传播。

希望这个回答能够全面回答你的问题。

分子动力学模拟方法

分子动力学模拟方法

分子动力学模拟方法Molecular Dynamics Simulation Method分子动力学模拟方法是一种计算方法,可以预测原子和分子在不同温度和压力下的运动和力学行为。

该方法已被广泛应用于物理、化学、生物学和材料科学等领域,用于研究材料性质、生物分子结构和动态、相变等现象。

本文将介绍分子动力学模拟的基本原理、模拟过程以及如何用该方法研究材料或生物分子。

1. 基本原理分子动力学模拟基于牛顿力学原理,用原子和分子之间的势能函数描述系统内部的相互作用力。

根据牛顿第二定律 F=ma,通过求解系统中每个分子的运动方程来推导出分子的运动轨迹。

在计算中,采用的势能函数决定了分子之间的相互作用,包括范德华力、静电作用、键角等力。

基于这些相互作用力和分子的运动轨迹,可以计算出分子的位置、速度、加速度和能量等物理量。

2. 模拟过程分子动力学模拟的过程包括初始化、模拟和分析三个阶段。

2.1 初始化初始化阶段主要是为模拟设置一些参数,包括分子数、模拟时间、初速度、初位置和系统温度等。

初速度可以根据玻尔兹曼分布生成,初位置随机分布,系统温度也可以通过控制分子初速度实现。

模拟阶段分为两个步骤:计算分子运动和更新分子位置。

计算分子运动:在每个时间步中,使用牛顿运动方程计算每个分子的运动。

分子与其他分子之间的相互作用通过势能函数计算。

时间步长各不相同,一般为1-10飞秒。

更新分子位置:根据计算出的分子运动轨迹和速度,使用欧拉法更新分子位置。

在此过程中,通过周期性边界条件保证系统的连续性。

2.3 分析分析阶段主要是对模拟结果进行分析和处理,如计算能量、相变、速度相关的分布函数等。

有效的分析可以给出关键参数和物理量,如分子动力学能量、热力学性质和动力学行为。

3. 应用分子动力学模拟方法已经被广泛应用于物理、化学、生物学和材料科学等研究领域,尤其是材料和生物分子方面的研究具有广泛的前景。

3.1 材料科学分子动力学模拟可用于研究材料的力学、热力学和电学等性质。

分子动力学模拟

分子动力学模拟

分子动力学模拟分子动力学模拟是一种重要的计算方法,用来研究分子体系的运动和相互作用。

该方法基于牛顿力学和统计力学的原理,通过数值模拟来预测和描述分子在不同条件下的行为。

在分子动力学模拟中,通过计算每个分子的受力和相互作用,可以得到关于分子位置、速度和能量等物理量的时间演化。

这些信息可以被用来研究分子体系的动力学、热力学和结构性质等。

为了进行分子动力学模拟,需要确定分子的力场和初始状态。

力场是一组描述分子分子间相互作用的数学函数,包括键的强度、键角的刚度、电荷分布等。

初始状态则是给定分子的初始位置和速度。

在分子动力学模拟中,分子受到的力主要来自于势能函数的梯度。

通过运用牛顿运动方程,可以计算得到每个分子的加速度,并进一步更新位置和速度。

这个过程重复进行,直到达到所需的模拟时间。

分子动力学模拟可以用来研究各种不同类型的分子体系。

例如,可以模拟液体中分子的运动和结构,以研究其流变性质和相变行为。

还可以模拟气体中分子的运动和相互作用,以研究化学反应和传输过程。

此外,分子动力学模拟还可以用来研究固体材料的力学性质和热导率等。

通过模拟材料内部原子的动力学行为,可以计算材料的弹性模量、杨氏模量等力学性质。

同时,还可以计算材料的热导率,从而了解其热传导性能。

分子动力学模拟已经成为了许多领域的重要工具。

它在材料科学、生物科学、化学工程和环境科学等领域中都得到了广泛应用。

通过模拟和理解分子体系的行为,我们可以更好地设计新材料、药物和催化剂,以及解决各种科学和工程问题。

然而,分子动力学模拟也有一些局限性。

首先,模拟的时间尺度受到限制,通常只能模拟纳秒或微秒级别的时间。

其次,模拟的精度也受到一定的限制,特别是在处理量子效应和极化效应等方面。

为了克服这些限制,研究人员正在发展和改进分子动力学模拟的方法。

例如,开发更精确的势能函数和更高效的计算算法,可以提高模拟的时间尺度和精度。

同时,与实验相结合,通过验证和修正模型,也可以提高模拟的可靠性和预测能力。

计算材料学第四章原子模拟方法

计算材料学第四章原子模拟方法

计算材料学第四章原子模拟方法引言原子模拟方法是计算材料学中一种重要的研究工具,通过使用计算机模拟原子及分子的运动和相互作用,可以推测材料的物理性质和化学反应等关键信息。

本文将介绍原子模拟方法的基本原理和常用的模拟技术,以及它们在材料学研究中的应用。

分子动力学模拟分子动力学模拟是一种基于牛顿运动定律的模拟方法。

在该方法中,通过运动方程对材料中的原子进行追踪,模拟出原子之间的相互作用和运动。

分子动力学方法可以提供材料的力学性质、热学性质和动力学过程等信息。

基本的分子动力学模拟过程包括确定原子的势能函数、计算原子之间的相互作用力、求解运动方程以及更新原子的位置和速度等步骤。

其中,势能函数的选择是分子动力学模拟的关键,一般可以采用经典力场或量子力场来描述原子之间的相互作用。

根据系统的尺度和研究目的,可以选择不同精度和复杂度的势能函数。

分子动力学模拟在材料学研究中有广泛的应用。

例如,通过模拟材料表面的原子运动,可以了解材料的表面形貌和吸附行为,为表面处理和催化反应等过程提供理论依据。

此外,分子动力学模拟还可以用于研究材料的力学行为和相变过程,对材料的变形和断裂等现象进行预测和优化。

蒙特卡洛模拟蒙特卡洛模拟是一种基于随机数的计算方法,通过统计学的方法模拟系统的宏观行为。

在蒙特卡洛模拟中,通过随机抽样的方法确定系统状态,然后根据概率分布函数计算系统的性质。

蒙特卡洛模拟在材料学中有广泛的应用,特别是在热力学和统计物理方面。

通过蒙特卡洛模拟,可以研究材料的相变行为、热力学性质以及相图等信息。

例如,可以通过蒙特卡洛模拟研究材料的晶体生长过程,优化材料的结构和性能。

蒙特卡洛模拟的关键在于随机数的生成和抽样方法的选择。

常见的蒙特卡洛模拟方法包括Metropolis算法和细胞自动机等。

这些方法可以通过合理的抽样和统计分析,得到系统的平衡态和非平衡态的信息。

分子静力学模拟分子静力学模拟是一种基于力学平衡的模拟方法,用于分析材料中原子之间的静态力学平衡。

分子动力学模拟实验的原理与方法

分子动力学模拟实验的原理与方法

分子动力学模拟实验的原理与方法一、引言分子动力学模拟实验是一种基于分子运动规律的计算方法,通过模拟分子间相互作用力和运动轨迹,可以研究物质的结构、性质和动力学过程。

本文将介绍分子动力学模拟实验的原理与方法,包括模拟算法、模拟体系的构建和模拟结果的分析。

二、分子动力学模拟的原理分子动力学模拟实验基于牛顿力学和统计力学的原理,通过求解分子系统的运动方程,模拟分子间相互作用力和运动轨迹。

其基本原理可以概括为以下几点:1. 分子运动方程分子动力学模拟实验中,每个分子都被看作是一个质点,其运动方程可以由牛顿第二定律得到。

根据分子的质量、受力和加速度,可以得到分子的位置和速度随时间的变化。

2. 分子间相互作用力分子间的相互作用力可以通过势能函数来描述,常见的势能函数包括Lennard-Jones势和Coulomb势。

这些势能函数描述了分子间的吸引力和排斥力,从而影响分子的相互作用和运动。

3. 温度和压力控制分子动力学模拟实验中,为了模拟实际系统的温度和压力条件,需要引入温度和压力控制算法。

常见的温度控制算法包括Berendsen热浴算法和Nosé-Hoover热浴算法,压力控制算法包括Berendsen压力控制算法和Parrinello-Rahman压力控制算法。

三、分子动力学模拟的方法分子动力学模拟实验的方法包括模拟算法、模拟体系的构建和模拟结果的分析。

下面将对这些方法进行介绍。

1. 模拟算法分子动力学模拟实验中,常用的模拟算法包括经典力场方法和量子力场方法。

经典力场方法基于经验势能函数,适用于大尺度的分子系统,如蛋白质和溶液。

量子力场方法基于量子力学原理,适用于小尺度的分子系统,如分子反应和电子结构计算。

2. 模拟体系的构建模拟体系的构建是分子动力学模拟实验中的重要步骤,包括选择模拟系统、确定初始结构和参数设置。

模拟系统的选择应根据研究的目的和问题,可以是单个分子、溶液系统或固体表面。

初始结构可以通过实验数据、计算方法或模型生成,参数设置包括力场参数、温度和压力等。

分子动力学模拟方法

分子动力学模拟方法

将模拟盒子的中心移到原点:
100 CONTINUE
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
DO 100 I = 1, N
RX(I) = RX(I) - 0.5 RY(I) = RY(I) - 0.5 RZ(I) = RZ(I) - 0.5
初始速度:
对于由N个单原子组成的系统:
动能和温度:
采用对比量:
C
B
A
对于LJ流体:
势能:
采用对比量:
内能:
01
内能由势能和动能组成:
02
采用对比量:
03
采用对比量:
压力:
采用对比量:
力:
势能函数形式:
=x, y, z
练习: 推导LJ流体分子间力的表达式(fx, fy, fz及其对比量):
LJ分子间的维里项:
简约商务总结
PPT计划书
第四章 分子动力学模拟方法
1957年:基于刚球势的分子動力学法(Alder and Wainwright) 1964年:利用Lennard-Jone势函数法对液态氩性质的模拟(Rahman) 1971年:模拟具有分子团簇行为的水的性质(Rahman and Stillinger) 1977年:约束动力学方法(Rychaert, Ciccotti & Berendsen; van Gunsteren) 1980年:恒压条件下的动力学方法(Andersen法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年: 恒温条件下的动力学方法(Berendsen et al.) 1984年:恒温条件下的动力学方法(Nosé-Hoover法) 1985年:第一原理分子動力学法(→Car-Parrinello法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程讲解内容:经典分子动力学 (Classical Molecular Dynamics)
粒子的运动取决于经典力学 (牛顿定律(F=ma)
分子动力学方法基础:
原理:
计算一组分子的相空间轨道,其中每个分子各自服从 牛顿运动定律:
H1N
2i1
m pi2i N i11jN i1U(rij)
pi mi ddritmivi
④ 计算第n步的力 ⑤ 计算第n+1步的位置:
r i( tt ) 2 r i( t r i( ) - tt ) a i( t t2 )
⑥ 计算第n步的速度: ⑦ 重复④至⑥
vi(t )ri( tt2) tri(-tt)
Verlet算法程序:
Do 100 I = 1, N RXNEWI = 2.0 * RX(I) RXOLD(I) + DTSQ * AX(I) RYNEWI = 2.0 * RY(I) RYOLD(I) + DTSQ * AY(I) RZNEWI = 2.0 * RZ(I) RZOLD(I) + DTSQ * AZ(I)
VXI = ( RXNEWI – RXOLD(I) ) / DT2 VYI = ( RYNEWI – RYOLD(I) ) / DT2 VZI = ( RZNEWI – RZOLD(I) ) / DT2
RXOLD(I) = RX(I) RYOLD(I) = RY(I) RZOLD(I) = RZ(I)
1. 首先利用当前时刻的加速度,计算半个时间步长后的速度:
vi( t1 2 t)vi(-t1 2 t)ai(t )t 开始运动时需要v(-Δt/2):
2. 计算下一步长时刻的位置:
ri( t t)ri(t)vi( t1 2 t) t v ( t/ 2 v ()0 a i) (0 t) /
3. 计算当前时刻的速度: vi(t)vi(t12t)2vi(t-12t)
d d pi tN i 1 1j N i1 F (ri)j N i 1 1j N i1U r (irij)j
r r(0) 初始条件: i t0 i
dri dt
t0
vi (0)
分子动力学方法特征:
分子动力学是在原子、分子水平上求解多体问题的重要的计 算机模拟方法,可以预测纳米尺度上的材料动力学特性。
vr
v
t-Δt/2 t t+Δt/2 t+Δt t+3Δt/2 t+2Δt
Leap-frog算法的表述:
算法启动
① 规定初始位置
② 规定初始速度
③ 扰动初始速度:
v ( t/ 2 v ()0 a i) (0 t) /2
④ 计算第n步的力 ⑤ 计算第n+1/2步的速度: ⑥ 计算第n+1步的位置: ⑦ 计算第n步的速度: ⑧ 重复④至⑦
vi(t )ri( tt2) tri(-tt)
粒子加速度:
ai
(t)
Fi (t) mi
开始运动时需要r(t-Δt):
r( t )r(0 v ) i(0 t)
缺点:Verlet算法处理速度非常笨拙
Verlet算法的表述:
算法启动
① 规定初始位置
② 规定初始速度
③ 扰动初始位置:
r( t )r(0 v ) i(0 t)
vi( t1 2 t)vi(-t1 2 t)ai(t )t ri( t t)ri(t)vi( t1 2 t) t vi(t)vi(t12t)2vi(t-12t)
Leap-frog算法的优缺点:
优点: 1、提高精确度 2、轨迹与速度有关,可与热浴耦联
缺点: 1、速度近似 2、比Verlet算子多花时间
通过求解所有粒子的运动方程,分子动力学方法可以用于模 拟与原子运动路径相关的基本过程。
在分子动力学中,粒子的运动行为是通过经典的Newton运动 方程所描述。
分子动力学方法是确定性方法,一旦初始构型和速度确定了, 分子随时间所产生的运动轨迹也就确定了。
分子动力学的算法:有限差分方法
一、Verlet算法
粒子位置的Taylor展开式:
r i( t t )r i( tv ) i( tt )1 2 a i( tt2 ) 1 6 b i( tt3 )
+
r i( t t )r i( tv ) i( tt )1 2 a i( tt2 ) 1 6 b i( tt3 )
粒子位置 : 粒子速度 :
r i( tt ) 2 r i( t r i( ) - tt ) a i( t t2 )
三、Velocity Verlet算法:
r i( t t )r i(tv )i(t t)1 2a i(t t)2
v i( t t )v i(t) 1 2[a i(t a )i( t t) t]
等价于
1Hale Waihona Puke 1vi( t 2t )vi(t)2ai(tt)
优点:速度计算更加准确
RX(I) = RXNEWI RY(I) = RYNEWI RZ(I) = RZNEWI 100 CONTINUE
Verlet算法的优缺点:
优点: 1、精确,误差O(Δ4) 2、每次积分只计算一次力 3、时间可逆
缺点: 1、速度有较大误差O(Δ2) 2、轨迹与速度无关,无法与热浴耦联
二、蛙跳(Leap-frog)算法:半步算法
第四章 分子动力学模拟方法
分子动力学简史
•1957年:基于刚球势的分子動力学法(Alder and Wainwright) •1964年:利用Lennard-Jone势函数法对液态氩性质的模拟(Rahman) •1971年:模拟具有分子团簇行为的水的性质(Rahman and Stillinger) •1977年:约束动力学方法(Rychaert, Ciccotti & Berendsen; van Gunsteren) •1980年:恒压条件下的动力学方法(Andersen法、Parrinello-Rahman法) •1983年:非平衡态动力学方法(Gillan and Dixon) •1984年: 恒温条件下的动力学方法(Berendsen et al.) •1984年:恒温条件下的动力学方法(Nosé-Hoover法) •1985年:第一原理分子動力学法(→Car-Parrinello法) •1991年:巨正则系综的分子动力学方法(Cagin and Pettit)
相关文档
最新文档