层析技术的应用
层析技术简单介绍及其应用

层析技术简单介绍及其应用层析技术(Tomography)是一种通过对物体进行多角度投影扫描来重建其内部结构的成像技术。
它的基本原理是使用射线或波束从不同的方向通过物体,然后通过对每个方向的投影进行综合分析来重建物体的内部结构。
层析技术可以用于各种领域,包括医学、工程、地质学和材料科学等。
在医学领域,层析技术常用于进行X射线断层扫描(CT扫描)。
CT扫描是一种无创且精确的成像方法,可以用来检测和诊断各种疾病和病变,如肿瘤、骨折和血管病变等。
在CT扫描中,X射线通过患者的身体,然后使用感应器测量X射线通过后的强度。
通过多个不同的角度进行扫描和测量,计算机可以根据这些数据生成患者身体的三维图像,从而帮助医生做出准确的诊断和治疗计划。
层析技术在工程领域也有广泛的应用。
例如,它可以用于检测和识别材料的缺陷,如焊接缺陷和裂纹等。
通过将材料放置在扫描仪中并进行多角度扫描,工程师可以获得材料的内部结构信息,从而判断其质量和可靠性。
此外,层析技术还可以用于工艺过程的监测和优化,如石油勘探和制造业中的流体流动和混合过程等。
地质学是另一个应用层析技术的领域。
地球内部的结构和成分对于理解地球演化和资源勘探具有重要意义。
通过射线或波束的投射和测量,地球科学家可以重建地球内部的密度分布和物质成分,在不必进行物质采样的情况下了解地球深处的情况。
这对于勘探石油、天然气和矿产资源等具有重要价值。
总结来说,层析技术是一种通过多角度投影扫描来重建物体内部结构的成像技术。
它在医学、工程、地质学和材料科学等领域都有重要的应用。
通过层析技术,我们可以获得物体的三维结构信息,帮助医生进行疾病的诊断和治疗,工程师检测材料的质量和可靠性,地球科学家了解地球内部结构和成分。
层析技术原理

层析技术原理
层析技术是一种分离和分析混合物中成分的方法,它基于不同化学
物质在固定相(如硅胶、活性炭等)上的吸附特性。
该技术可以用于
食品、医药、环境监测等领域。
原理:1. 吸附:样品通过柱子或板块时,其中的化学物质会被固定相表面吸附。
2. 洗脱:洗脱剂流经固定
相时,将已吸附的化学物质从固定相表面解除,并带走它们。
3. 分离:由于不同化学物质在固定相上的亲和力不同,所以它们会被洗脱剂按
照一定顺序逐个排出来。
4. 检测:检测器对每个组分进行检测并记录
其信号强度。
根据峰高或峰面积大小可计算出每种成分在样品中所占
比例。
应用:1. 食品行业层析技术可用于饮料、果汁、啤酒等食品中
添加剂残留量及营养成分含量的检测与控制;也可以对植物提取液进
行有效成分提取和纯化处理。
2. 医药行业层析技术广泛应用于草药提
取液中有效成份纯化及新型药物开发过程中杂质去除工作;同时还能
够快速准确地确定血清生化指标值等临床诊断数据。
3. 环境监测层析
技术可用于水体、土壤等环境样本中有机污染物及重金属元素含量检
测与评估;同时也能够为大气污染源追溯工作提供科学依据。
层析的原理和应用

层析的原理和应用1. 层析的概念和基本原理层析(Chromatography)是一种将混合物中的组分分离和提纯的技术方法。
它基于组分之间在固定相和流动相之间的相互作用力的不同,使各种组分在系统中以不同速度迁移,达到分离的目的。
层析技术广泛应用于化学、生物、环境等领域。
层析技术的基本原理是利用流动相在固定相上的移动来实现物质的分离。
固定相通常是具有一定吸附性或分配性的材料,如硅胶、纸张、亲水性基质等。
流动相则是将待分离的混合物溶解在溶剂中,通过与固定相的相互作用,使各组分在固定相上以不同速率迁移。
2. 层析技术的分类和应用层析技术根据其基本原理和操作方式的不同,可以分为多种类型。
以下是其中几种常见的层析技术及其应用:2.1 薄层层析法(TLC)薄层层析法是一种在薄层材料上进行的层析技术。
常用的薄层材料包括硅胶和氧化铝等。
它具有简单、快速、经济的特点,广泛应用于药物分析、食品安全检测、环境监测等领域。
2.2 柱层析法柱层析法是将固定相填充在柱中,通过流动相沿着柱内固定相的分布,实现各组分的分离。
根据固定相的不同,柱层析法又可分为凝胶柱层析和高效液相层析等。
柱层析法在药物分离纯化、天然产物提取、有机合成等领域具有广泛应用。
2.3 气相层析法(GC)气相层析法是将待分离的混合物蒸发为气体状态,通过在柱中固定相的分离,最终使各组分在检测器上进行定性和定量分析。
气相层析法广泛应用于石油化学、环境监测、食品安全等领域。
2.4 液相层析法(LC)液相层析法是将待分离混合物溶解于液相,在柱中利用固定相进行分离。
液相层析法根据流动相的不同,可分为常压液相层析和高效液相层析等。
液相层析法在制药、生物、环保等领域具有广泛应用。
2.5 离子层析法(IC)离子层析法是利用不同组分之间的化学亲合性进行分离的一种层析技术。
它广泛应用于水质分析、环境监测、生物学研究等领域,尤其是对离子的分析具有很高的选择性和灵敏度。
3. 层析技术的优点和局限性层析技术具有许多优点,使其成为众多分析方法中的重要手段。
层析成像原理及应用

层析成像原理及应用一、引言层析成像(Tomography)是一种通过对物体进行多次扫描,然后利用计算机重建出物体内部结构的技术。
它可以提供高分辨率的三维图像,广泛应用于医学、工业检测等领域。
本文将介绍层析成像的原理及其在医学诊断、材料检测等方面的应用。
二、层析成像原理层析成像的原理基于射线投影的思想,通过对物体进行多个角度的射线投影扫描,然后通过计算机对这些投影数据进行重建,得到物体的三维结构。
具体来说,层析成像主要包括以下几个步骤:1. 射线投影:在不同的角度上,通过物体的不同位置进行射线投影,得到一系列的投影图像。
2. 数据采集:将投影图像转化为数字信号,并存储在计算机中。
3. 重建算法:对采集的数据进行处理,使用重建算法恢复出物体的内部结构。
4. 图像显示:将重建后的数据以图像形式显示出来,供观察和分析。
三、层析成像的应用1. 医学诊断层析成像在医学领域被广泛应用于疾病的诊断和治疗。
其中最常见的应用就是X射线计算机断层扫描(CT)。
CT扫描可以提供人体内部器官的高分辨率图像,用于检测和诊断各种疾病,如肿瘤、骨折、脑出血等。
同时,CT还可以辅助手术规划,提高手术成功率。
2. 工业检测层析成像在工业领域也有重要应用。
例如,金属材料的缺陷检测。
通过对金属材料进行层析成像扫描,可以检测出内部的裂纹、气孔等缺陷,帮助判断材料的质量和可靠性。
此外,层析成像还可以用于材料的密度分布分析、形状重建等方面,对提高工业产品的质量和效率具有重要意义。
3. 资源勘探层析成像在石油、矿产等资源勘探中也有广泛应用。
通过对地下岩石和矿石进行层析成像扫描,可以获取地下结构的信息,识别石油、矿石等资源的分布情况,为勘探和开采提供重要依据。
层析成像在资源勘探领域的应用,不仅提高了勘探效率,还减少了勘探成本和环境影响。
4. 环境监测层析成像在环境监测中也有一定的应用。
例如,地下水资源的调查和管理。
通过对地下水进行层析成像扫描,可以获得地下水的分布情况、流动方向等信息,帮助科学家和决策者制定合理的水资源管理策略。
薄层层析分离技术的原理和应用

薄层层析分离技术的原理和应用薄层层析分离技术(Thin Layer Chromatography,TLC)是化学分离分析技术中的一种经典的方法,它在各种科研领域中得到了广泛的应用。
本文将从原理和应用两个方面对薄层层析分离技术进行介绍。
一、原理1. 薄层层析分离技术的基本原理薄层层析分离技术是基于化学物质在固定相(薄层硅胶等)和流动相(含有溶剂的液相)中运动时的协同作用来进行物质分离的一种方法。
化学物质在固定相中会因为与涂层材料之间的极性和吸附性差异而发生分离,因此这种分离技术常常被用来对复杂混合物中的化学物质进行定性或定量分析。
2. 薄层层析分离技术的过程薄层层析分离技术的过程可以分为三个步骤:样品的制备、薄层涂层材料的选取和设备的制备。
(1)制备样品:将待分离物质用适当的溶剂溶解或提取,制成样品溶液。
(2)选取涂层材料:涂层材料要选用与待分离物质有足够的吸附能力的固体物质,如硅胶、氧化铝等。
然后将这些固体物质均匀地涂在无水薄层板上,使涂层厚度相同。
(3)设备制备:设备一般由薄层板、涂层材料和流动相组成。
待分离物质通过样品施加在薄层层析板的一边,此时,待分离物质会根据其在涂层材料和流动相之间的吸附和分配状态沿着板子逐渐移动。
二、应用1. 定性分析薄层层析分离技术在化学分离分析领域的应用最广泛的就是对化学物质进行定性分析,如有机分析中对结构相似的物质进行鉴定。
2. 定量分析薄层层析分离技术还可以用来进行化学物质的定量分析。
在这种情况下,定量方法是比定性方法更复杂的,因为有必要确定待分离物和标准物在吸附场中的吸附和分配行为,并且必须保证定量方法的准确性和精密度。
3. 活性物质检测薄层层析分离技术除了可以用来分离和检测化学物质,还可以用来检测活性物质,如抗菌物质、抑制物和酶。
4. 生物分离薄层层析技术在生物分离领域中也有应用。
如用于蛋白质的纯化,薄膜层析也可以作为分离生物样品中的氨基酸或核苷酸的一种方法,还可以通过薄层层析技术提取和分离植物中的生物活性成分。
层析和膜技术在生物制药中的应用

凝胶层析的应用
分子量测定
测定依据:不同分子量的物质,只要在凝胶的分 离范围内(渗入限与排阻限之间),其洗脱体积 Ve及分配系数Kd值随分子量增加而下降。 待测物质洗脱体积与分子量关系符合下式: Ve=-KlogM+C
K、C 是常数,为直线方程的斜率和外推截距。 同时 Kav=-K′logM +C
层析技术在 生物制药中的应用
一. 离子交换层析技术
定义:利用溶液中各种带电颗粒与离子交 换剂之间结合力的差异进行物质分离的操 作称离子交换法。 离子交换剂由惰性的不溶性载体,功能基 团和平衡离子组成。 平衡离子带正电荷的为阳离子交换剂,平 衡离子带负电荷的为阴离子交换剂,可见 离子交换剂是一类具有活性基团的荷电固 相颗粒。
该法操作简便,需要样品量较少,实用价值较大。
凝胶层析的应用:分子量测定
三. 亲和层析
人们发现生物体中许多高分子化合物具有和某些相对应的 专一分子可逆结合的特性, 例如 酶与底物、抗原与抗体、激素与受体、核糖核酸与 其互补的脱氧核糖核酸,多糖与蛋白复合体等,都具有这 种特性。 生物分子间的这种结合能力称为亲和力,根据生物分子 特异亲和力而设计的层析技术称为亲和层析,在亲和层析 中起可逆结合的特异性物质称为配基,与配基结合的层析 介质称为载体。
离子交换层析技术
离子交换反应:
R—SO3—X+ +Y+ = R—SO3—Y++X+
离子交换剂与交换离子间的作用是由静电引力而产生的, 是一个可逆的反应过程,当这个反应达到动态平衡时,其
平衡点随着pH、温度、溶剂的组成及交换剂本身性质的改
变而变化。例如,向平衡体系中加入过量的X+ 离子,反应 倾向于生成R-SO3-X+。
薄膜层析技术在分离与分析中的应用研究

薄膜层析技术在分离与分析中的应用研究薄膜层析技术是一种高效分离与分析技术,近年来在生物医药、食品、环境等领域得到广泛应用,并取得了显著的进展。
本文将介绍薄膜层析技术的概念、原理、特点及其在不同领域的应用研究,以期对该技术的更深入了解。
一、薄膜层析技术的概念及原理薄膜层析技术是一种基于体积传输过程的分离技术,其原理是通过液相在高速流动下,经过被固定于薄膜上的吸附剂或离子交换剂的作用,使目标物质与其他成分分离。
与传统的层析技术相比,薄膜层析技术具有分离速度快、分离效率高、成本低等优点。
二、薄膜层析技术的特点1. 快速:由于传质效率高,薄膜层析技术可在短时间内完成大量样品的分离。
2. 高效:由于薄膜的特殊结构,可提供更高的分离效率,从而实现更纯的目标物质。
3. 成本低:由于操作简单、无需大量的耗材和复杂设备,薄膜层析技术的成本较低。
4. 应用范围广:由于可以选择各种吸附剂或离子交换剂,可应用于各种不同的样品分离和分析。
三、薄膜层析技术在生物医药领域的应用研究1. 生物药物的分离与纯化薄膜层析技术结合吸附剂,在生物药物的制备过程中起到分离和纯化的作用。
其中,蛋白质的纯化是生物医药领域中最常见的应用之一。
利用薄膜层析技术,可通过选择特定的吸附剂,使目标蛋白质与其他成分分离,从而获得较高纯度的蛋白质。
2. 体液分析薄膜层析技术可用于生物体液中多种成分的分离和定量分析,如血清和尿液中的蛋白质、代谢产物等。
该技术可实现高通量、灵敏度高的分析,为临床诊断提供有力支持。
四、薄膜层析技术在食品领域的应用研究1. 食品添加剂的分离与检测薄膜层析技术可用于各类食品添加剂的分离和检测。
例如,可利用离子交换薄膜对食品中的磷酸盐进行定量分析,或对食品中的色素、甜味剂等进行分离。
此外,该技术还可用于蛋白质、淀粉、脂肪酸等成分的分离。
2. 食品安全性评估薄膜层析技术可用于食品中毒性物质的筛查和分离。
例如,可利用吸附剂薄膜对食品中的残留农药、防腐剂等进行检测和分离,或对不同来源的食品样品进行比较分析,从而为食品安全性评估提供有力的实验数据。
层析技术基本原理及应用

层析技术(Chromatography)是一种用于分离混合物中不同成分的重要方法,广泛应用于化学、生物化学、药学等领域。
以下是层析技术的基本原理及应用:
基本原理:
1. 分离原理:
-层析技术利用不同物质在固定相(stationary phase)和移动相(mobile phase)之间的分配系数不同来实现分离。
-样品在固相上受到吸附力和解吸力的影响,在移动相的推动下,不同组分以不同速度迁移,最终实现分离。
2. 类型:
-按照相对位置可分为吸附层析、分配层析、离子交换层析等。
-常见的层析技术包括气相色谱、液相色谱、离子色谱、薄层色谱等。
应用领域:
1. 生物化学:
-在蛋白质纯化、药物筛选、基因分析等方面广泛应用。
-用于分离和鉴定生物样品中的蛋白质、氨基酸、核酸等生物分子。
2. 制药工业:
-用于药物分析、药物提取和纯化等环节。
-常用于药物配方中主成分和杂质的分离和检测。
3. 环境监测:
-用于水质、大气、土壤等环境样品中有害物质的检测与分析。
-能够帮助监测环境中的污染物并进行有效处理。
4. 食品安全:
-在食品中添加剂、残留农药、重金属等的检测和分析中发挥作用。
-有助于确保食品安全和合规。
总的来说,层析技术通过精密的分离原理和操作流程,可以对复杂混合物进行高效分离和分析,为科学研究和工业生产提供了重要的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层析技术的应用层析技术的应用一、层析技术的原理和分类(一)层析技术的原理层析法是目前广泛应用的一种分离技术。
本世纪初俄国植物学家M.Tswett发现并使用这一技术证明了植物的叶子中不仅有叶绿素还含有其它色素。
现在层析法已成为生物化学、分子生物学及其它学科领域有效的分离分析工具之一。
层析法是利用不同物质理化性质的差异而建立起来的技术。
所有的层析系统都由两个相组成:一是固定相,它或者是固体物质或者是固定于固体物质上的成分;另一是流动相,即可以流动的物质,如水和各种溶媒。
当待分离的混合物随溶媒(流动相)通过固定相时,由于各组份的理化性质存在差异,与两相发生相互作用(吸附、溶解、结合等)的能力不同,在两相中的分配(含量对比)不同,而且随溶媒向前移动,各组份不断地在两相中进行再分配。
与固定相相互作用力越弱的组份,随流动相移动时受到的阻滞作用小,向前移动的速度快。
反之,与固定相相互作用越强的组份,向前移动速度越慢。
分部收集流出液,可得到样品中所含的各单一组份,从而达到将各组份分离的目的。
(二)层析法分类见表16-5~7(三)层析法的特点与应用表16-5按两相所处状态分类流动相液体气体液体液-液层析法气-液层析法固定相固体液-固层析法气-固层析法层析法是根据物质的理化性质不同而建立的分离分析方法。
根据层析峰的位置及峰高或峰面积,可以定性及定量。
层析法与光学、电学或电化学仪器连用,可检测出层析后各组份的浓度或质量,同时绘出层析图。
层析仪与电子计算机联用,可使操作及数据处理自动化,大大缩短分析时间。
由于层析法具有分辨率高、灵敏度高、选择性好、速度快等特点,因此适用于杂质多、含量少的复杂样品分析,尤其适用于生物样品的分离分析。
近年来,已成为生物化学及分子生物学常用的分析方法。
在医药卫生、环境化学、高分子材料、石油化工等方面也得到了广泛的应用。
表16-6按层析原理分类名称分离原理组份在吸附剂表面吸附固定相是固体吸附剂,各能力吸附层析法不同各组份在流动相和静止液相(固相)中的分配系数不分配层析法同固定相是离子交换剂,各组份与离子交换剂亲和力不离子交换层析法同固定相是多孔凝胶,各组份的分子大小不同,因而在凝胶层析法凝胶上受阻滞的程度不同固定相只能与一种待分离组份专一结合,以此和无亲亲和层析法和力的其它组份分离表16-7按操作形式不同分类名称操作形式柱层析法固定相装于柱内,使样品沿着一个方向前移而达分离将适当粘度的固定相均匀涂铺在薄板上,点样后用流薄层层析法动相展开,使各组份分离用滤纸作液体的载体,点样后用流动相展开,使各组纸层析法份分离将适当的高分子有机吸附剂制成薄膜,以类似纸层析薄膜层析法方法进行物质的分离二、层析法实验技术(一)凝胶层析法凝胶层析又称分子筛过滤、排阻层析等。
它的突出优点是层析所用的凝胶属于惰性载体,不带电荷,吸附力弱,操作条件比较温和,可在相当广的温度范围下进行,不需要有机溶剂,并且对分离成分理化性质的保持有独到之处。
对于高分子物质有很好的分离效果。
⒈凝胶的选择根据实验目的不同选择不同型号的凝胶。
如果实验目的是将样品中的大分子物质和小分子物质分开,由于它们在分配系数上有显著差异,这种分离又称组别分离,一般可选用Sephadex G-25和G-50,对于小肽和低分子量的物质(1000-5000)的脱盐可使用Sephadex G-10,G-15及Bio-Gel-p-2或4。
如果实验目的是将样品中一些分子量比较近似的物质进行分离,这种分离又叫分级分离。
一般选用排阻限度略大于样品中最高分子量物质的凝胶,层析过程中这些物质都能不同程度地深入到凝胶内部,由于K d 不同,最后得到分离。
⒉柱的直径与长度根据经验,组别分离时,大多采用2-30cm长的层析柱,分级分离时,一般需要10 0cm左右长的层析柱,其直径在1-5cm范围内,小于1cm产生管壁效应,大于5cm则稀释现象严重。
长度L与直径D的比值L/D一般宜在7-10之间,但对移动慢的物质宜在30-40之间。
⒊凝胶柱的制备凝胶型号选定后,将干胶颗粒悬浮于5-10倍量的蒸馏水或洗脱液中充分溶胀,溶胀之后将极细的小颗粒倾泻出去。
自然溶胀费时较长,加热可使溶胀加速,即在沸水浴中将湿凝胶浆逐渐升温至近沸,1-2小时即可达到凝胶的充分胀溶。
加热法既可节省时间又可消毒。
凝胶的装填:将层析柱与地面垂直固定在架子上,下端流出口用夹子夹紧,柱顶可安装一个带有搅拌装置的较大容器,柱内充满洗脱液,将凝胶调成较稀薄的浆头液盛于柱顶的容器中,然后在微微地搅拌下使凝胶下沉于柱内,这样凝胶粒水平上升,直到所需高度为止,拆除柱顶装置,用相应的滤纸片轻轻盖在凝胶床表面。
稍放置一段时间,再开始流动平衡,流速应低于层析时所需的流速。
在平衡过程中逐渐增加到层析的流速,千万不能超过最终流速。
平衡凝胶床过夜,使用前要检查层析床是否均匀,有无“纹路”或气泡,或加一些有色物质来观察色带的移动,如带狭窄、均匀平整说明层析柱的性能良好,色带出现歪曲、散乱、变宽时必须重新装柱。
⒋加样和洗脱凝胶床经过平衡后,在床顶部留下数亳升洗脱液使凝胶床饱和,再用滴管加入样品。
一般样品体积不大于凝胶总床体积的5%-10%。
样品浓度与分配系数无关,故样品浓度可以提高,但分子量较大的物质,溶液的粘度将随浓度增加而增大,使分子运动受限,故样品与洗脱液的相对粘度不得超过1. 5-2。
样品加入后打开流出口,使样品渗入凝胶床内,当样品液面恰与凝胶床表面相平时,再加入数毫升洗脱液中洗管壁,使其全部进入凝胶床后,将层析床与洗脱液贮瓶及收集器相连,预先设计好流速,然后分部收集洗脱液,并对每一馏份做定性、定量测定。
⒌凝胶柱的重复使用、凝胶回收与保存一次装柱后可以反复使用,不必特殊处理,并不影响分离效果。
为了防止凝胶染菌,可在一次层析后加入0.02%的叠氮钠,在下次层析前应将抑菌剂除去,以免干扰洗脱液的测定。
如果不再使用可将其回收,一般方法是将凝胶用水冲洗干净滤干,依次用70%、90%、95%乙醇脱水平衡至乙醇浓度达90%以上,滤干,再用乙醚洗去乙醇、滤干、干燥保存。
湿态保存方法是凝胶浆中加入抑菌剂或水冲洗到中性,密封后高压灭菌保存。
⒍凝胶层析的应用⑴脱盐:高分子(如蛋白质、核酸、多糖等)溶液中的低分子量杂质,可以用凝胶层析法除去,这一操作称为脱盐。
本法脱盐操作简便、快速、蛋白质和酶类等在脱盐过程中不易变性。
适用的凝胶为Sepha dexG-10、15、25或Bio-Gel-p-2、4、6。
柱长与直径之比为5-15,样品体积可达柱床体积的25%-30%,为了防止蛋白质脱盐后溶解度降低会形成沉淀吸附于柱上,一般用醋酸铵等挥发性盐类缓冲液使层析柱平衡,然后加入样品,再用同样缓冲液洗脱,收集的洗脱液用冷冻干燥法除去挥发性盐类。
⑵用于分离提纯:凝胶层析法已广泛用于酶、蛋白质、氨基酸、多糖、激素、生物碱等物质的分离提纯。
凝胶对热原有较强的吸附力,可用来去除无离子水中的致热原制备注射用水。
⑶测定高分子物质的分子量:用一系列已知分子量的标准品放入同一凝胶柱内,在同一条件下层析,记录每一分钟成分的洗脱体积,并以洗脱体积对分子量的对数作图,在一定分子量范围内可得一直线,即分子量的标准曲线。
测定未知物质的分子量时,可将此样品加在测定了标准曲线的凝胶柱内洗肿后,根据物质的洗脱体积,在标准曲线上查出它的分子量。
⑷高分子溶液的浓缩:通常将SephadexG-25或50干胶投入到稀的高分子溶液中,这时水分和低分子量的物质就会进入凝胶粒子内部的孔隙中,而高分子物质则排阻在凝胶颗粒之外,再经离心或过滤,将溶胀的凝胶分离出去,就得到了浓缩的高分子溶液。
(二)离子交换层析法离子交换层析法是以具有离子交换性能的物质作固定相,利用它与流动相中的离子能进行可逆的交换性质来分离离子型化合物的一种方法。
⒈离子交换剂预处理和装柱对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。
溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。
阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。
洗涤好的纤维素使用前必须平衡至所需的pH 和离子强度。
已平衡的交换剂在装柱前还要减压除气泡。
为了避免颗粒大小不等的交换剂在自然沉降时分层,要适当加压装柱,同时使柱床压紧,减少死体积,有利于分辨率的提高。
柱子装好后再用起始缓冲液淋洗,直至达到充分平衡方可使用。
⒉加样与洗脱加样:层析所用的样品应与起始缓冲液有相同的pH和离子强度,所选定的pH值应落在交换剂与被结合物有相反电荷的范围,同时要注意离子强度应低,可用透析、凝胶过滤或稀释法达此目的。
样品中的不溶物应在透析后或凝胶过滤前,以离心法除去。
为了达到满意的分离效果,上样量要适当,不要超过柱的负荷能力。
柱的负荷能力可用交换容量来推算,通常上样量为交换剂交换总量的1%-5%。
洗脱:已结合样品的离子交换前,可通过改变溶液的pH或改变离子强度的方法将结合物洗脱,也可同时改变pH与离子强度。
为了使复杂的组份分离完全,往往需要逐步改变pH或离子强度,其中最简单的方法是阶段洗脱法,即分次将不同pH与离子强度的溶液加入,使不同成分逐步洗脱。
由于这种洗脱p H与离子强度的变化大,使许多洗脱体积相近的成分同时洗脱,纯度较差,不适宜精细的分离。
最好的洗脱方法是连续梯度洗脱,洗脱装置见图16-6。
两个容器放于同一水平上,第一个容器盛有一定pH的缓冲液,第二个容器含有高盐浓度或不同pH的缓冲液,两容器连通,第一个容器与柱相连,当溶液由第一容器流入柱时,第二容器中的溶液就会自动来补充,经搅拌与第一容器的溶液相混合,这样流入柱中的缓冲液的洗脱能力即成梯度变化。
第一容器中任何时间的浓度都可用下式进行计算:C=C2-(C2-C1)(1-V)A2/A1式中A1、A2分别代表两容器的截面积:C1、C2分别表示容器中溶液的浓度;V为流出体积对总体积之比。
当A1=A2时为线性梯度,当A1>A2时为凹形梯度,A1>A2时为凸形梯度。
洗脱时应满足以下要求:①洗脱液体积应足够大,一般要几十倍于床体积,从而使分离的各峰不致于太拥挤。
②梯度的上限要足够高,使紧密吸附的物质能被洗脱下来。
③梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。
目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。
图16-6梯度洗脱示意图⒊洗脱馏份的分析按一定体积(5-10ml/管)收集的洗脱液可逐管进行测定,得到层析图谱。
依实验目的的不同,可采用适宜的检测方法(生物活性测定、免疫学测定等)确定图谱中目的物的位置,并回收目的物。