直线与平面平行的判定和性质经典练习及详细复习资料

合集下载

平行的判定与性质含练习答案

平行的判定与性质含练习答案

平行的判定与性质知识点一:直线与平面平行的判定及性质直线与平面平行的判断判定文字描述直线和平面在空间平面永无交点,则直线和平面平行(定义)平面外的一条直线一次平面内的一条直线平行,则该直线与此平面平行图形条件a与α无交点结论a∥αb∥α线线平行,则线面平行(线与面的平行问题一定要排除现在直线内的情况)直线与平面平行的性质性质文字描述一条直线与一个平面平行,则这条直线与该平面无交点一条直线和一个平面平行,则过这条直线的任一平面与此平面相交,这条直线和交线平行.图形条件a∥αa∥αa⊂βα∩β=b结论a∩α=∅a∥b线面平行,则线线平行例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.证明:若一条直线与两个相交平面都平行,则这条直线平行于两个平面的交线.知识点二:平面与平面平行的判定及性质平面与平面平行的判定判定文字描述如果两个平面无公共点,责成这两个平面平行一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行.如果两个平面同时垂直于一条直线,那么这两个平面垂直。

图形条件α∩β=∅a,b⊂βa∩b=Pa∥αb∥αl⊥αl⊥β结论α∥βα∥βα∥β平面与平面平行的性质性质文字描述如果两个平行平面同时和第三如果两个平面平行,那么其中一图形条件α∥β β∩γ=b α∩γ=aα∥β a ⊂β结论 a ∥b a ∥α例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA1∥平面BCHG .如图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO?课堂练习:1.直线a ∥平面α,则a 平行于平面α内的( )D.无穷多条平行直线2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内3.下列说法正确的是( )A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线l在平面α外,则l∥αC.若直线a∥b,b⊂平面α,则a∥αD.若直线a∥b,b⊂平面α,那么a平行于平面α内的无数条直线4.b是平面α外的一条直线,可以推出b∥α的条件是( )A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的任何一条直线都不相交能力提升5.如果三个平面将空间分成6个互不重叠的部分,则这三个平面的位置关系是( )A.两两相交于三条交线B.两个平面互相平行,另一平面与它们相交C.两两相交于同一条直线D.B中情况或C中情况都可能发生6.[2011·威海质检] 已知直线l、m,平面α,且m⊂α,则“l∥m”是“l∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.[2011·泰安模拟] 设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β8.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于点A、C,过点P的直线n与α、β分别交于点B、D,且PA=6,AC=9,PD=8,则BD的长为( )9.[2010·福建卷] 如图K39-1,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ) A.EH∥FGB.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台10(10分)如图K39-3,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.求证:MN∥平面PAD;图K39-3 11(13分)[2011·九江七校联考] 如图K39-4所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.求证:PA∥平面EFG;图K39-4课后练习:1、下列命题中正确的是()(A)平行于同一个平面的两条直线平行(B)垂直于同一条直线的两条直线平行(C)若直线a与平面α内的无数条直线平行,则a∥α(D)若一条直线平行两个平面的交线,则这条直线至少平行两个平面中的一个2.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是(A)c与a,b都异面(B)c与a,b都相交(C)c至少与a,b中的一条相交(D)c与a,b都平行3.在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()(A)DD1(B)A1D1(C)C1D1(D)A1D4.下列四个命题:(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与平面平行;(4)过直线外一点可作无数个平面与直线平行;其中正确的命题是()(A)(1),(3)(B)(2),(4)(C)(1),(3),(4)(D)(2),(3),(4)5.若直线a与平面α内的无数条直线平行,则a与α的关系为。

高三数学 直线、平面平行的判定及其性质复习课件(含答案)

高三数学 直线、平面平行的判定及其性质复习课件(含答案)

第四节直线、平面平行的判定及其性质[最新考纲] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.线面平行的判定定理和性质定理线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.(7)垂直于同一条直线的两个平面平行.(8)垂直于同一平面的两条直线平行.一、思考辨析(正确的打“√”,错误的打“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)平行于同一条直线的两个平面平行.()(3)若一个平面内有无数条直线与另一个平面平行,则这两个平面平行.()(4)若两个平面平行,则一个平面内的直线与另一个平面平行.()[答案](1)×(2)×(3)×(4)√二、教材改编1.下列命题中,正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.若直线a,b和平面α满足a∥α,b∥α,那么a∥bD.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥αD[根据线面平行的判定与性质定理知,选D.]2.在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系是.平行[如图所示,连接BD交AC于F,连接EF,则EF是△BDD1的中位线,∴EF∥BD1,又EF⊂平面ACE,BD1⊄平面ACE,∴BD1∥平面ACE.]3.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=.2[根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因此在Rt△DEF中,DE=DF=1,故EF= 2.] 4.在正方体ABCD-A1B1C1D1中,下列结论正确的是(填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.①②④[如图,因为AB C1D1,所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,所以AD1∥平面BDC1,故④正确.]考点1直线与平面平行的判定与性质(多维探究)判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).直线与平面平行的判定如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面P AD.[证明](1)连接EC,因为AD∥BC,BC=12AD,E为AD中点,所以BC AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO∥AP,因为FO⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,因为FH⊄平面P AD,PD⊂平面P AD,所以FH∥平面P AD.又因为O是BE的中点,H是CD的中点,所以OH∥AD,因为OH⊄平面P AD,AD⊂平面P AD.所以OH∥平面P AD.又FH∩OH=H,所以平面OHF∥平面P AD.又因为GH⊂平面OHF,所以GH∥平面P AD.证明两直线平行的方法:中位线定理、线面平行的性质、构造平行四边形、寻找比例式等.若线面平行不易证明,可先证面面平行,再证线面平行.[教师备选例题]如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.[证明]如图,连接A1C.在直三棱柱ABC-A1B1C1中,侧面AA1C1C为平行四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.线面平行性质定理的应用如图,在直四棱柱ABCD-A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.[证明]在四棱柱ABCD-A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A[B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.]2.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.[证明]连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1DC,可得B1C A1D,故ME ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.考点2平面与平面平行的判定与性质判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥A-ECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC,又M,N分别为BD,DC中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC,又MN∩EN=N,∴平面EMN∥平面ABC.(2)连接DH,取CH中点G,连接NG,则NG∥DH,由(1)知EN∥平面ABC,所以点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH⊥平面ABC,∴NG⊥平面ABC,∴DH=3,又N为CD中点,∴NG=3 2,又AC =AB =3,BC =2, ∴S △ABC =12·|BC |·|AH |=22, ∴V E -ABC =V N -ABC =13·S △ABC ·|NG |=63.解答本例第(1)问时用到了面面垂直的性质及垂直于同一平面的两条直线平行这个结论.1.(2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面B[对于A,当无数条直线都平行时,推不出α∥β,排除A.对于C,D,α与β可能平行也可能相交,排除C、D,故选B.]2.在如图所示的几何体中,D是AC的中点,EF∥DB,G,H分别是EC和FB的中点.求证:GH∥平面ABC.[证明]取FC的中点I,连接GI,HI,则有GI∥EF,HI∥BC.又EF∥DB,所以GI∥BD,又GI∩HI=I,BD∩BC=B,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.。

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

直线、平面平行的判定与性质-高考数学复习

直线、平面平行的判定与性质-高考数学复习

所以 AM∥OE. 又因为 OE⊂平面 BDE,AM⊄平面 BDE, 所以 AM∥平面 BDE.
(2)l∥m,证明如下: 由(1)知 AM∥平面 BDE, 又 AM⊂平面 ADM,平面 ADM∩平面 BDE=l, 所以 l∥AM, AM∥平面 BDE, 又 AM⊂平面 ABM,平面 ABM∩平面 BDE=m,所以 m∥AM,所以 l∥m.
第三节 直线、平面平行的判定与性质
1.能以立体几何中的定义、公理和定理为出发点,认识和理解空 间中线、面平行的有关性质与判定定理.
2.能运用公理、定理和已获得的结论证明一些空间图形中平行关 系的简单命题.
1.直线与平面平行的判定定理和性质定理
文字语言 判定 平面外一条直线与_此__平__面__内___的一
2.平面与平面平行的判定定理和性质定理
文字语言
图形语言
一个平面内的两条_相__交__直__线___与另 一个平面平行,则这两个平面平行 (简记为“线面平行⇒面面平行”)
符号语言
因为_a_∥__β_,__b_∥__β_,___ __a_∩__b_=__P__,__a_⊂_α_,____ _b_⊂_α_,所以α∥β
层级二/ 重难点——逐一精研(补欠缺)
重难点(一) 直线与平面平行的判定与性质 考法 1 直线与平面平行的判定 [例 1] 如图,正方形 ABCD 与正方形 ABEF 所在的平面
相交于 AB,在 AE,BD 上各有一点 P,Q,且 AP=DQ.求证: PQ∥平面 BCE.
[证明] 如图所示,作 PM∥AB 交 BE 于 M,作 QN∥ AB 交 BC 于 N,连接 MN.∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴A+E=BD.又 A4PDQ,∴PE=QB.∵PM∥ AB∥QN,∴PAMB=APEE=QBDB=QDNC,∴PAMB=QDNC,又 AB=DC, ∴PM 綊 QN,∴四边形 PMNQ 为平行四边形,∴PQ∥MN.又 MN⊂平面 BCE,

直线与平面平行的判定知识点

直线与平面平行的判定知识点

直线与平面平行的判定知识点关键信息项:1、直线与平面平行的定义2、直线与平面平行的判定定理3、判定定理的条件和结论4、相关的证明方法和思路5、应用直线与平面平行判定的实例和练习题6、常见错误和注意事项1、直线与平面平行的定义11 直线与平面没有公共点,则称直线与平面平行。

111 强调直线在平面外这一前提条件。

112 说明“没有公共点”是判定直线与平面平行的关键特征。

2、直线与平面平行的判定定理21 平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

211 详细阐述定理中的“平面外”“平面内”“平行”等关键要素的含义和作用。

212 解释为何这三个条件缺一不可。

3、判定定理的条件和结论31 条件:平面外一条直线与平面内一条直线平行。

311 对“平面外”这一条件进行重点分析,说明若直线在平面内则不符合判定要求。

312 解释“平面内直线”的选取并非唯一。

32 结论:直线与平面平行。

321 明确得出直线与平面平行这一结论的依据是满足上述条件。

4、相关的证明方法和思路41 证明直线与平面平行时,通常先在平面内找到一条与已知直线平行的直线。

411 举例说明如何通过构造平行四边形、中位线等方法找到平面内的平行线。

412 强调证明过程中的逻辑严谨性和步骤完整性。

42 利用反证法证明直线与平面平行的思路和步骤。

421 假设直线与平面不平行,推出矛盾,从而证明原命题成立。

422 通过具体例子展示反证法的应用。

5、应用直线与平面平行判定的实例和练习题51 给出实际生活中体现直线与平面平行关系的例子,如建筑结构中的某些线条与平面的关系。

511 分析这些例子中如何运用直线与平面平行的判定知识。

512 引导通过实际观察加深对知识点的理解。

52 提供一系列练习题,包括选择题、填空题、解答题等。

521 练习题涵盖不同难度层次,从基础概念的考查到复杂证明的应用。

522 给出练习题的详细答案和解题思路,帮助巩固所学知识。

直线、平面平行的判定及性质及详细答案

直线、平面平行的判定及性质及详细答案

直线、平面平行的判定及性质1.直线和平面平行的判定定理2.直线和平面平行的性质定理3.两个平面平行的判定定理4.两个平面平行的性质定理5.与垂直相关的平行的判定定理例1如图所示,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.证明:MN∥平面A′ACC′.例2.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.如图所示,在三棱柱ABC-A1B1C1中,E为AC上一点,若AB1∥平面C1EB,求:AE∶EC.例3如图所示,正方体ABCD—A1B1C1D1中,M、N、E、F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.例4如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.练习题:1.(课本习题改编)给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.其中正确命题的个数是________个.1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.2.(2014·合肥一检)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.1.已知两条不同直线l1和l2及平面α,则直线l1∥l2的一个充分条件是() A.l1∥α且l2∥αB.l1⊥α且l2⊥αC.l1∥α且l2⊄αD.l1∥α且l2⊂α答案 B解析l1⊥α且l2⊥α⇒l1∥l2.2.(2012·四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交,A项不正确;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,那么经过这三个点的平面与这个平面相交,B项不正确.3.(2013·浙江)设m,n是两条不同的直线,α,β是两个不同的平面() A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案 C解析A项中,直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B项中,α与β也可能相交,此时直线m平行于α,β的交线;D 项中,m也可能平行于β.故选C项.4.设α,β表示平面,m,n表示直线,则m∥α的一个充分不必要条件是()A .α⊥β且m ⊥βB .α∩β=n 且m ∥nC .m ∥n 且n ∥αD .α∥β且m ⊂β答案 D解析 若两个平面平行,其中一个面内的任一直线均平行于另一个平面,故选D.5.若空间四边形ABCD 的两条对角线AC 、BD 的长分别是8、12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为( )A .10B .20C .8D .4答案 B解析 设截面四边形为EFGH ,F 、G 、H 分别是BC 、CD 、DA 的中点,∴EF =GH =4,FG =HE =6.∴周长为2×(4+6)=20.6.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案 B解析 连接CD 1,在CD 1上取点P ,使D 1P =2a3,∴MP ∥BC ,PN ∥AD 1. ∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D . ∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .7.如图所示,四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).答案①③8. 棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点,则BE与平面P AD的位置关系为________.答案平行解析取PD的中点F,连接EF.在△PCD中,EF綊12CD.又∵AB∥CD且CD=2AB,∴EF=12CD且CD=2AB.∴EF綊AB,∴四边形ABEF是平行四边形,∴EB∥AF.又∵EB⊄平面P AD,AF⊂平面P AD,∴BE∥平面P AD.9. 如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案22 3a解析 如图所示,连接AC ,易知MN ∥平面ABCD .∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC . 又∵AP =a 3,∴PD AD =DQ CD =PQ AC =23. ∴PQ =23AC =232a =223a .10.考查下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为________.①⎭⎬⎫m ⊂αl ∥m⇒l ∥α;②⎭⎬⎫l ∥m m ∥α⇒l ∥α;③⎭⎬⎫l ⊥βα⊥β⇒l ∥α. 答案 l ⊄α解析 ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”,它也同样适合②③,故填l ⊄α.11.在四面体ABCD 中,M 、N 分别是面△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 和平面ABD解析 连接AM 并延长交CD 于E ,连接BN 并延长交CD 于F .由重心的性质可知,E 、F 重合为一点,且该点为CD 的中点E .由EM MA =EN NB =12,得MN ∥AB .因此MN ∥平面ABC 且MN ∥平面ABD .12.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,EF 1,EE 1,FF 1,E 1F ,E 1F 1均与平面ABB1A 1平行,故符合题意的直线共6条.13. 如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E、B、F、D1四点共面;(2)求证:平面A1GH∥平面BED1F.答案(1)略(2)略解析(1)连接FG.∵AE=B1G=1,∴BG=A1E=2.∴BG綊A1E,∴A1G∥BE.又∵C1F綊B1G,∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1.∴四边形A1GFD1是平行四边形.∴A1G綊D1F,∴D1F綊EB.故E、B、F、D1四点共面.(2)∵H是B1C1的中点,∴B1H=32.又B1G=1,∴B1GB1H=23.又FCBC=23,且∠FCB=∠GB1H=90°,∴△B1HG∽△CBF.∴∠B1GH=∠CFB=∠FBG,∴HG∥FB.又由(1)知,A1G∥BE,且HG∩A1G=G,FB∩BE=B,∴平面A1GH∥平面BED1F.14. 如图所示,四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:P A∥平面EFG;(2)求三棱锥P—EFG的体积.答案(1)略(2)1 6解析(1)如图所示,取AD的中点H,连接GH,FH.∵E,F分别为PC,PD的中点,∴EF∥CD.∵G,H分别是BC,AD的中点,∴GH∥CD.∴EF∥GH,∴E,F,H,G四点共面.∵F,H分别为DP,DA的中点,∴P A∥FH.∵P A⊄平面EFG,FH⊂平面EFG,∴P A∥平面EFG.(2)∵PD⊥平面ABCD,CG⊂平面ABCD,∴PD⊥CG.又∵CG⊥CD,CD∩PD=D,∴GC⊥平面PCD.∵PF =12PD =1,EF =12CD =1, ∴S △PEF =12EF ·PF =12. 又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.15.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).(1)求证:MN ∥平面CDEF ; (2)求多面体A —CDEF 的体积. 答案 (1)略 (2)83解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH = 2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.16. 如图所示,三棱柱ABC -A 1B 1C 1,底面为正三角形,侧棱A 1A ⊥底面ABC ,点E 、F 分别是棱CC 1、BB 1上的点,点M 是线段AC 上的动点,EC =2FB .当点M 在何位置时,BM ∥平面AEF?答案当M为AC中点时,BM∥平面AEF.解析方法一:如图所示,取AE的中点O,连接OF,过点O作OM⊥AC 于点M.∵侧棱A1A⊥底面ABC,∴侧面A1ACC1⊥底面ABC.∴OM⊥底面ABC.又∵EC=2FB,∴OM∥FB綊12EC.∴四边形OMBF为矩形.∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF,故BM∥平面AEF,此时点M为AC的中点.方法二:如图所示,取EC的中点P,AC的中点Q,连接PQ、PB、BQ. ∴PQ∥AE.∵EC=2FB,∴PE綊BF,PB∥EF.∴PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,∴平面PBQ ∥平面AEF .又∵BQ ⊂面PQB ,∴BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.17. (2013·福建)如图所示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ;(3)求三棱锥D -PBC 的体积.答案 (1)略 (2)略 (3)8 3解析 方法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理,得BE =3,从而AB =6.又由PD ⊥平面ABCD ,得PD ⊥AD .从而在Rt △PDA 中,由AD =4,∠P AD =60°,得PD =4 3.正视图如图所示.(2) 取PB 中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 中点,∴MN ∥AB ,MN =12AB =3.又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =43,所以V D -PBC =8 3.方法二:(1)同方法一.(2) 取AB 的中点E ,连接ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE∥平面PBC.又在△P AB中,ME∥PB,ME⊄平面PBC,PB⊂平面PBC,∴ME∥平面PBC.又DE∩ME=E,∴平面DME∥平面PBC.又DM⊂平面DME,∴DM∥平面PBC.(3)同方法一.。

直线与平面平行的判定和性质经典练习及详细答案

平面平行的判定及其性质羄直线、1.2.薂下列命题中,正确命题的是④.;肇①若直线I上有无数个点不在平面:.内,则I // :•芆②若直线I与平面「平行,则I与平面「内的任意一条直线都平行;莁③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线I与平面「平行,则I与平面:.内的任意一条直线都没有公共点3.4. 芀下列条件中,不能判断两个平面平行的是____________ (填序号)肇①一个平面内的一条直线平行于另一个平面蚆②一个平面内的两条直线平行于另一个平面膃③一个平面内有无数条直线平行于另一个平面聿④一个平面内任何一条直线都平行于另一个平面答案①②③5.5. 腿对于平面和共面的直线m n,下列命题中假命题是________________ (填序号)肇①若mL用,m丄n,贝V n / 、丄薁②若mil :- , n // :•,贝V m// n膂③若m二:z , n// :•,贝U m// n芇④若m n与:•所成的角相等,则m// n 答案①②④7.6. 膄已知直线a, b,平面「,则以下三个命题:芃①若a // b, b二:乂,则a //⑶袁②若a // b, a //芒,贝U b //芒;莆③若 a // :•, b // :-,则 a // b.薅其中真命题的个数是答案09.7. 羅直线a//平面M直线b M那么a// b是b〃M的条件.蚀A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要11.12.蒆能保证直线a与平面〉平行的条件是, a// b p bu a, a//b肆A. a 広a, b u a, c//a,a//b,a//c蒃C. b u a£a,C^b, D e b 且AC=BD葿D. b u 口,A^a,B13.14. 薆如果直线a平行于平面?,则 _________a平行 B.平面〉内无数条直线与a平行蒇A.平面?内有且只有一直线与a平行的直线 D.平面〉内的任意直线与直线a都平行膅C.平面〉内不存在与15.15. 蒂如果两直线a// b,且a//平面〉,则b与〉的位置关系__________蚆A.相交B. b〃° c.匕匚口D.b〃°或b u°17.16. 薄下列命题正确的个数是______19.17. 蚃(1)若直线I上有无数个点不在平面a内,则I // al与平面a平行,则l与平面a内的任意一直线平行芁(2)若直线,那么另一条也与这个平面平行蚆(3)两条平行线中的一条直线与一个平面平行a和平面a内一直线b平行,则a // a羅(4 )若一直线莄A.0个 B.1个 C.2个 D.3个21.22. 罿b是平面a外的一条直线,下列条件中可得出b/ a是肀A. b与a内的一条直线不相交 B. b与a内的两条直线不相交莅C.b与a内的无数条直线不相交 D.b与a内的所有直线不相交23.23. 螂已知两条相交直线a、b, a//平面a ,则b与a的位置关系肂A. b / a B.b与a相交 C.b」a D.b/ a或b与a相交25.24. 膀如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC, SGSAB上的高,D E、F分别是AC BC SC的中点,试判断SG与平面DEF的位置关系,并给予证明.螆解SG//平面DEF证明如下:薄方法一:三角形中位线连接CG交螁••• DE是厶ABC的中位线,芀••• DE// AB.腿在△ ACG中, D是AC的中点,羂且DH// AG薀• H为CG的中点.艿• FH是厶SCG的中位线,芄• FH// SG蚄又SG亿平面DEF FHU平面DEF,荿••• SG//平面DEF荿方法二:平面平行的性质蚅••• EF为厶SBC的中位线,• EF/ SB膂••• EF伉平面SAB SBu平面SAB莂• EF//平面SAB葿同理可证,DF//平面SAB EF A DF=F ,肆.••平面SAB/平面DEF,又SG二平面SAB • SG//平面DEF27.25. 袄如图所示,在正方体ABC—ABC1D1中,E、F、G H分别是BC CG、賺CD、A1A的中点.求证:蕿(1)BF/ HD;蒇(2)EG//平面BBDD;莁(3)平面BDF/平面BDH袀证明平行四边形的性质,平行线的传递性虿(1 )如图所示,取BB的中点M易证四边形蚄又••• MC/ BF,「. BF/ HD.肃(2)取BD的中点0,连接E0, D0,贝U OE^蚈又DG& I DC• OE^ DG2蝿.••四边形OEGD是平行四边形,• GE// DO.肄又D 0-平面BB D D, • EG/平面BBD D.蒁(3)由(1)知DH// BF,又BD// BD, BD、HD =平面HBD, BF、BH 平面BDF,且BD A HD=D, DBA BF=B,「.平面BDF// 平面B D H.29.26. 螁如图所示,在三棱柱ABC-A i B C中,M N分别是BC和A i B i的中点. 衿求证:MN//平面AACC.蒅证明方法一:平行四边形的性质膃设AC中点为F,连接NF, FC,蒀••• N为A i B i中点,衿••• NF// BQ,且NF=^B C i,2祎又由棱柱性质知B i C i庄BC蚁又M是BC的中点,艿• NF MC羈.••四边形NFCM^平行四边形.芇• MIN/ CF,又CF 平面AA C i, MN二平面AA C ,• MIN/平面AAC C. 莃方法二:三角形中位线的性质节连接AM交C C于点P,连接A i P, 肇T M是BC的中点,且MC/ B i C i,莄• M是B i P的中点,肅又••• N为A B中点,肁• MN// A P,又 A PU 平面AA C , MW 平面AAC,:MIN/平面AACC.膈方法三:平面平行的性质 螅设BiG 中点为Q 连接NQ MQ ,薃•••M Q 是BG BG 的中点,袀•••MQ CG ,又 CGu 平面 AAGC, MQ 伉平面 AAGC, 芈•••MQ/平面 AA C i C.膆•••N 、Q 是A B i 、B i C 的中点,芅• NQ 二 AQ ,又 A i C 二平面 AAC C, NQ 二平面 AAC C, 蕿• NQ//平面 AA C i C.莈又••• MQ P NQB ,「.平面 MNQ 平面 AAC C, 薇又MN 二平面MNQ. MIN/平面AA C C.3 i .32.螂如图所示,正方体 ABC — A B i C D 中,侧面对角线 AB , BC 上分 别有两点 E , F ,且B E=C F. 蚁求证: EF //平面 ABCD 蒈方法一:平行四边形的性质螃过E 作ES// BB 交AB 于S,过F 作FT // BB 交BC 于 T ,蒄连接ST ,则-AE 更,且AB i B i B BC i C i C莀T B i E=C F , B A=CB,. AE=BF蒈•••旦,••• ES=FTB i B CC i膄又••• ES// B B// FT ,.四边形 EFTS 为平行四边形Bl ______ G袂•••EF// ST ,又 ST=平面 ABCD EFC :平面 ABCD : EF//平面 ABCD腿方法二:相似三角形的性质 薈连接BF 交BC 于点Q 连接AQ薅••• BQ // BC, • B 1L =圧BQ C 1B膂• EF // AQ 又 AQ=平面 ABCD EF 二平面 ABCD •- EF//平面 ABCD 蚇方法三:平面平行的性质 羆过E 作EG/ AB 交BB 于G,肂连接GF,则B 11史£ ,B 1A B 1B羁 TB i E=C i F , BA=CB ,螇••• C i E =B i G , • FG // B l C i // BC C 1B B i B 莇又 EG A FG P G , AB A BC=B ,螄.••平面 EFG/平面 ABCD 而EF 二平面EFG螀• EF//平面ABCD33.34.袇如图所示,在正方体 ABC — A B i C D 中,O 为底面ABCD 的中心,P 是DD 的中点,设薄T B i E=C i F , BiA=GB,B L E B ,FB 1D B i QQ是CC上的点,问:当点Q在什么位置时,平面DBQ// 平面PAO蒄解面面平行的判定节当Q为CC的中点时,A B葿平面 DBQ//平面PAO羇••• Q 为CG 的中点,P 为DD 的中点,••• QB// PA袅:P 、O 为 DD 、DB 的中点,• DB// PO羄又 PO P PA=P , DB A QB=B , 薂DB //平面PAO QB//平面 PAO 肇.••平面 DBQ//平面PAO芆直线与平面平行的性质定理35.EFGH 为空间四边形ABCD 勺一个截面,若截面为平行四边形芀(1)求证:AB//平面 EFGH CD//平面 EFGH肇(2)若AB=4, CD=6,求四边形EFGH 周长的取值范围 蚆(1)证明•••四边形EFGH 为平行四边形,• EF// HG膃•••HX 平面 ABD • EF//平面 ABD 聿•••EF 平面 ABC 平面 ABD A 平面 ABCAB腿• EF// AB. • AB//平面 EFGH 肇同理可证,CD//平面EFGH薁⑵ 解 设EF=x (O v x v 4),由于四边形 EFGH 为平行四边形,膂•••CF=x 则 FG = B F = B C -C F =1- x .从而 F G=6- 1 2 3x . •••四边形 EFGH 的周长 CB 4 6 BC BC 4 21 =2(x+6-5)=12- x.又0v x v 4,则有8v l v 12, •四边形 EFGH 周长的取值范围是(8,212) 37.36.莁如图所示,四边形 AC38.芇如图所示,平面:• //平面[,点A € :. , C €「,点B € 1 , D € [,点E , F 分别在线 段 AB CD 上,且 AE : EB=CF : FD薆••• AC// DH, •••四边形 ACDH 是平行四边形, 蒇在AH 上取一点 G,使AG : GH=CF : FD,膅又••• AE : EB=CF : FD, • GF// HD EG// BH 蒂又EG A GFG, •平面 EFG//平面-蚆•••EF 平面 EFG •- EF / l 综上,EF// I薄(2)解三角形中位线膄(1)求证:EF / -; :. / :,:.门平面 ACDHAC,蚃 如图所示,连接 AD,取AD 的中点 M 连接 ME MF.芁••• E , F 分别为AB, CD 的中点,蚆••• ME// BD, MF// AC,羅且 M ^Z BGB , MF=LAC=2,2 2莄•••/ EMF 为AC 与BD 所成的角(或其补角),罿EMF=60。

04线面平行与面面平行判定与性质(经典题型+答案)

线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。

解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。

例4:已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B.例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( ) A .0 B .1 C .2 D .3 解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ).A. 0个B. 1个C. 0个或1个D. 1个或2个解:这两点可以是在平面同侧或两侧.选C 。

直线与平面平行性质

或b与 α相交
3、判断下列命题的真假
真 假 真 假
这条直线平行. ( )
(1)过直线外一点只能引一条直线与
这个平面平行. ( )
分析:怎样进行平行的转化?→如何作辅助平面?
书写证明过程
练习1:已知直线a,b和平面α,下列命 题正确的是( )
01
D
02
(1)若两直线a、b异面,且 a ∥ α,则b与α的位置关系可能是
2、填空:
(2)若两直线a、b相交,且a ∥ α,则b与α的位置关系可能是
b ∥ α,b与 α相交
b∥α,或b α,
卡通风学期计划
直线与平面平行的性质
复习:线面平行的判定定理
如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
b
a
b
a∥ b
a
a ∥
注明:
1、定理三个条件缺一不可。
2、简记:线线平行,则线面平行。
3、定理告诉我们:
要证线面平行,得在面内找一条线,使线线平行。
在三角形中利用中位线
利用平行四边形做载体
利用平行四边形、矩形对角线互相平分的性质
利用直线和平面平行的性质
利用线段成比例的关系
01
02
03
04
05
如何寻找互相平行的直线
练习:P为长方形ABCD所在平面外一点,M、N分别为AB,PD上的中点 。
求证:MN∥平面PBC。
Q
A
B
C
D
M
N
P
m
ß
ɑ
γ
l
n
已知:平面,ß ,γ , ∩ß =l, ∩ γ =m, ß ∩ γ =n,且l// m

高考数学一轮复习专题训练—直线、平面平行的判定与性质

直线、平面平行的判定与性质考纲要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知识梳理1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b⇒a∥b2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β平行性质定理两个平面平行,则其中一个平面内的直线平行于另一个平面α∥β,a⊂α⇒a∥β如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b1.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.2.三种平行关系的转化诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()答案(1)×(2)×(3)×(4)√解析(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.2.下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交,故选D.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.4.(2021·太原质检)平面α∥平面β的一个充分条件是()A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α 答案 D解析 若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,a ∥α,a ∥β,故排除A ; 若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,故排除B ;若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,故排除C ; 故选D.5.(2020·长春调研)已知α,β表示两个不同的平面,直线m 是α内一条直线,则“α∥β”是“m ∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由α∥β,m ⊂α,可得m ∥β;反过来,由m ∥β,m ⊂α,不能推出α∥β.综上,“α∥β”是“m ∥β”的充分不必要条件.6.(2021·衡水中学检测)如图,四棱锥P -ABCD 中,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.则CE 与平面P AB 的关系是________.答案 平行解析 取P A 的中点F ,连接EF ,BF ,∵E 是PD 中点,知EF 綉12AD ,又∠BAD =∠ABC =90°,BC =12AD ,∴BC 綉12AD ,从而BC 綉EF ,则四边形BCEF 为平行四边形,故CE ∥AF , 又BF ⊂平面P AB ,CE ⊄平面P AB , 所以CE ∥平面P AB .考点一 与线、面平行相关命题的判定1.(2019·全国Ⅱ卷)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 答案 B解析 若α∥β,则α内有无数条直线与β平行,当α内无数条直线互相平行时,α与β可能相交;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A ,C ,D 中条件均不是α∥β的充要条件.根据两平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此B 中条件是α∥β的充要条件.2.(2021·西安质检)设a ,b 为两条不同直线,α,β,γ为三个不同平面,则下列命题正确的是()A.若a∥α,b∥α,则a∥bB.若a⊂α,b⊂β,α∥β,则a∥bC.若a∥α,a∥β,则α∥βD.若α∥β,α∩γ=a,β∩γ=b,则a∥b答案 D解析A不正确:a∥b或a与b相交或异面;B不正确,a∥b或a与b是异面直线;C不正确,α∥β或平面α与β相交.D正确,根据面面平行的性质,可得a∥b.3.在正方体ABCD-A1B1C1D1中,下列结论正确的是________(填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.答案①②④解析如图,因为AB綉C1D1,所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,所以AD1∥平面BDC1,故④正确.感悟升华直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.考点二直线与平面平行的判定与性质角度1直线与平面平行的判定【例1】(2019·全国Ⅰ卷)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB =2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.(1)证明如图,连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1綉DC ,可得B 1C 綉A 1D ,故ME 綉ND , 因此四边形MNDE 为平行四边形, 所以MN ∥ED .又MN ⊄平面C 1DE ,DE ⊂平面C 1DE , 所以MN ∥平面C 1DE .(2)解 过点C 作C 1E 的垂线,垂足为H .由已知可得DE ⊥BC ,DE ⊥C 1C ,又BC ∩C 1C =C ,BC ,C 1C ⊂平面C 1CE ,所以DE ⊥平面C 1CE ,故DE ⊥CH .所以CH ⊥平面C 1DE , 故CH 的长即为点C 到平面C 1DE 的距离. 由已知可得CE =1,C 1C =4, 所以C 1E =17,故CH =41717.从而点C 到平面C 1DE 的距离为41717.感悟升华 1.利用线面平行的判定定理证明直线与平面平行的关键是在平面内找到一条与已知直线平行的直线.2.利用面面平行的性质证明线面平行时,关键是构造过该直线与所证平面平行的平面,这种方法往往借助于比例线段或平行四边形.【训练1】 如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH .求证:GH ∥平面P AD .证明 如图,连接AC 交BD 于点O ,连接MO ,因为四边形ABCD 是平行四边形, 所以O 是AC 的中点.又M 是PC 的中点, 所以AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .因为平面P AHG ∩平面BMD =GH ,根据直线和平面平行的性质定理,所以P A ∥GH . 因为GH ⊄平面P AD ,P A ⊂平面P AD , 所以GH ∥平面P AD .角度2 线面平行的性质定理的应用【例2】 (2021·河南、江西五岳联考)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,∠DAB =90°,AB =BC =P A =12AD =2,E 为PB 的中点,F 是PC 上的点.(1)若EF ∥平面P AD ,证明:F 为PC 的中点; (2)求点C 到平面PBD 的距离.(1)证明 因为BC ∥AD ,BC ⊄平面P AD ,AD ⊂平面P AD , 所以BC ∥平面P AD .因为P ∈平面PBC ,P ∈平面P AD ,所以可设平面PBC ∩平面P AD =PM , 又因为BC ⊂平面PBC ,所以BC ∥PM , 因为EF ∥平面P AD ,EF ⊂平面PBC , 所以EF ∥PM ,从而得EF ∥BC .因为E 为PB 的中点,所以F 为PC 的中点.(2)解 因为P A ⊥底面ABCD ,∠DAB =90°,AB =BC =P A =12AD =2,所以PB =P A 2+AB 2=22,PD =P A 2+AD 2=25, BD =BA 2+AD 2=25,所以S △DPB =12PB ·DP 2-⎝⎛⎭⎫12PB 2=6. 设点C 到平面PBD 的距离为d ,由V C -PBD =V P -BCD ,得13S △DPB ·d =13S △BCD ·P A =13×12×BC ×AB ×P A ,则6d =12×2×2×2,解得d =23.感悟升华 在应用线面平行的性质定理进行平行转化时,一定注意定理成立的条件,通常应严格按照定理成立的条件规范书写步骤,如:把线面平行转化为线线平行时,必须说清经过已知直线的平面和已知平面相交,这时才有直线与交线平行.【训练2】 如图所示,已知四边形ABCD 是正方形,四边形ACEF 是矩形,M 是线段EF 的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.考点三面面平行的判定与性质【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【迁移1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A 1ACC 1是平行四边形, ∴M 是A 1C 的中点,连接MD , ∵D 为BC 的中点, ∴A 1B ∥DM . ∵A 1B ⊂平面A 1BD 1, DM ⊄平面A 1BD 1, ∴DM ∥平面A 1BD 1,又由三棱柱的性质及D ,D 1分别为BC ,B 1C 1的中点知,D 1C 1綉BD , ∴四边形BDC 1D 1为平行四边形,∴DC 1∥BD 1. 又DC 1⊄平面A 1BD 1,BD 1⊂平面A 1BD 1, ∴DC 1∥平面A 1BD 1,又DC 1∩DM =D ,DC 1,DM ⊂平面AC 1D , 因此平面A 1BD 1∥平面AC 1D .【迁移2】 在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC 的值.解 连接A 1B 交AB 1于O ,连接OD 1. 由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.又由题设A 1D 1D 1C 1=DCAD,∴DC AD =1,即ADDC=1. 感悟升华 1.判定面面平行的主要方法 (1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行). 2.面面平行条件的应用(1)两平面平行,分别构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.【训练3】 (2021·成都五校联考)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A =PD ,AB =AD ,P A ⊥PD ,AD ⊥CD ,∠BAD =60°,M ,N 分别为AD ,P A 的中点.(1)证明:平面BMN ∥平面PCD ; (2)若AD =6,求三棱锥P -BMN 的体积. (1)证明 连接BD ,如图所示.∵AB =AD ,∠BAD =60°,∴△ABD 为正三角形. ∵M 为AD 的中点,∴BM ⊥AD .∵AD ⊥CD ,CD ,BM ⊂平面ABCD ,∴BM ∥CD .又BM ⊄平面PCD ,CD ⊂平面PCD ,∴BM ∥平面PCD . ∵M ,N 分别为AD ,P A 的中点,∴MN ∥PD . 又MN ⊄平面PCD ,PD ⊂平面PCD , ∴MN ∥平面PCD .又BM ,MN ⊂平面BMN ,BM ∩MN =M , ∴平面BMN ∥平面PCD . (2)解 在(1)中已证BM ⊥AD .∵平面P AD ⊥平面ABCD ,BM ⊂平面ABCD , ∴BM ⊥平面P AD .又AD =6,∠BAD =60°,∴BM =3 3. ∵P A =PD ,P A ⊥PD ,AD =6, ∴P A =PD =32AD =32, ∵M ,N 分别为AD ,P A 的中点, ∴S △PMN =14S △P AD =14×12×(32)2=94.∴三棱锥P -BMN 的体积V =V B -PMN =13S △PMN ·BM=13×94×33=934.A 级 基础巩固一、选择题1.下列命题中正确的是( )A .若a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,则b ∥α 答案 D解析 A 中,a 可以在过b 的平面内;B 中,a 与α内的直线也可能异面;C 中,两平面可相交;D 中,由直线与平面平行的判定定理知b ∥α,正确.2.如果AB ,BC ,CD 是不在同一平面内的三条线段,则经过它们中点的平面和直线AC 的位置关系是( ) A .平行B .相交C .AC 在此平面内D .平行或相交答案 A解析 把这三条线段放在正方体内可得如图,显然AC ∥EF ,AC ⊄平面EFG ,∵EF ⊂平面EFG ,故AC ∥平面EFG ,故选A.3.(2021·重庆联考)如图,四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 为平行四边形,E ,F 分别在线段DB ,DD 1上,且DE EB =DF FD 1=12,G 在CC 1上且平面AEF ∥平面BD 1G ,则CG CC 1=( )A.12 B .13C .23D .14答案 B解析 如图所示,延长AE 交CD 于H ,连接FH ,则△DEH ∽△BEA ,所以DH AB =DE EB =12.因为平面AEF ∥平面BD 1G ,平面AEF ∩平面CDD 1C =FH ,平面BD 1G ∩平面CDD 1C 1=D 1G ,所以FH∥D1G.又四边形CDD1C1是平行四边形,所以△DFH∽△C1GD1,所以DFC1G=DHC1D1,因为DHC1D1=DHAB=12,所以DFC1G=12,因为DFFD1=12,所以FD1=C1G,DF=CG,所以CGCC1=13,故选B.4. (2021·兰州诊断)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能答案 B解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC.∵过A1B1的平面与平面ABC交于DE,∴DE∥A1B1,∴DE∥AB.5.(2021·河南名校联考)在正方体ABCD-A1B1C1D1中,E,F,G分别是BB1,DD1,A1B1的中点,则下列说法错误的是()A.B1D∥平面A1FC1B.CE∥平面A1FC1C.GE∥平面A1FC1D.AE∥平面A1FC1答案 C解析作出图形如图所示,观察可知,B1D∥FO,CE∥A1F,AE∥C1F,又FO⊂平面A1FC1,A1F⊂平面A1FC1,C1F⊂平面A1FC1,B1D⊄平面A1FC1,CE⊄平面A1FC1,AE⊄平面A1FC1,所以选项A,B,D正确;因为GE∥A1B,所以GE与平面A1FC1相交,所以选项C错误,故选C.6.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有() A.0条B.1条C.2条D.1条或2条答案 C解析如图所示,平面α即平面EFGH,则四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(平面EFGH)平行的棱有2条.二、填空题7.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.答案 2解析根据题意,因为EF∥平面AB1C,EF⊂平面ACD,平面ACD∩平面AB1C=AC,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因为在Rt△DEF中,DE=DF=1,故EF= 2.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________(填序号).答案①或③解析由面面平行的性质定理可知,①正确;当m∥γ,n∥β时,n和m可能平行或异面,②错误;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以m∥n,③正确.9.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况).答案点M在线段FH上(或点M与点H重合)解析连接HN,FH,FN,则FH∥DD1,HN∥BD,且FH ∩HN =H ,D 1D ∩BD =D ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1. 三、解答题10.(2021·绵阳诊断)如图,四边形ABCD 是正方形,P A ⊥平面ABCD ,点E 、F 分别是线段AD ,PB 的中点,P A =AB =2.(1)证明:EF ∥平面PCD ; (2)求三棱锥F -PCD 的体积.(1)证明 取PC 的中点G ,连接DG ,FG .∵四边形ABCD 为正方形,且DE 綉12BC ,FG ∥BC ,且FG =12BC ,∴DE ∥FG 且DE =FG , ∴四边形DEFG 为平行四边形, ∴EF ∥DG ,又∵EF ⊄平面PCD ,DG ⊂平面PCD , ∴EF ∥平面PCD .(2)解 ∵EF ∥平面PCD ,∴F 到平面PCD 的距离等于E 到平面PCD 的距离,∴V F -PCD =V E -PCD=12V A -PCD =12V P -ACD . ∵P A ⊥平面ABCD ,∴V P -ACD =13×S △ACD ×P A =13×12×22×2=43. ∴V F -PCD =12V P -ACD =23. 11.如图,四边形ABCD 与四边形ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .证明 (1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,因为四边形ADEF 为平行四边形,所以O 为AE 的中点.连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .因为M 为AB 的中点,N 为AD 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN ,又BD ⊄平面MNG ,MN ⊂平面MNG ,所以BD ∥平面MNG ,又DE 与BD 为平面BDE 内的两条相交直线,所以平面BDE ∥平面MNG .B 级 能力提升12.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1D 1,A 1B 1的中点,过直线BD 的平面α∥平面AMN ,则平面α截该正方体所得截面的面积为( )A. 2 B .98 C . 3 D .62答案 B解析 如图1,分别取B 1C 1,C 1D 1的中点E ,F ,连接EF ,BE ,DF ,B 1D 1,ME ,易知EF ∥B 1D 1∥BD ,AB ∥ME ,AB =EM ,所以四边形ABEM 为平行四边形,则AM ∥BE ,又BD 和BE 为平面BDFE 内的两条相交直线.图1 图2所以平面AMN ∥平面BDFE ,即平面BDFE 为平面α,BD =2,EF =12B 1D 1=22,得四边形BDFE 为等腰梯形,DF =BE =52, 在等腰梯形BDFE 如图2中,过E ,F 作BD 的垂线,则四边形EFGH 为矩形, ∴其高FG =DF 2-DG 2=54-18=324, 故所得截面的面积为12×⎝⎛⎭⎫22+2×324=98. 13.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO . 答案 Q 为CC 1的中点解析 如图所示,设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,PO ⊂平面P AO ,P A ⊂平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面P AO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO .14.(2021·西安调研)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,E ,F 分别是BC ,A 1C 1的中点,△ABC 是边长为2的等边三角形,AA 1=2AB .(1)求证:EF ∥平面ABB 1A 1;(2)求点C 到平面AEF 的距离.(1)证明 如图,取AB 的中点D ,连接DE ,A 1D . 因为E 是BC 的中点,所以DE ∥AC ,且DE =12AC .由三棱柱的性质知AC ∥A 1C 1. 因为F 是A 1C 1的中点,所以A 1F ∥AC ,且A 1F =12AC , 所以A 1F ∥DE ,且A 1F =DE , 所以四边形DEF A 1是平行四边形. 所以EF ∥DA 1.又因为EF ⊄平面ABB 1A 1,DA 1⊂平面ABB 1A 1, 所以EF ∥平面ABB 1A 1.(2)解 由题可得V F -ACE =13×AA 1×S △ACE =13×4×12×34×22=233. 在△AEF 中,易求得AE =3, AF =17,EF =17,AE 边上的高为17-⎝⎛⎭⎫322=652, 所以S △AEF =12×652×3=1954. 设点C 到平面AEF 的距离为h ,则V C -AEF =13×h ×S △AEF =233,865解得h=65.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.下列命题正确的个数是
10.(1)若直线l上有无数个点不在平面α内,则l∥α
(2)若直线l与平面α平行,则l与平面α内的任意一直线平行
(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行
(4)若一直线a和平面α内一直线b平行,则a∥α
A.0个B.1个C.2个D.3个
11.b是平面α外的一条直线,下列条件中可得出b∥α是
(1)求证:∥ ;
又D1G ,∴D1G,
∴四边形1是平行四边形,∴∥D1O.
又D1O 平面1D1D,∴∥平面1D1D.
(3)由(1)知D1H∥,又∥B1D1,B1D1、1 平面1D1,、 平面,且B1D1∩11,∩,∴平面∥平面B1D1H.
15.如图所示,在三棱柱—A1B1C1中,M、N分别是和A1B1的中点.
求证:∥平面1C1C.
∴∥,又 平面, 平面,∴∥平面.
方法二:相似三角形的性质
连接B1F交于点Q,连接,
∵B1C1∥,∴
∵B11F,B11B,∴
∴∥,又 平面, 平面,∴∥平面.
方法三:平面平行的性质
过E作∥交1于G,
连接,则 ,ຫໍສະໝຸດ ∵B11F,B11B,∴ ,∴∥B1C1∥,
又∩,∩,
∴平面∥平面,而 平面,
∴∥平面.
17. 如图所示,在正方体—A1B1C1D1中,O为底面的中心,P是1的中点,设Q是1上的点,问:当点Q在什么位置时,平面D1∥平面?
14.如图所示,在正方体—A1B1C1D1中,E、F、G、H分别是、1、
C1D1、A1A的中点.求证:
(1)∥1;
(2)∥平面1D1D;
(3)平面∥平面B1D1H.
证明平行四边形的性质,平行线的传递性
(1)如图所示,取1的中点M,易证四边形1D1是平行四边形,∴1∥1.
又∵1∥,∴∥1.
(2)取的中点O,连接,D1O,则 ,
∴M是B1P的中点,
又∵N为A1B1中点,
∴∥A1P,又A1P 平面1C1, 平面1C1,∴∥平面1C1C.
方法三:平面平行的性质
设B1C1中点为Q,连接,,
∵M、Q是、B1C1的中点,
∴1,又1 平面1C1C, 平面1C1C,
∴∥平面1C1C.
∵N、Q是A1B1、B1C1的中点,
∴A1C1,又A1C1 平面1C1C, 平面1C1C,
6.能保证直线a与平面 平行的条件是
A. B.
C.
D. 且
7.如果直线a平行于平面 ,则
A.平面 内有且只有一直线与a平行B.平面 内无数条直线与a平行
C.平面 内不存在与a平行的直线D.平面 内的任意直线与直线a都平行
8.如果两直线a∥b,且a∥平面 ,则b与 的位置关系
A.相交B. C. D. 或
②若m∥ ,n∥ ,则m∥n
③若m ,n∥ ,则m∥n
④若m、n与 所成的角相等,则m∥n答案①②④
4.已知直线,平面 ,则以下三个命题:
①若a∥ ,则a∥ ;
②若a∥∥ ,则b∥ ;
③若a∥ ∥ ,则a∥b.
其中真命题的个数是.答案0
5.直线平面M,直线 ,那么是的条件.
A.充分而不必要B.必要而不充分C.充要D.不充分也不必要
证明方法一:平行四边形的性质
设A1C1中点为F,连接,,
∵N为A1B1中点,
∴∥B1C1,且 1C1,
又由棱柱性质知B1C1,
又M是的中点,
∴,
∴四边形为平行四边形.
∴∥,又 平面1C1, 平面1C1,∴∥平面1C1C.
方法二:三角形中位线的性质
连接交C1C于点P,连接A1P,
∵M是的中点,且∥B1C1,
与α内的一条直线不相交与α内的两条直线不相交
与α内的无数条直线不相交与α内的所有直线不相交
12.已知两条相交直线a、b,a∥平面α,则b与α的位置关系
∥α与α相交 α∥α或b与α相交
13.如图所示,已知S是正三角形所在平面外的一点,且,为△上的高,D、E、F分别是、、的中点,试判断与平面的位置关系,并给予证明.
解∥平面,证明如下:
方法一:三角形中位线连接交于点H,如图所示.
∵是△的中位线,
∴∥.
在△中,D是的中点,
且∥.
∴H为的中点.
∴是△的中位线,
∴∥.
又 平面, 平面,
∴∥平面.
方法二:平面平行的性质
∵为△的中位线,∴∥.
∵ 平面, 平面,
∴∥平面.
同理可证,∥平面,∩,
∴平面∥平面,又 平面,∴∥平面.
∴∥平面1C1C.
又∵∩,∴平面∥平面1C1C,
又 平面∴∥平面1C1C.
16.如图所示,正方体—A1B1C1D1中,侧面对角线1,1上分别有两点E,F,且B11F.
求证:∥平面.
方法一:平行四边形的性质
过E作∥1交于S,过F作∥1交于T,
连接,则 ,且
∵B11F,B11B,∴
∴ ,∴
又∵∥B1B∥,∴四边形为平行四边形.
(1)证明∵四边形为平行四边形,∴∥.
∵ 平面,∴∥平面.
∵ 平面,平面∩平面,
∴∥.∴∥平面.
同理可证,∥平面.
(2)解设(0<x<4),由于四边形为平行四边形,
∴ .则 1- .从而6- .∴四边形的周长2(6- )=12.又0<x<4,则有8<l<12,∴四边形周长的取值范围是(8,12).
19.如图所示,平面 ∥平面 ,点A∈ ,C∈ ,点B∈ ,D∈ ,点E,F分别在线段,上,且∶∶.
解面面平行的判定
当Q为1的中点时,
平面D1∥平面.
∵Q为1的中点,P为1的中点,∴∥.
∵P、O为1、的中点,∴D1B∥.
又∩,D1B∩,
D1B∥平面,∥平面,
∴平面D1∥平面.
直线与平面平行的性质定理
18.如图所示,四边形为空间四边形的一个截面,若截面为平行四边形.
(1)求证:∥平面,∥平面.
(2)若4,6,求四边形周长的取值范围.
直线、平面平行的判定及其性质
1.下列命题中,正确命题的是④.
①若直线l上有无数个点不在平面 内,则l∥ ;
②若直线l与平面 平行,则l与平面 内的任意一条直线都平行;
③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l与平面 平行,则l与平面 内的任意一条直线都没有公共点.
2.下列条件中,不能判断两个平面平行的是(填序号).
①一个平面内的一条直线平行于另一个平面
②一个平面内的两条直线平行于另一个平面
③一个平面内有无数条直线平行于另一个平面
④一个平面内任何一条直线都平行于另一个平面答案①②③
3.对于平面 和共面的直线m、n,下列命题中假命题是(填序号).
①若m⊥ ,m⊥n,则n∥
相关文档
最新文档