2019届高三数学(文)小题必刷卷(一)
河北衡水中学高2019届全国高三统一联考文数试题及答案

( )
5 ( 丈) 选 C. =8 . 2
3 2
2
=
5 ( 丈) 所以 . 2
π 与已知 a=1, 所以 A= . 所 2 a> b+ c, b+ c=2 矛 盾 , 3 2 2 2 以由余 弦 定 理 得 a2 =b + c -2 b c c o sA = ( b+ c) , , 解 得b 所 以 SәABC = 3 b c=4 3 b c=1 c=1 1 3 3 选 D. ˑ1ˑ = . 2 2 4
π 2 π 2 π 或A = . 若 A= , 则 a >b, 所以 a> c, 3 3 3
3 , 2
^ ^ a=ybx=7 0-9. 2ˑ2. 5=4 7. 因此 , 所求线性回归方程为^ =9 . 2 x+4 7. y
7 4 6-4ˑ7 0ˑ2. 5 所以^ b= =9. 2, 2 3 0-4ˑ2. 5
) , , 又 a= ( 所 以 5+k( k a㊃ b=0. -2, 1 b= ( 3, 2) -6+ ) 解得 k= 2 =0, 5 . 4 ʌ 解 析ɔ 不 同 年 龄 段 的 人 对 移 动 支 付 的 熟
2分
3 因为在 әA 所以 s i nA . B C 中s i nA ʂ0, 2
分层抽样 1 4. 知程度不同 , 因此应该按照年龄进行分层抽样 . 解析 ɔ 所 求 目 标 函 数 的 值 可 转 化 为 可 行 域 ( 包括 1 5. 5 ʌ ) 到 直 线l: 且最大 A( 2, 4 3 x +4 y +3=0 的 距 离 最 大 , | 3ˑ2+4ˑ4+3 | 值为 =5. 5 边界 ) 上的点到直线l: 显然点 3 x +4 y +3=0 的 距 离 ,
2025届黑龙江省大庆市高中名校高考语文必刷试卷含解析

2025届黑龙江省大庆市高中名校高考语文必刷试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
1、阅读下面的文字,完成下面小题。
材料一:“简单来说,区块链技术就是一个经过特殊加密、遵循少数服从多数原则、同时记录同一笔交易的大账本。
”树图区块链创始人龙凡这样解释,“信息生产部门负责记录存储信息,也就是‘区块’,而信息使用相关方之间通过‘链’式加密方式传递,任何人都可以进行记账,但是如果想要对账本中记录的某一信息进行修改则几乎不可能。
”一个比喻或许更加简明。
比如买家从卖家手里购买了一件商品,买卖双方就同时向全网“喊话”:我们完成了一笔交易。
然后区块链上的每一个节点就同步记录下这笔交易,一个个小账本构成了一个超大账本,同一笔交易在不同的小账本上保持一致,公开透明,无法篡改。
解决信任问题,因此成为了区块链技术的核心竞争力,它的能量正在于,以技术保证建立了一套去中心化的、公开透明的信任系统,从而让数字世界跟物理世界一样真实。
“说到底,区块链就是一种无需信任积累的信用建立范式,任何互不了解的个体通过一定的合约机制,不再需要一个中间方,就可以达成信用共识。
”国务院发展研究中心研究员李广乾接受《经济日报》独家采访时表示。
(摘编自陈静《区块链:推开信任世界新大门》)材料二:目前,腾讯志愿者旗下的“404寻亲广告”“广点通寻人”“电脑管家寻人”“小管寻人”“优图寻人”“微信小程序寻人”等公益寻人平台都将应用区块链技术。
实现信息共享、实时更新、多中心存储,提升公益寻人的协同效率。
传统公益寻人平台区块链共享后的公益寻人平台(摘编自彭琳《腾讯运用共享技术构建“公益寻人链”》)材料三:不少专家认为,尤其是在多方参与、链条长、信任缺失的场景里,区块链凭借其独有的信任建立机制,将成为未来发展数字经济、构建新型信任体系不可或缺的技术之一。
第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理1.(2020·呼和浩特开来中学高二期末(理))六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 2.(2020·广东省高二期末)在()62x +展开式中,二项式系数的最大值为m ,含4x 的系数为n ,则n m=( ) A .3 B .4 C .13 D .143.(2020·青铜峡市高级中学高二期末(理))设2220122(1)...n n n x x a a x a x a x ++=++++,则0a 等于( )A .1B .0C .3D .3n4.(2020·宁夏回族自治区宁夏大学附属中学高二月考(理))3个班分别从5个风景点中选择一处游览,不同的选法有( )A .243B .125C .128D .2645.(2020·洮南市第一中学高二月考(理))求346774C C -的值为( )A .0B .1C .360D .120 6.(2020·洮南市第一中学高二月考(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20C .40D .80 7.(2020·山东省高三其他)若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .258.(2020·北京高二期末)5(1)a +展开式中的第2项是( )A .35aB .310aC .45aD .410a 9.(2020·北京高二期末)已知有1B ,2B ,⋯,6B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是( )A.15B.18C.24D.3010.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()A.142B.121C.221D.1711.(2020·江苏省马坝高中高二期中)9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6D.1112.(2020·江西省南昌十中高三其他(理))在6212xx⎛⎫-⎪⎝⎭的展开式中,常数项为__________(用数字作答).13.(2020·北京高二期末)()621x-的展开式中2x的系数为__________(用具体数据作答). 14.(2020·福建省厦门一中高三其他(理))2020年初,湖北面临医务人员不足和医疗物资紧缺等诸多困难,厦门人民心系湖北,志愿者纷纷驰援,若将甲、乙、丙、丁4名医生志愿者分配到A,B 两家医院(每人去一家,每家医院至少安排1人),且甲医生不安排在A医院,则共有__________种分配方案.15.(2020·苏州市第四中学校高二期中)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取的礼物都满意,则选法有________种.(用数字作答)16.(2020·上海高二期末)请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.1.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为()A .13B .23C .310D .7102.(2020·江苏省丰县中学高二期中)将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为( )A .43B .34C .34AD .34C 3.(2020·黑龙江省哈师大附中高二期末(理))为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有( )种A .36B .48C .60D .164.(2020·浙江省衢州二中高三其他)将含有甲、乙、丙、丁等共8人的浙江援鄂医疗队平均分成两组安排到武汉的A 、B 两所医院,其中要求甲、乙、丙3人中至少有1人在A 医院,且甲、丁不在同一所医院,则满足要求的不同安排方法共有( )A .36种B .32种C .24种D .20种5.(2020·吉林省松原市实验高级中学高三其他(理))某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有( )A .150种B .120种C .240种D .540种6.(2020·广东省高二期末)广东省实施“3+1+2”的新高考改革模式,“3”指全国统一高考的语文、数学、外语,“1”指物理、历史2门中选择1门,“2”指思想政治、地理、化学、生物4门中选择2门. 已知甲选择物理,乙选择地理,则甲乙两人有( )不同的选择组合方案.A .12种B .18种C .36种D .48种7.(2020·广东省高二期末)东莞近三年连续被评为“新一线城市”,“东莞制造”也在加速转型升级步伐,现有4个项目由东莞市政府安排到2个地区进行建设,每个地区至少有一个项目,其中项目A 和B 不能安排在同一个地区,则不同的安排方式有( )A .4种B .8种C .12 种D .16种8.(2020·河北省衡水中学高三其他(理))在2020年初抗击新冠肺炎疫情期间,某医院派出了3名医生和包括甲、乙、丙在内的6名护士前往武汉参加救治工作.现从这9人中任意抽取1名医生、3名护士组成一个应急小组,则甲、乙、丙这3名护士至少选中2人的概率为( )A .13B .12C .49D .34 9.(2020·四川省绵阳南山中学高三其他(理))()()()2111n x x x ++++++的展开式的各项系数和是( )A .12n +B .121n ++C .121n +-D .122n +-10.(2020·山西省高三其他(理))5(2)(1)x x -+的展开式中,3x 的系数是( )A .32B .40C .32-D .40-11.(2020·黑龙江省大庆一中高三三模(理))已知()512345601234567121x x a x a a x a x a x a x a x a x x -⎛⎫+--=++-++++ ⎪⎝⎭,则4a =( ) A .21 B .42 C .35- D .210-12.(2020·汪清县汪清第六中学高二月考(理))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a + A .+4B .+3C .+2D .+113.(2020·汪清县汪清第六中学高二月考(文))不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .132814.(2020·江苏省高二期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则( )A .某学生从中选3门,共有30种选法B .课程“射”“御”排在不相邻两周,共有240种排法C .课程“礼”“书”“数”排在相邻三周,共有144种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法15.(2020·江苏省扬中高级中学高二期中)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为37AB .若物理和化学至少选一门,选法总数为1225C CC .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -16.(2020·三亚华侨学校高二开学考试)已知()n a b +的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10 17.(2020·山东省高二期中)若()2345501234512a a x a x a x a x a x x =+++-++,则下列结论中正确的是( )A .01a =B .123452a a a a a ++++=C .50123453a a a a a a -+-+-=D .0123451a a a a a a三、填空题18.(2020·呼和浩特开来中学高二期末(理))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________.19.(2020·全国高三其他(理))“赵爽弦图”是中国古代数学的文化瑰宝,由四个全等的直角三角形和一个小正方形组成(如图所示),简洁对称、和谐优美.某数学文化研究会以弦图为蓝本设计会徽,其图案是用红、黄2种颜色为弦图的5个区域着色(至少使用一种颜色),则一共可以绘制备选的会徽图案数为__________.20.(2020·山东省高三其他)2019年世界园艺博览会在北京延庆区举办,这届世界园艺博览会的核心建筑景观是“四馆一心”:中国馆、国际馆、植物馆、生活体验馆以及演艺中心.现将含甲在内的5名大学生志愿者安排到北京世界园艺博览会的4个场馆担任服务工作,要求每个场馆至少安排一人,且每人仅参加一个场馆的服务工作,其中甲不安排到国际馆去,则不同的安排方法种数为_________.21.(2020·江西省南昌二中高二期末(理))62341()x x x x x ⎛⎫++- ⎪⎝⎭的展开式中x 2项的系数为__________.22.(2020·南京市临江高级中学高二期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有______种(结果用数字表示).1.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种2.(2020•北京)在(√x−2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.103.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(2020•新课标Ⅰ)(x+y2x)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.205.(2019•全国)(2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24二.填空题(共7小题)7.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.8.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.9.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.10.(2020•新课标Ⅲ)(x2+2x)6的展开式中常数项是(用数字作答).11.(2020•天津)在(x+2x2)5的展开式中,x2的系数是.12.(2019•天津)(2x−18x3)8的展开式中的常数项为.13.(2019•浙江)在二项式(√2+x)9展开式中,常数项是,系数为有理数的项的个数是..。
2019届高三数学(文)解答必刷卷(三) 数列

解答必刷卷(三)数列考查范围:第28讲~第32讲题组一真题集训1.[2018·全国卷Ⅲ]等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和,若S m=63,求m.2.[2017·全国卷Ⅲ]设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;(2)求数列{a n}的前n项和.2n+13.[2018·天津卷]设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.题组二模拟强化4.[2018·重庆八中月考]已知数列{a n}满足a1=1,a n-a n-1=2n-1(n≥2,n∈N*).(1)求数列{a n}的通项公式;(2)设数列b n=log2(a n+1),求数列{1}的前n项和S n.b n·b n+15.[2018·长春二模] 已知数列{a n }的通项公式为a n =2n-11.(1)求证:数列{a n }是等差数列;(2)令b n =|a n |,求数列{b n }的前10项和S 10.6.[2018·吉林梅河口五中月考] 在数列{a n }中,a 1=1,a n+1={13a n +n,n 为奇数,a n -3n,n 为偶数.(1)证明:数列a 2n -32是等比数列; (2)若S n 是数列{a n }的前n 项和,求S 2n .7.[2018·江西九校二联] 已知数列{a n }为等差数列,且a 2+a 3=8,a 5=3a 2.(1)求数列{a n }的通项公式;(2)记b n =2a n a n+1,设{b n }的前n 项和为S n ,求使得S n >20172018的最小的正整数n.。
2019届全国通用版高考数学总复习专题八选考内容8

= + 4,
(θ 为参数),直线 l 的参数方程为
(t 为参数).
= 1-,
= sin,
(1)若 a=-1,求 C 与 l 的交点坐标;
(2)若 C 上的点到 l 距离的最大值为 17,求 a.
-11-
解(1)曲线 C
2 2
的普通方程为 9 +y =1.
当 cos α≠0 时,l 的直角坐标方程为 y=tan α·x+2-tan α,
当 cos α=0 时,l 的直角坐标方程为 x=1.
(2)将 l 的参数方程代入 C 的直角坐标方程,整理得关于 t 的方程
(1+3cos2α)t2+4(2cos α+sin α)t-8=0,
①
因为曲线 C 截直线 l 所得线段的中点(1,2)在 C 内,所以①有两个
当 a=-1 时,直线 l 的普通方程为 x+4y-3=0.
21
+ 4-3 = 0,
=
,
=
3,
25
由 2
解得
或
2
24
=
0
+
=
1,
=
.
9
从而 C 与 l 的交点坐标为(3,0),
25
21 24
- 25 , 25 .
(2)直线 l 的普通方程为 x+4y-a-4=0,
故
当
当
|3cos+4sin--4|
= cos,
将
代入 x2+y2-8x-10y+16=0 得
= sin
ρ2-8ρcos θ-10ρsin θ+16=0,
2019年高考文科数学百校联盟押题卷3套(含解析)

2019届高考全国统一试卷押题卷文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2A x x =>-,{}1B x x =≥,则A B =( )A .{}2x x >-B .{}21x x -<≤C .{}2x x ≤-D .{}1x x ≥【答案】A【解析】∵{}2A x x =>-,{}1B x x =≥,∴根据集合并集的定义可得{}2A B x x =>-, 故选A . 2.复数2iiz +=(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】∵()()22i i 2i 12i i i z +-+===--, ∴复数2iiz +=在复平面内对应的点的坐标为()1,2-,位于第四象限,故选D . 3.一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A .4B .8C .16D .24【答案】B【解析】由三视图知三棱锥的侧棱AO 与底OCB 垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,∴6OA =, ∴棱锥的体积11246832V =⨯⨯⨯⨯=,故选B .4.设实数x ,y 满足约束条件121010x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =+的最小值为( )A .1B .2C .3D .6【答案】A【解析】作出实数x ,y 满足约束条件121010x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩表示的平面区域(如图所示:阴影部分),由21010x y x y -+=⎧⎨+-=⎩得()0,1A ,由3z x y =+得3y x z =-+,平移3y x z =-+,直线3y x z =-+过点A 时,直线在y 轴上截距最小,∴min 3011z =⨯+=,故选A .5.执行如图所示的程序框图,则输出的n 值是( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .5B .7C .9D .11【答案】C【解析】执行程序框图,1n =时,11133S ==⨯;3n =时,11213355S =+=⨯⨯; 5n =时,11131335577S =++=⨯⨯⨯;7n =时,11114133557799S =+++=⨯⨯⨯⨯, 9n =,满足循环终止条件,退出循环,输出的n 值是9,故选C .6.设n S 为等差数列{}n a 的前n 项和,且5632a a a +=+,则7S =( ) A .28 B .14 C .7 D .2【答案】B【解析】∵563542a a a a a +=+=+,∴42a =,177477142a a S a +=⨯==,故选B . 7.下列判断正确的是( )A .“2x <-”是“()ln 30x +<”的充分不必要条件B .函数()f x =的最小值为2C .当α,β∈R 时,命题“若αβ=,则sin sin αβ=”的逆否命题为真命题D .命题“0x ∀>,201920190x +>”的否定是“00x ∃≤,020*******x +≤” 【答案】C【解析】当4x =-时,2x <-成立,()ln 30x +<不成立,∴A 不正确; 对()2f x =≥1=时等号成立,3,∴()2f x =>,的最小值不为2,∴B 不正确;由三角函数的性质得 “若αβ=,则sin sin αβ=”正确,故其逆否命题为真命题,∴C 正确; 命题“0x ∀>,201920190x +>”的否定是“00x ∃>,020*******x +≤”,∴D 不正确,故选C . 8.已知函数()32cos f x x x =+,若(a f =,()2b f =,()2log 7c f =,则a ,b ,c 的大小关系是( ) A .a b c << B .c a b << C .b a c << D .b c a <<【答案】D【解析】∵函数()32cos f x x x =+,∴导数函数()32sin f x x '=-,可得()32sin 0f x x '=->在R 上恒成立,∴()f x 在R 上为增函数,又∵222log 4log 73=<<<b c a <<,故选D .9.在各棱长均相等的直三棱柱111ABC A B C -中,已知M 是棱1BB 的中点,N 是棱AC 的中点, 则异面直线1A M 与NB 所成角的正切值为( ) AB .1CD【答案】C【解析】各棱长均相等的直三棱柱111ABC A B C -中,棱长为2, 以A 为原点,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()10,0,2A,)M,)B,()0,1,0N ,()13,1,1AM =-,()BN =,设异面直线1A M 与BN 所成角为θ,则11cos 5A M BNA M BNθ⋅===⋅,∴tan θ=.∴异面直线1A M 与BN C .10.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( ) A .49B .59C .23D .79【答案】C【解析】设齐王上等、中等、下等马分別为A ,B ,C ,田忌上等、中等、下等马分别为a ,b ,c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有(),A a ,(),A b ,(),A c ,(),B b ,(),B c ,(),C c ,共6种,∴齐王的马获胜的概率为6293P ==,故选C . 11.已知定义在R 上的函数()f x 的图像关于直线()0x a a =>对称,且当x a ≥时,()2e x a f x -=. 过点(),0P a 作曲线()y f x =错误!未找到引用源。
2019届河北省衡水中学高三一摸考试数学(文)试卷含解析

2019届河北省衡水中学高三一摸考试数学(文)试卷★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.已知集合2,3,,,则A. B. C. D.2.已知复数其中为虚数单位,则的共轭复数的虚部为A.1 B. C. D.3.已知曲线在点处的切线与直线垂直,则实数的值为A.5 B. C. D.4.如图的折线图是某农村小卖部2018年一月至五月份的营业额与支出数据,根据该折线图,下列说法正确的是A.该小卖部2018年前五个月中三月份的利润最高B.该小卖部2018年前五个月的利润一直呈增长趋势C.该小卖部2018年前五个月的利润的中位数为万元D.该小卖部2018年前五个月的总利润为万元5.如图是希腊著名数学家欧几里德在证明勾股定理时所绘制的一个图形,该图形由三个边长分别为的正方形和一个直角三角形围成现已知,,若从该图形中随机取一点,则该点取自其中的直角三角形区域的概率为A. B. C. D.6.已知椭圆的离心率为,且椭圆的长轴长与焦距之和为6,则椭圆的标准方程为A. B. C. D.7.在直三棱柱中,,且,点M是的中点,则异面直线与所成角的余弦值为A. B. C. D.8.设命题将函数的图象向右平移个单位得到函数的图象;命题若,则,则下列命题为真命题的是A. B. C. D.9.设函数,,若直线,分别是曲线与的对称轴,则A.2 B.0 C. D.10.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是A. B.2 C.4 D.611.已知双曲线的离心率为2,左,右焦点分别为,,点在双曲线上,若的周长为,则1 / 9A. B. C. D.12.对于函数,若存在,使,则称点是曲线的“优美点”.已知,则曲线的“优美点”个数为A.1 B.2 C.4 D.6二、解答题13.已知数列满足,且.求证:数列为等差数列;求数列的通项公式;记,求数列的前2018项和.14.在如图所示的多面体中,,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求三棱锥的体积.15.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:(1)据统计表明,与之间具有线性相关关系.(ⅰ)请用相关系数加以说明:(若,则可认为与有较强的线性相关关系(值精确到0.001))(ⅱ)经计算求得与之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.相关公式:相关系数,参考数据:.16.已知点是抛物线的焦点,若点在抛物线上,且求抛物线的方程;动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.17.已知函数,其中为自然对数的底数.讨论函数的极值;若,证明:当,时,.18.在平面直角坐标系中,圆的参数方程为,为参数,以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为求圆的普通方程和圆的直角坐标方程;若圆与圆相交于点,求弦的长.19.已知函数.求不等式的解集;若关于的方程存在实数解,求实数的取值范围.三、填空题20.已知向量,,若,则______.21.已知实数满足不等式组,则的最小值为______.22.在中,角所对的边分别为,且满足,若的面积为,则______.23.已知正方体的棱的中点为与交于点,平面过点,且与直线垂直,若,则平面截该正方体所得截面图形的面积为______.。
2019届高三数学(文)解答必刷卷(一) 函数与导数

解答必刷卷(一)函数与导数考查范围:第4讲~第15讲题组一真题集训1.[2018·全国卷Ⅰ]已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1时,f(x)≥0.e2.[2018·北京卷]设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(2)若f(x)在x=1处取得极小值,求a的取值范围.3.[2018·全国卷Ⅱ]已知函数f(x)=1x3-a(x2+x+1).3(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.题组二模拟强化4.[2018·湖南衡阳一模]已知函数f(x)=2+a ln x.x(1)若函数f(x)在(0,2)上单调递减,求实数a的取值范围;(2)设h(x)=f(x)+|(a-2)x|,x∈[1,+∞),求证:h(x)≥2.5.[2018·山西太原模拟]已知函数f(x)=e x sin x-cos x,g(x)=x cos x-√2e x,其中e是自然对数的底数.(1)判断函数f(x)在0,π2内零点的个数,并说明理由;(2)若∀x1∈0,π2,∃x2∈0,π2,f(x1)+g(x2)≥m,试求实数m的取值范围.6.[2018·广东六校三联]已知函数f(x)=x2-2x+1+a(ln x-x+1)(其中a∈R且a为常数).(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(2)在(1)的条件下,若方程f(x)+a+1=0在(0,2]上有且只有一个实根,求a的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小题必刷卷(一)集合与常用逻辑用语
考查范围:第1讲~第3讲
题组一刷真题
角度1集合
1.[2018·全国卷Ⅲ]已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()
A.{0}
B.{1}
C.{1,2}
D.{0,1,2}
2.[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()
A.9
B.8
C.5
D.4
3.[2017·全国卷Ⅰ]已知集合A={x|x<2},B={x|3-2x>0},则()
A.A∩B={x|x<3
2
} B.A∩B=⌀
C.A∪B={x|x<3
2
} D.A∪B=R
4.[2015·全国卷Ⅰ]已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为
()
A.5
B.4
C.3
D.2
5.[2018·天津卷]设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()
A.{x|0<x≤1}
B.{x|0<x<1}
C.{x|1≤x<2}
D.{x|0<x<2}
6.[2017·天津卷]设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()
A.{2}
B.{1,2,4}
C.{1,2,4,6}
D.{1,2,3,4,6}
7.[2015·陕西卷]设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()
A.[0,1]
B.(0,1]
C.[0,1)
D.(-∞,1]
8.[2013·江西卷]若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()
A.4
B.2
C.0
D.0或4
9.[2013·福建卷]若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()
A.2
B.3
C.4
D.16
角度2命题、充要条件
10.[2014·全国卷Ⅱ]函数f(x)在x=x0处导数存在.若p:f'(x0)=0,q:x=x0是f(x)的极值点,则()
A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件
11.[2018·天津卷]设x∈R,则“x-1
2<1
2
”是“x3<1”的()
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
12.[2015·山东卷]设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()
A.若方程x2+x-m=0有实根,则m>0
B.若方程x2+x-m=0有实根,则m≤0
C.若方程x2+x-m=0没有实根,则m>0
D.若方程x2+x-m=0没有实根,则m≤0
13.[2018·北京卷]设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
14.[2014·广东卷]在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的
()
A.充分必要条件
B.充分非必要条件
C.必要非充分条件
D.非充分非必要条件
角度3简单的逻辑联结词、全称量词与存在量词
15.[2014·湖南卷]设命题p:∀x∈R,x2+1>0,则 p为()
A.∃x0∈R,x02+1>0
B.∃x0∈R,x02+1≤0
C.∃x0∈R,x02+1<0
D.∀x∈R,x2+1≤0
16.[2017·山东卷]已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是
()
A.p∧q
B.p∧ q
C. p∧q
D. p∧ q
17.[2018·北京卷]设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()
A.对任意实数a,(2,1)∈A
B.对任意实数a,(2,1)∉A
C.当且仅当a<0时,(2,1)∉A
D.当且仅当a≤3
2
时,(2,1)∉A
题组二刷模拟
18.[2018·西南名校联考]函数y=e x的值域为M,函数y=ln x的值域为N,则M∩N=()
A.{y|y>1}
B.{y|y≥0}
C.{y|y>0}
D.{y|y∈R}
19.[2018·河北衡水联考]已知命题p:∀x∈R,(2-x)1
2<0,则命题 p为()
A.∃x0∈R,(2-x0)1
2>0 B.∀x∈R,(2-x)
1
2>0
C.∀x∈R,(2-x)1
2≥0 D.∃x0∈R,(2-x0)
1
2≥0
20.[2018·佛山二模]已知函数f(x)=3x-3-x,a,b∈R,则“a>b”是“f(a)>f(b)”的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件。