2012年数学强化班高等数学辅导讲义第五篇典型练习题参考答案

合集下载

2012年高考数学模拟题精编详解第5套试题

2012年高考数学模拟题精编详解第5套试题

2012新教材高考数学模拟题精编详解第五套试题说明:本套试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间:120分钟.第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.已知a >b >0,全集为R ,集合}2|{b a x b x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(F R) B .=M (E R)FC .F E M =D .FE M =2.已知实数a ,b 均不为零,βααααtan sin cos cos sin =-+b a b a ,且6π=-αβ,则a b等于( )A .3B .33 C .3- D .33-3.已知函数)(x f y =的图像关于点(-1,0)对称,且当∈x (0,+∞)时,xx f 1)(=,则当∈x (-∞,-2)时)(x f 的解析式为( ) A .x1-B .21+x C .21+-x D .x-214.已知θ是第三象限角,m =|cos |θ,且02cos2sin>+θθ,则2cos θ等于( )A .21m + B .21m +- C .21m - D .21m --5.(理)已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)(文)过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( )A .4pB .5pC .6pD .8p6.设a ,b ,c 是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立的是( )A .当c ⊥α时,若c ⊥β,则α∥βB .当α⊂b 时,若b ⊥β,则βα⊥C .当α⊂b ,且c 是a 在α内的射影时,若b ⊥c ,则a ⊥bD .当α⊂b ,且α⊄c 时,若c ∥α,则b ∥c 7.两个非零向量a ,b 互相垂直,给出下列各式: ①a ·b =0; ②a +b =a -b ; ③|a +b|=|a -b |; ④|a |2+|b |2=(a +b 2);⑤(a +b )·(a -b )=0. 其中正确的式子有( )A .2个B .3个C .4个D .5个 8.已知数列}{n a 的前n 项和为)15(21-=n n S n ,+∈N n ,现从前m 项:1a ,2a ,…,m a 中抽出一项(不是1a ,也不是m a ),余下各项的算术平均数为37,则抽出的是( )A .第6项B .第8项C .第12项D .第15项 9.已知双曲线12222=-by ax (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-yxC .1512322=-y x D .1125322=-y x10.在正三棱锥A -BCD 中,E ,F 分别是AB ,BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A -BCD 的体积等于( ) A .1212 B .242 C .123 D .24311.(理)某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A .38C 种B .38A 种C .39C 种D .311C 种 (文)某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有( )A .6种B .8种C .12种D .16种12.已知)(x f 是定义在R 上的偶函数,且对任意R ∈x ,都有)3()1(+=-x f x f ,当∈x [4,6]时,12)(+=x x f ,则函数)(x f 在区间[-2,0]上的反函数)(1x f -的值)19(1-f为( )A .15log 2B .3log 232-C .3log 52+D .3log 212--第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共16分,把答案填在题中的横线上 13.(理)已知复数i z -=31,122-=i z ,则复数421z z i -的虚部等于________.(文)从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为________.14.若实数a ,b 均不为零,且)0(12>=x xxba,则9)2(b a x x -展开式中的常数项等于________.15.代号为“狂飙”的台风于某日晚8点在距港口的A 码头南偏东60°的400千米的海面上形成,预计台风中心将以40千米/时的速度向正北方向移动,离台风中心350千米的范围都会受到台风影响,则A 码头从受到台风影响到影响结束,将持续多少小时________. 16.给出下列4个命题:①函数m ax x x x f ++=||)(是奇函数的充要条件是m =0: ②若函数)1lg()(+=ax x f 的定义域是}1|{<x x ,则1-<a ;③若2log 2log b a <,则1lim=+-∞→nn n nn ba b a (其中+∈N n );④圆:0541022=-+-+y x y x 上任意点M 关于直线25=--a y ax 的对称点,M '也在该圆上.填上所有正确命题的序号是________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知二次函数)(x f 对任意R ∈x ,都有)1()1(x f x f +=-成立,设向量=a (sin x ,2),=b (2sin x ,21),=c (cos2x ,1),=d (1,2),当∈x [0,π]时,求不等式f (b a ⋅)>f (d c ⋅)的解集.18.(12分)(理)甲、乙队进行篮球总决赛,比赛规则为:七场四胜制,即甲或乙队,谁先累计获胜四场比赛时,该队就是总决赛的冠军,若在每场比赛中,甲队获胜的概率均为0.6,每场比赛必须分出胜负,且每场比赛的胜或负不影响下一场比赛的胜或负. (1)求甲队在第五场比赛后获得冠军的概率;(2)求甲队获得冠军的概率;(文)有甲、乙两只口袋,甲袋装有4个白球2个黑球,乙袋装有3个白球和4个黑球,若从甲、乙两袋中各任取出两球后并交换放入袋中. (1)求甲袋内恰好有2个白球的概率;(2)求甲袋内恰好有4个白球的概率;注意:考生在(19甲)、(19乙)两题中选一题作答,如果两题都答,只以(19甲)计分.19甲.(12分)如图,正三棱锥P -ABC ,PA =4,AB =2,D 为BC 中点,点E 在AP 上,满足AE =3EP .(1)建立适当坐标系,写出A 、B 、D 、E 四点的坐标;(2)求异面直线AD 与BE 所成的角.19乙.(12分)如图,长方体1111D C B A ABCD -中,a AA AB ==1,a BC 2=,M是AD 中点,N 是11C B 中点.(1)求证:1A 、M 、C 、N 四点共面;(2)求证:11MCNA BD ⊥;(3)求证:平面MCN A 1⊥平面11BD A ;(4)求B A 1与平面MCN A 1所成的角.20.(12分)已知函数x ax x x f 3)(3--=.(1)若)(x f 在∈x [1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是)(x f 的极值点,求)(x f 在∈x [1,a ]上的最小值和最大值.21.(12分)已知椭圆方程为1822=+yx ,射线x y 22=(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ). (1)求证直线AB 的斜率为定值;(2)求△AMB 面积的最大值.22.(14分)已知等差数列}{n a 的首项为a ,公差为b ;等比数列}{n b 的首项为b ,公比为a ,其中a ,+∈N b ,且32211a b a b a <<<<. (1)求a 的值;(2)若对于任意+∈N n ,总存在+∈N m ,使n m b a =+3,求b 的值;(3)在(2)中,记}{n c 是所有}{n a 中满足n m b a =+3, +∈N m 的项从小到大依次组成的数列,又记n S 为}{n c 的前n 项和,n T }{n a 的前n 项和,求证:n S ≥n T )(+∈N n .参考答案1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 10.B 11.(理)A (文)C 12.B 13.(理)54 (文)25,60,1514.-672 15.2.5小时 16.①,④17.解析:设f (x )的二次项系数为m ,其图象上两点为(1-x ,1y )、B (1+x ,2y )因为12)1()1(=++-x x ,)1()1(x f x f +=-,所以21y y =,由x 的任意性得f (x )的图象关于直线x =1对称,若m >0,则x ≥1时,f (x )是增函数,若m <0,则x ≥1时,f (x )是减函数.∵ x (sin =⋅b a ,x sin 2()2⋅,11sin2)212≥+=x ,x 2(cos =⋅d c ,1()1⋅,)2122cos ≥+=x ,∴ 当0>m 时,)12(cos )1sin 2()()(2+>+⇔>⋅⋅x f x f f f d c b a 1sin 22+⇔x02cos 222cos 12cos 122cos <⇔+>+-⇔+>x x x x 02cos <⇔x 2ππ2+⇔k23ππ22+<<k x ,Z ∈k .∵ π0≤≤x , ∴ 4π34π<<x .当0<m 时,同理可得4π0<≤x 或π4π3≤<x .综上:)()(d c b a ⋅⋅>f f 的解集是当0>m 时,为}4π34π|{<<x x ;当0<m 时,为4π0|{<≤x x ,或}π4π3≤<x .18.解析:(理)(1)设甲队在第五场比赛后获得冠军为事件M ,则第五场比赛甲队获胜,前四场比赛甲队获胜三场依题意得20736.04.06.0)(434=⨯⨯=C M P .(2)设甲队获得冠军为事件E ,则E 包含第四、第五、第六、第七场获得冠军四种情况,且它们被彼此互斥.∴ 710208.04.06.04.06.04.06.06.0)(343624354344=⨯⨯+⨯⨯+⨯⨯+=C C C E P .(文)设甲袋内恰好有4个白球为事件B ,则B 包含三种情况.①甲袋中取2个白球,且乙袋中取2个白球,②甲袋中取1个白球,1个黑球,且乙袋中取1个白球,1个黑球,③甲、乙两袋中各取2个黑球. ∴ =)(B P 2127262422231413121423248=++⋅⋅⋅⋅⋅⋅⋅C C C C C C C C C C C .19.解析:(甲)(1)建立如图坐标系:O 为△ABC 的重心,直线OP 为z 轴,AD 为y 轴,x 轴平行于CB , 得A (0,332-,0)、B (1,33,0)、D (0,33,0)、E (0,63-,233).(2)0(=AD ,3,1()0-=BE ,23-,)233,设AD 与BE 所成的角为θ,则203010323||cos =⨯==⋅θ. ∴ 230arccos=θ.(乙)(1)取11D A 中点E ,连结ME 、E C 1, ∴ NA11EC ,MCEC . ∴ N A1MC . ∴ 1A ,M ,C ,N 四点共面.(2)连结BD ,则BD 是1BD 在平面ABCD 内的射影.∵21==BCCD CDMD , ∴ Rt △CDM ~Rt △BCD ,∠DCM =∠CBD .∴ ∠CBD +∠BCM =90°. ∴ MC ⊥BD . ∴ MC BD ⊥1. (3)连结C A 1,由11BCD A 是正方形,知1BD ⊥C A 1. ∵ 1BD ⊥MC , ∴ 1BD ⊥平面MCN A 1. ∴ 平面MCN A 1⊥平面11BD A .(4)∠C BA 1是1A 与平面MC A 1所成的角且等于45°. 20.解析:(1)0323)(2>--='ax x x f . ∵ x ≥1. ∴ )1(23x x a -<,当x ≥1时,)1(23x x -是增函数,其最小值为0)11(23=-.∴ a <0(a =0时也符合题意). ∴ a ≤0. (2)0)3(='f ,即27-6a -3=0, ∴ a =4. ∴ x x x x f 34)(23--=有极大值点31-=x ,极小值点3=x .此时f (x )在31[-∈x ,]3上时减函数,在3[∈x ,+)∞上是增函数.∴ f (x )在1[∈x ,]a 上的最小值是18)3(-=f ,最大值是6)1(-=f ,(因12)4()(-==f a f ). 21.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线MB 方程为)22(2--=-x k y .分别与椭圆方程联立,可解出2284222-+-=k k k x A ,2284222-++=k k k x B .∴ 22)(=--=--BA B A BA B A x x x x k x x y y . ∴ 22=AB k (定值).(2)设直线AB 方程为m x y +=22,与1822=+yx 联立,消去y 得mx x 24162+0)8(2=-+m .由∆>0得-4<m <4,且m ≠0,点M 到AB 的距离为3||m d =.设△AMB 的面积为S . ∴ 2)216(321)16(321||41222222=≤-==⋅m m dAB S .当22±=m 时,得2max =S .22.解析:(1)∵ b a ab b a a 2+<<+<,a ,+∈N b , ∴ ⎩⎨⎧+<<+.2,b a ab ab b a ∴ ⎪⎪⎩⎪⎪⎨⎧-<->.121b b a b b a , ∴⎪⎪⎩⎪⎪⎨⎧-+<-+>.122111b a b a , ∴ ⎩⎨⎧<>41a a ,.∴ a =2或a =3(a =3时不合题意,舍去). ∴a =2.(2)b m a m )1(2-+=,12-⋅=n n b b ,由n m b a =+3可得12)1(5-⋅=-+n b b m . ∴ 5)12(1=+--m b n . ∴ b =5(3)由(2)知35-=n a n ,125-⋅=n n b , ∴ 32531-=-=-⋅n n m b a .∴ 3251-=-⋅n n C . ∴ n S nn 3)12(5--=,)15(21-=n n T n .∵ 211==T S ,922==T S . 当n ≥3时, ]121212[52---=-n n T S nn n ]12121)11[(52---+=n n n]12121)1[52321---++++=n n C C C n n n0]121212)1(1[52=----++>n n n n n .∴ n n T S >. 综上得 n n T S ≥)(+∈N n .。

高教线性代数第五章二次型——课后习题答案

高教线性代数第五章二次型——课后习题答案

第五章 二次型1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。

1)323121224x x x x x x ++-;2)23322221214422x x x x x x x ++++; 3)32312122216223x x x x x x x x -+--;4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++;6)4342324131212422212222442x x x x x x x x x x x x x x x ++++++++; 7)43322124232221222x x x x x x x x x x ++++++.解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x (1)则()312221321444,,y y y y x x x f ++-=2223233121444y y y y y y ++-+-= ()222333142y y y y ++--=, 再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+=33223112121zy z y z z y (2)则原二次型的标准形为()2322213214,,z z z x x x f ++-=,最后将(2)代入(1),可得非退化线性替换为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=++=333212321121212121z x z z z x z z z x (3)于是相应的替换矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=100211212102110001021021100011011T ,且有⎪⎪⎪⎭⎫ ⎝⎛-='100040001AT T 。

2)已知()=321,,x x x f 23322221214422x x x x x x x ++++, 由配方法可得()()()233222222121321442,,x x x x x x x x x x x f +++++= ()()2322212x x x x +++=,于是可令⎪⎩⎪⎨⎧=+=+=333222112xy x x y x x y ,则原二次型的标准形为()2221321,,y y x x x f +=, 且非退化线性替换为⎪⎩⎪⎨⎧=-=+-=33322321122yx y y x y y y x ,相应的替换矩阵为⎪⎪⎪⎭⎫⎝⎛--=100210211T ,且有⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--='000010001100210211420221011122011001AT T 。

最新中国人民大学出版社(第四版)高等数学一第5章课后习题详解

最新中国人民大学出版社(第四版)高等数学一第5章课后习题详解

高等数学一第5章课后习题详解课后习题全解习题5-1★★1.利用定积分的定义计算由抛物线21y x =+,直线x a =,x b =()b a >及横轴所围成的图形的面积知识点:定积分的定义及几何意义 思路:根据求定积分的三步骤做 解:将[],a b 分成n 等分,取(1,2,)i i n ξ=为第i 个小区间1[(),()]i ia b a a b a n n-+-+-的右端点,则,i b a x n λ-=∆=,i b aa i nξ-=+ 显然, 0,n λ→⇔→∞于是根据定积分的几何意义,该图形面积lim ()nbi i ai A ydx y x λξ→===∆∑⎰ 21lim [()1]nn i b a b aa in n→∞=--=++∑ 22221()lim [12]n n i b a b a b a a ai i n n n→∞=---=+++∑222211()lim [(1)2]nnn i i b a b a b a n a a i in n n →∞==---=+++∑∑22232()(1)()1lim{()[1(1)(21)]}26n a b a n n b a b a a n n n n n →∞-+-=-+++++221()11()lim[1()(1)(1)(2)]6n b a b a a a b a n n n→∞-=-++-++++ 222()()[1]3b a b a a ab a -=-++-+33().3b a b a -=+- ★★2.利用定积分的定义计算下列积分:知识点:定积分的定义 思路:根据求定积分的三步骤做(1)baxdx ⎰()a b <.解:易见函数[](),f x x C a b =∈,从而可积,将[],a b 分成n 等分,则,i b ax nλ-=∆=于是0,n λ→⇔→∞;取(1,2,)i i n ξ=为第i 个小区间的右端点,则,0,1,2,,1,ib aa ii n nξ-=+=-所以110lim ()lim ()n n bi i an i i b a b axdx f x a in nλξ--→→∞==--=∆=+∑∑⎰1()lim{[(0121)]}n b ab a na n n n→∞-=-+++++-2(1)()lim[]2n b a n n b a a n →∞--=-+1()lim[(1)]2n b a b a a n→∞-=-+-221()()().22b a b a a b a -=-+=-(2)1ln exdx ⎰解:用分点(0,1,,)i ni x e i n ==划分区间[]1,e :11,1,2,,i i nni i i x x x e e i n --∆=-=-=, 取i ξ是区间右端点,则 ,()ln()ln ,i i nnii i i i x e f e nξξξ=====作和,并取极限得:111ln lim ()lim ()i i nnenn i i n n i i i xdx f x e e nξ-→∞→∞===∆=-∑∑⎰111111lim{[()]}i i i nn n n nn i i i i e e e n n n --→∞==-=-+∑∑11111(1)lim lim (1)i nn n n i n e e e e n n e -→∞→∞=-=-=--∑111(1)lim ()1n n e e n e →∞=--- 记()1xx g x e =-,则当0x →时,()g x 是0型的,由洛必达法则, 有 001lim lim 11x xx x x e e →→==---从而,当n →+∞时,有111lim 11n nne →+∞=--,故1ln (1) 1.exdx e e =+-=⎰★3.利用定积分的几何意义,说明下列等式:(1)121xdx =⎰.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积解:等式左边为直线2y x =与x 轴和1x =三条直线所围成的面积,该面积等于11212==等式右边. (2)sin 0xdx ππ-=⎰解: 等式左边为正弦曲线sin y x =与x 轴在x π=及x π=-之间所围成的面积,其左右两边面积互为相反数. 则sin ()0xdx A A ππ-=-+==⎰等式右边★★4.用定积分的几何意义求a⎰(0)b >的值.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积 解:=是以2a b +为圆心,2b a-为半径的上半圆,其面积为:2221()()2228b a b a S r πππ--===由定积分的几何意义知:2().8ab a π-=⎰★★★5.试将和式的极限112lim p p pp n n n +→∞+++(0)p >表示成定积分.知识点:定积分的定义思路:根据定积分的定义推导过程可知,求和的极限公式可表示为定积分解: 112112limlim [()()()]p p p p pp p n n n n n n n nn +→∞→∞+++=+++11lim ()n pn i i n n→∞==∑设()p f x x =,则用定义求解1()f x dx ⎰为:①、等分[0,1]为n 个小区间:11[,], 1,2,, i i ii n x n nn-=∆=②、求和:取区间1[,]i i n n -上的右端点为i ξ,即i in ξ=,作和:111()n ni i i i i f x nn ξ==∆=⨯∑∑③、求极限:011111lim()lim ()lim ()nnn p pi i n n i i i i i f x nn n n λξ→→∞→∞===∆=⨯=∑∑∑∴1101121lim lim ()p p p n pp p n n i n i x dx n n n+→∞→∞=+++==∑⎰ ★★★6.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下:试用梯形公式求此河横截面面积的近似值.知识点:定积分的几何意义思路:由定积分定义知:求定积分(曲边梯形面积)的第二步:用小矩形面积近似代替小曲边梯形面积,即1()()ii x i i x f x f x dx ξ-∆≈⎰,若用小梯形面积近似代替小曲边梯形面积则为:111[()()]()2i i x i i i x f x f x x f x dx --+∆≈⎰。

23高数切片讲义第5章课后习题与答案

23高数切片讲义第5章课后习题与答案

第五章 二重积分【基础练习题44】1. 根据二重积分的性质,比较下列积分的大小 (1)2d Dx y 与 3d Dx y ,其中积分区域D 是由x 轴、y 轴与直线1x y 所围成; (2)2d Dx y 与 3d Dx y ,其中积分区域D 是由圆周 22212x y 所围成; (3)ln d Dx y 与 2ln d Dx y,其中积分区域D 是三角形闭区域,三个顶点分别为 1,0,1,1,2,0; (4)ln d Dx y 与 2ln d Dx y,其中 ,35,01.D x y x y2.设1D I,222cos()d DI x y ,2223cos()d DI x y, 其中22(,)1D x y x y ,则 ( )(A )123I I I . (B )321I I I . (C )312I I I .(D )213I I I .【基础练习题44解析】1.【解析】(1)在积分区域D 上,01x y ,故有32()()x y x y . 故32d d DDx y x y . (2)由于积分区域D 位于半平面(,)1x y x y 内,故在D 上有23()()x y x y . 从而23d d DDx y x y . (3)由于积分区域D 位于条形区域(,)12x y x y 内,故知区域D 上的点满足0ln()1x y ,从而有2[ln()]ln()x y x y . 因此高等数学切片课后习题23高数切片讲义第3章课后习题与答案2ln d ln d DDx y x y. (4)由于积分区域D 位于半平面(,)e x y x y 内,故在D 上有ln()1x y ,从而2[ln()]ln()x y x y. 因此 2ln d ln d DDx y x y. 2.【答案】A.【解析】当221x y 时,有222220()1x y x y又cos x 在 0,1上为减函数,故有22222cos()cos x y x y且等号仅在部分点成立,由二重积分的比较性质知,321.I I I【基础练习题45】1. 画出积分区域,并计算下列二重积分:(1)D ,其中D 是由两条抛物线y 2y x 所围成的闭区域;(2)2d Dxy,其中D 是由圆周224x y 及y 轴所围成的右半闭区域; (3)e d x y D,其中(,) 1D x y x y ; (4)22()d D xy x ,其中D 是由直线2,y y x 及2y x 所围成的闭区域.2. 改换下列二次积分的积分次序: (1)10d (,)d yy f x y x;(2)2220d (,)d yy y f x y x;(3)10d (,)d y f x y x ; (4)212d (,)d x x f x y y ;(5)11d (,)d xx f x y y;(6)sin 0sin2d (,)d xxx f x y y.【基础练习题45解析】1.【解析】(1)D 可用不等式表示为2x y 01x (如图1).于是,237111424000226d d ()d .3355Dx x x y x y x x x x(2)D 可用不等式表示为0x 22y (如图2).故,22222222164d d d (4)d .215Dxy y y x x y y y图1 图2 (3)如图3,12D D D ,其中12(,)11,10,(,) 11,01.D x y x y x x D x y x y x x因此,12e d e d e d x y x y x yDD D 0111111e d e d e d e d x x x y x y x x x y x y1211211(ee )d (e e )d x x x x1e e . (4):,022yD x y y (如图4),故 2222202()d d ()d yy Dx y x y x y x x32222d 32yy x x y x y232019313d 2486y y y.图3 图4 2.【解析】(1)所给二次积分等于二重积分(,)d Df x y ,其中 (,)0,01D x y x y y .D 可改写为 (,)1,01x y x y x (如图5),于是 原式110d (,)d xx f x y y.(2)所给二次积分等于二重积分(,)d Df x y ,其中 2(,)2 ,D x y yx y02y .又D可表示为(,)42x x y y x(如图6),因此原式42d (,)d x x f x y y.图5 图6 (3)所给二次积分等于二重积分(,)d Df x y ,其中(,)1D x y x y.又D可表示为(,)011x y y x (如图7), 因此原式11d (,)d x f x y y.(4)所给二次积分等于二重积分(,)d Df x y,其中(,)2D x y x y12x . 又D可表示为(,)211x y y x y (如图8),故原式1102d (,)d yy f x y x.图7 图8 (5)111101d (,)d d (,)d d (,)d .xyxx f x y y x f x y y y f x y x【注】原二次积分11d (,)d xx f x y y中对y 的积分上限小于下限,不符合累次积分转化规则,需要线添加负号互换上下限. (6)如图9,将积分区域D 表示为12D D ,其中12(,)arcsin arcsin ,01,(,)2arcsin ,10.D x y y x y y D x y y x y于是,原式1arcsin 00arcsin 12arcsin d (,)d d (,)d yyyy f x y x y f x y x.图9【基础练习题46】1. 把下列积分化为极坐标形式,并计算积分值: (1)222d )d ax x y y; (2)0d a x y;(3)211222d ()d x xx x y y; (4)220d )d ay x y x .2. 选用适当的坐标计算下列各题: (1)22d Dx y,其中D 是由直线2,x y x 及曲线1xy 所围成的闭区域; (2)D,其中D 是由圆周221x y 及坐标轴所围成的第一象限内的闭区域; (3)22()d Dx y ,其中D 是由直线,,,3 (0)y x y x a y a y a a 所围成的闭区域.3. 作适当变换,计算下列二重积分: (1)22sin d d Dx y x y x y ,其中D 是平行四边形闭区域,它的四个顶点是π,0,2π,π,π,2π,0,π;(2)22d d Dx y x y ,其中D 是由两条双曲线1xy 和2xy 与两条直线y x 和4y x 所围成的在第一象限内的闭区域.【基础练习题46解析】1.【解析】(1)积分区域D 如图1所示. 在极坐标系中,(,)02cos ,02D a,于是,2cos 42cos 2220444420d d d 43134cos d 4.4224a a aa a原式(2)如图2,在极坐标系中,(,) 0sec ,04D a.图1 图2 于是,原式3sec 3440d d sec d 3a a340sec tan ln(sec tan )6a31)]6a . (3)积分区域D 如图3所示. 在极坐标系中,抛物线2y x 的方程是22sin cos ,即tan sec ;射线 (0)y x x 的方程是4,故 (,)0tan sec , 04D.图3于是tan sec44401d d tan sec d sec 1.原式(4)积分区域(,)0(,)0, 02D x y x y a a,故42420d d 248aa a原式.2.【解析】(1)D 如图4所示,根据D 的形状,选用直角坐标较宜,1(,) ,12D x y y x x x,故22223122119d d d ()d 4x x Dx x x y x x x y y.图4(2)根据积分区域D 的形状和被积函数的特点,选用极坐标为宜,(,)01,02D,故200d d d d D原式23111000d 221124011)2241201arcsin 22(2)8. (3)D 如图5所示. 选用直角坐标为宜. 又根据D 的边界曲线的情况,宜采用先对x 、后对y 的积分次序. 于是3332222224()d d ()d 2d 14.3a yaa y aaDa xy y x y x ay a y y a图53.【解析】(1)令,u x y v x y ,则,22u v v ux y. 在这变换下,D 的边界x y ,x y ,x y ,3x y 依次与u ,v ,u ,3v对应. 后者构成uOv 平面上D 对应的闭区域D 的边界,于是(,),3D u v u v (如图6).图6又 11(,)12211(,)222x y J u v , 因此2222223341()sin ()d d sin d d 21d sin d 21sin 2.23243D D x y x y x y u v u v u u v v u v v(2)令,yu xy v x,则x y . 在这变换下,D 的边界1xy ,y x , 2,4xy y x 依次与1,1,2,4u v u v 对应,后者构成uOv 平面上与D对应的闭区域D 的边界. 于是(,),4D u v u v (如图7).图7又(,)1111(,)42x y J u v v v v. 因此242222111117d d d d d d ln 2.223DD x y x y u u v u u v v v【基础练习题47】1.设222222322111d ,cos sin d ,e 1d ,xy x y x y x y M x y N x y P则必有( ) (A ) M N P . (B ) N M P . (C ) M N P . (D ) N P M .2. 设区域D 为222x y R ,则22d d Dx x y a .3. 设22(,)1D x y x y ,则2()d d Dx y x y . 4. 已知22,2D x y xy y ,计算二重积分32d d Dx y x y .5. 已知 ,,,1D x y y x y x x,计算二重积分esin d d xDy x y .6. 已知区域D 为圆224x y 在第一象限所围的部分,计算二重积分d d Dxx y x y .7. 求二重积分 22121e d d x y Dy x x y的值,其中D 是由直线,1y x y ,1x 围成的平面区域.8. 设区域22(,)1,0D x y x y x ,计算二重积分221d d 1Dxyx y x y . 【基础练习题47解析】1.【答案】(B ).【解析】因为 3322333x y x x y xy y ,函数3223,3,3,x x y xy y 分别是关于,,,x y x y 的奇函数,又积分区域1x y 关于x 轴、y 轴对称,故31d 0.x y M x y又22cos sin x y 在积分区域221x y 上大于0,且不恒为0;22e1x y 在积分区域221x y 上小于0,由二重积分的比较性质知2222222211cos sin d 0,e1d 0.x y x y x y N x y P故 N M P ,(B )正确.2.【答案】42π4R a .【解析】 【法1】直接利用极坐标计算2422322201d d cos d d 4RDx R x y r r a a a.【法2】由于积分区域D 关于y x 对称知222222222π222220044221d d d d d d 211d d d d 221π2π.244D DD R D x y x y x y x y x y a a a a x y x y r r r a a R R a a3.【答案】π4. 【解析】22()d d d d d d DDDx y x y x x y y x y ,因为积分区域D 关于x 轴对称,被积函数y 为关于y 的奇函数,故d d 0.Dy x y又积分区域D 关于y x 对称,故由轮换对称性知,222222π12001()d d d d d d d d 21πd d .24DDDDx y x y x x y y x y x y x y r r r4.【解析】因为积分区域D 关于y 轴对称,被积函数32x y 为关于x 的奇函数,故32d d 0.Dx y x y 5.【解析】因为积分区域D 关于x 轴对称,被积函数e sin xy 为关于y 的奇函数,故e sin d d 0.x Dy x y 6.【解析】因为积分区域D 关于y x 对称,故由轮换对称性知,21d d d d d d 2111ππd d 2.22242D DD D Dx y x y x y x y x y x y x y x y x y x y S7.【解析】如图,积分区域D 可拆分为12,D D ,其中1D 关于y 轴对称,2D 关于x 轴对称.又2121222211221e d d d d e d d ,x y x D D y D D D y x x y y x y xy x y 积分函数y 为关于y 的奇函数,关于x 的偶函数,而积分函数2212ex y xy 为关于,x y 的奇函数,由对称性知,12210210211e d d d d d d 22d .3y x y y D D y x x y y x y y y x y y8.【解析】因为22222211d d d d d d ,111D D Dxy xyx y x y x y x y x y x y 又积分区域D 关于x 轴对称,由对称性知,22d d 0,1Dxyx y x y 故 π12π202211220022221d d 11d 1πln22πln 1π.12211d d d d 11D Dr r xy x y x y x r y x y r r r。

南开大学出版社高数练习册第五章答案.doc

南开大学出版社高数练习册第五章答案.doc

第五章定积分第一节定积分的概念及性质一、选择题1、A2、D二、填空题1、负2、[*/3、b-a三、1、1 2、0 -4四、1、z 2> < 3> < 4、>五、解:定积分处理问题的四个步骤为:1、分割:将时间区间[儿乙]任意分成n个小区间M,商= l,2,...,n),每个小区间所表示的时间为;各区间物体运动的路程记为△SiQ = 1,2,・•。

2、近似:在每个小区间上以匀速直线运动的路程近似代替变速直线运动的路程。

在每个小区间"E ]上任取一时刻夺,以速度V⑥近似代替时间段 ",讪上各个时刻的速度,则有△仰=1,2,・••/)・3、求和:将所有这些近似值求和,得到总路程S的近似值,即S = £△$"£・/=! /=14、取极限:对时间间隔四乙]分割越细,误差越小。

为此记A = max{An),\<i<nn当人TO时和式的极限便是所求路程S,即S = lim£v ㈤山二* 1=1 /=!那么在一秒内经过的路程为S=、20=l ・六、解:设f(x) = /二则/⑴=/站(2尤-1) 当JCG(O,-)时,f (x)<0.2 Ji当xe (— ,2)时,f (x) > 0.i _i・•・、心的极小值为/'(5)=厂;2・.・ f(0) = l,f(2) = e~:.| < J / dx < | /dx即2e^< f e x X dx<2e2••-2° < [ / dx <-2e4七、证明:"⑴二土在[1,4]±为减函数.・.sA⑴第二节微积分基本公式一、填空题1、C2、&「23、2xsin V44、05、「Vsin A入r i2 r »小+x 小+x 二、求定积分1、^Vx(l + Vx)Jx = (&2 +:Q L = 45:。

2012考研数学:高数讲义重点题型解答(一)

2012考研数学:高数讲义重点题型解答(一)

f ( x )dx < 0 ,即 an 单调减少
3 n 2 n −1
an = f (1) − ∫ f ( x )dx + f (2 ) − ∫ f ( x)dx + " + f (n − 1) − ∫
1
f ( x )dx + f (n )
= ∑ ⎡ f (k ) − ∫ ⎢ k k =1 ⎣
n −1
1
2. lim (a n + b n + c n ) n ( a, b, c非负) ;
解:因为 f ( x ) 在 [0,+∞ ) 上单调减少、非负、连续, 故 f (k ) =

k
k −1
f (k )dx < ∫
k
k −1
f (x )dx < ∫
k
k −1
f (k − 1)dx = f (k − 1) , k ≥ 1
则 an +1 − an = f (n + 1) −
2

n +1
n
xn − xn −1 1 − xn + 1 − xn −1
且 x2 = 0 < x1 ,故 x2 < x1 , x3 < x2 " xn < xn −1 ,即 xn 单调减少; x1 ≥ −2 ,不妨假设 xn ≥ −2 则 xn +1 ≥ − 1 + 2 ,即 xn 有下届,单调有界数列必在极限,故极限存在。 不妨假设 lim xn = A ,则 A + 1 + A = 0 ,解得 A =
( )
sin x sin 2 x sin 3 x x x 2 x3 3 同理 1 + sin x = 1 + − + + o sin x = 1 + − − + o x3 2 2 16 2 2 48

2012年高一模块5修习考试数学试题参考答案

2012年高一模块5修习考试数学试题参考答案一、选择题 BDCAB DCCAC二、填空题11. 2 13. 45° 14. [)2,+∞ 15. ()()126n n n ++三、16.解:∵B bsin =C csin ,∴sin C =b Bc sin ⋅=360sin 1︒⋅=21. ……………6分∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°. …………………12分17.(1)若函数的定义域为R ,即2210ax ax ++>的解集为R .当a =0时,不等式转化为1>0,显然对x ∈R ,不等式2210ax ax ++>都成立;当a ≠0时,不等式的解集为R ,则有20,440.a a a >⎧⎪⎨∆=-<⎪⎩解得0<a <1.综上可得0≤a <1时,函数的定义域为R .…………………6分(2)因为x <0,所以-x >0,由基本不等式得:99()(4)(4)())()212f x x x x x x -=-+=-+--=≥,所以()12f x -≤.当且仅当94x x -=-即32x =-时,9()4f x x x =+取得最大值-12.………12分18. 解: (Ⅰ)由题意得:11233S a a ,a=3.当2n ≥时,11132332332n n n n n n a S S ,∴n a =3·2n-1………5分(Ⅱ) 132n n b n012132629232n n T n ① 2n T 12132623(1)232n n n n ②① — ②得:1212233(222)32333212nn n n n T n n 33(21)323(1)23n n n n n∴ 3(1)23n n T n … ……………………12分19.(1)∵cos B =45,∴sin B =35,由正弦定理sin sin a b A B =,得10sin303a =︒,∴a =53..............................................(6分)(2)∵△ABC 的面积S =12ac ·sin B ,∴12ac ×35=3,ac =10. 由余弦定理b 2=a 2+c 2-2ac cos B 得4=a 2+c 2-85ac = a 2+c 2-16,∴a 2+c 2=20∴(a +c )2=a 2+c 2+2ac =20+2×10=40,∴a +c ...............(12分)20.解:(1)设公差为d ,由题意,⎩⎨⎧ ⇔ ⎩⎨⎧解得⎩⎨⎧所以a n =2n -20. ……………………4分(2)由数列{a n }的通项公式可知,当n ≤9时,a n <0,当n =10时,a n =0,当n ≥11时,a n >0.所以当n =9或n =10时,S n 取得最小值为S 9=S 10=-90.……………8分(3)记数列{b n }的前n 项和为T n ,由题意可知b n =12-n a =2×2n -1-20=2n -20.所以T n =b 1+b 2+b 3+…+b n=(21-20)+(22-20)+(23-20)+…+(2n -20)=(21+22+23+…+2n )-20na 4=-12a 8=-4 a1+3d=-12a 1+7d =-4 d=2 a 1=-18=21221--+n -20n =2n +1-20n -2. ………………13分 21. 解:设空调机、洗衣机的月供应量分别是x 、y 台,总利润是P ,则P=6x+8y , ………2分由题意有3020300510110x y x y x Ny N +≤⎧⎪+≤⎪⎨∈⎪⎪∈⎩ ……………10分(列不等式组4分,画图4分)由图知直线y=34-x+18P 过M (4,9)时,纵截距最大.这时P 也取最大值P max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.………14分。

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

高等数学课后习题及参考答案(第五章)

高等数学课后习题及参考答案(第五章)习题5-11. 利用定积分定义计算由抛物线y =x 2+1, 两直线x =a 、x =b (b >a )及横轴所围成的图形的面积.解 第一步: 在区间[a , b ]内插入n -1个分点i nab a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 把区间[a , b ]分成n 个长度相等的小区间, 各个小区间的长度为: nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 第二步: 在第i 个小区间[x i -1, x i ] (i =1, 2, ⋅ ⋅ ⋅, n )上取右端点i nab a x i i -+==ξ, 作和 nab i n a b a x f S ni i i ni n -⋅+-+=∆=∑∑==]1)[()(211ξ ∑=+-+-+-=n i i na b i n a b a a n a b 12222]1)()(2[ ]6)12)(1()(2)1()(2[)(222n n n n n a b n n n a b a na n a b +++⋅-++⋅-+-= ]16)12)(1()()1)(()[(222+++-++-+-=n n n a b n n a b a a a b . 第三步: 令λ=max{∆x 1, ∆x 2, ⋅ ⋅ ⋅ , ∆x n }nab -=, 取极限得所求面积 ∑⎰=→∆==ni i i ba x f dx x f S 10)(lim )(ξλ]16)12)(1()()1)(()[(lim 222+++-++-+-=∞→n n n a b n n a b a a a b n a b a b a b a b a a a b -+-=+-+-+-=)(31]1)(31)()[(3322.2. 利用定积分定义计算下列积分:(1)xdx ba ⎰(a <b ); (2)dx e x ⎰10.解 (1)取分点为i n a b a x i -+=(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nab x i -=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点i nab a x i i -+==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是 ∑∑⎰=∞→=∞→-⋅-+=∆=ni n ni i i n ba nab i n a b a x xdx 11)(lim lim ξ )(21]2)1()()([lim )(22222a b n n n a b a b a a b n -=+-+--=∞→. (2)取分点为n i x i =(i =1, 2, ⋅ ⋅ ⋅, n -1), 则nx i 1=∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间上取右端点nix i i ==ξ (i =1, 2, ⋅ ⋅ ⋅, n ). 于是) (1lim 1lim 21110n n n n n n i n i n xe e e nn e dx e +⋅⋅⋅++==∞→=∞→∑⎰1)1(]1[lim1])(1[1lim 11111-=--=--⋅=∞→∞→e e n e e e e e nnn n nn n n n .3. 利用定积分的几何意义 说明下列等式: (1)1210=⎰xdx ; (2)41102π=-⎰dx x ;(3)⎰-=ππ0sin xdx ;(4)⎰⎰=-2022cos 2cos πππxdx xdx .解 (1)⎰102xdx 表示由直线y =2x 、x 轴及直线x =1所围成的面积, 显然面积为1.(2)⎰-1021dx x 表示由曲线21x y -=、x 轴及y 轴所围成的四分之一圆的面积, 即圆x 2+y 2=1的面积的41:41411212ππ=⋅⋅=-⎰dx x .(3)由于y =sin x 为奇函数, 在关于原点的对称区间[-π, π]上与x 轴所夹的面积的代数和为零, 即⎰-=ππ0sin xdx .(4)⎰-22cos ππxdx 表示由曲线y =cos x 与x 轴上]2,2[ππ-一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y 轴对称. 因此图形面积的一半为⎰20cos πxdx , 即⎰⎰=-2022cos 2cos πππxdx xdx .4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p (单位面积上的压力大小)是水深h 的函数, 且有p =9⋅8h (kN/m 2). 若闸门高H =3m , 宽L =2m , 求水面与闸门顶相齐时闸门所受的水压力P .解 建立坐标系如图. 用分点i nHx i =(i =1, 2, ⋅ ⋅ ⋅, n -1)将区间[0, H ]分为n 分个小区间, 各小区间的长为nHx i =∆(i =1, 2, ⋅ ⋅ ⋅, n ). 在第i 个小区间[x i -1, x i ]上, 闸门相应部分所受的水压力近似为 ∆P i =9.8x i l ⋅∆x i . 闸门所受的水压力为22118.42)1(lim 8.9lim 8.98.9lim H L nn n H L n Hi n H L x L x P n ni n ni i i n ⋅=+⋅=⋅=∆⋅⋅=∞→=∞→=∞→∑∑.将L =2, H =3代入上式得P =88.2(千牛).5. 证明定积分性质: (1)⎰⎰=ba b a dx x f k dx x kf )()(; (2)a b dx dx ba b a -==⋅⎰⎰1.证明 (1)⎰∑∑⎰=∆=∆==→=→ba ni i i ni i i ba dx x f k x f k x kf dx x kf )()(lim )(lim )(1010ξξλλ.(2)a b a b x x dx ni i ni i ba -=-=∆=∆⋅=⋅→=→=→∑∑⎰)(lim lim 1lim 101010λλλ.6. 估计下列各积分的值: (1)⎰+412)1(dx x ; (2)⎰+ππ4542)sin 1(dx x ;(3)⎰331arctan xdx x ;(4)⎰-022dx e xx.解 (1)因为当1≤x ≤4时, 2≤x 2+1≤17, 所以 )14(17)1()14(2412-⋅≤+≤-⋅⎰dx x , 即 51)1(6412≤+≤⎰dx x . (2)因为当ππ454≤≤x 时, 1≤1+sin 2x ≤2, 所以 )445(2)sin 1()445(14542ππππππ-⋅≤+≤-⋅⎰dx x ,即 ππππ2)sin 1(4542≤+≤⎰dx x .(3)先求函数f (x )=x arctan x 在区间]3 ,31[上的最大值M 与最小值m .21arctan )(xx x x f ++='. 因为当331≤≤x 时, f '(x )>0, 所以函数f (x )=x arctan x 在区间]3 ,31[上单调增加. 于是3631arctan31)31(π===f m , 33arctan 3)3(π===f M .因此)313(3arctan )313(36331-≤≤-⎰ππxdx x ,即32arctan 9331ππ≤≤⎰xdx x . (4)先求函数xx e x f -=2)(在区间[0, 2]上的最大值M 与最小值m .)12()(2-='-x e x f xx , 驻点为21=x .比较f (0)=1, f (2)=e 2,41)21(-=e f ,得41-=e m , M =e 2. 于是)02()02(220412-⋅≤≤-⎰--e dx e e xx,即 41022222---≤≤-⎰e dx dx e e xx .7. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上 f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[ab ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f . (3)令F (x )=g (x )-f (x ), 则在[a ,b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大: (1)⎰102dx x 还是⎰103dx x ?(2)⎰212dx x 还是⎰213dx x ? (3)⎰21ln xdx 还是⎰212)(ln dx x ? (4)⎰10xdx 还是⎰+10)1ln(dx x ? (5)⎰10dx e x 还是⎰+10)1(dx x ?解 (1)因为当0≤x ≤1时, x 2≥x 3, 所以⎰⎰≥103102dx x dx x . 又当0<x <1时, x 2>x 3, 所以⎰⎰>103102dx x dx x . (2)因为当1≤x ≤2时, x 2≤x 3, 所以⎰⎰≤213212dx x dx x . 又因为当1<x ≤2时, x 2<x 3, 所以⎰⎰<213212dx x dx x .(3)因为当1≤x ≤2时, 0≤ln x <1, ln x ≥(ln x )2, 所以⎰⎰≥21221)(ln ln dx x xdx . 又因为当1<x ≤2时, 0<ln x <1, ln x >(ln x )2, 所以⎰⎰>21221)(ln ln dx x xdx . (4)因为当0≤x ≤1时, x ≥ln(1+x ), 所以⎰⎰+≥1010)1ln(dx x xdx . 又因为当0<x ≤1时, x >ln(1+x ), 所以⎰⎰+>1010)1ln(dx x xdx .(5)设f (x )=e x -1-x , 则当0≤x ≤1时f '(x ) =e x -1>0, f (x )=e x -1-x 是单调增加的. 因此当0≤x ≤1时, f (x )≥f (0)=0, 即e x ≥1+x , 所以⎰⎰+≥1010)1(dx x dx e x .又因为当0<x ≤1时, e x >1+x , 所以⎰⎰+>1010)1(dx x dx e x .习题5-21. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数.解 x tdt dx dy x sin sin 0=='⎰, 当x =0时, y '=sin0=0;当4π=x 时, 224sin =='πy .2. 求由参数表示式⎰=tudu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x的导数.解 x '(t )=sin t , y '(t )=cos t ,t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+xy ttdt dt e 00cos 所决定的隐函数y 对x 的导数dxdy. 解 方程两对x 求导得 0cos =+'x y e y , 于是ye x dx dy cos -=. 4. 当x 为何值时, 函数⎰-=xt dt te x I 02)(有极值?解 2)(x xe x I -=', 令I '(x )=0, 得x =0.因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0, 所以x =0是函数I (x )的极小值点. 5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x x dtt dxd cos sin 2)cos(π.解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt t dx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ )cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-= )sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-= )sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分: (1)⎰+-adx x x 02)13(;解a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(.(2)⎰+2142)1(dx xx ;解852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ;解94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰6145)421432()921932(223223=+-+=.(4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+ax a dx 3022;解aa a ax a x a dx a a30arctan 13arctan 1arctan 1303022π=-==+⎰.(7)⎰-1024x dx ;解60arcsin 21arcsin 2arcsin 41012π=-==-⎰x x dx .(8)dx x x x ⎰-+++012241133; 解 01301221224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=.(9)⎰---+211e xdx ; 解1ln 1ln ||1|ln 12121-=-=+=+------⎰e x xdx e e .(10)⎰402tan πθθd ;解4144tan )(tan )1(sec tan 4040242πππθθθθθθπππ-=-=-=-=⎰⎰d d .(11)dx x ⎰π20|sin |;解⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx xπππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4. (12)⎰2)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 2111)(2x x x x x f . 解38|)61(|)21(21)1()(213102212102=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin .证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdxcos 1cos 1=+-=ππk kk k(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 求下列极限: (1)xdt t xx ⎰→020cos lim ; (2)⎰⎰→xt xt x dttedt e 0220022)(lim.解 (1)11cos lim cos lim20020==→→⎰x xdt t x xx . (2)22222200022)(2lim)(limx xt x t x xt xt x xedt e dt e dttedt e '⋅=⎰⎰⎰⎰→→222220202lim2limx xt x x x xt x xedte xeedt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式,并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ;当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xxϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x xxxϕ;当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π.因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x a dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa -=⎰ξ.于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=.由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内)]()([1)(≤--='ξf x f a x x F .习题5-31. 计算下列定积分:(1)⎰+πππ2)3sin(dx x ;解 0212132cos 34cos)3cos()3sin(22=-=+-=+-=+⎰ππππππππx dx x . (2)⎰-+123)511(x dx;解51251110116101)511(2151)511(22122123=⋅+⋅-=+-⋅=+-----⎰x x dx. (3)⎰203cos sin πϕϕϕd ;解⎰⎰-=20323sin cos cos sin ππϕϕϕϕϕd s d410cos 412cos 41cos 4144204=+-=-=πϕπ.(4)⎰-πθθ03)sin 1(d ; 解⎰⎰⎰⎰-+=+=-πππππθθθθθθθθ02002003cos )cos 1(cos sin )sin 1(d d d d34)cos 31(cos 03-=-+=πθθππ.(5)⎰262cos ππudu ;解2626262622sin 4121)2cos 1(21cos ππππππππu u du u udu +=+=⎰⎰836)3sin (sin 41)62(21-=-+-=πππππ.(6)dx x ⎰-2022;解dt t tdt t t x dx x ⎰⎰⎰+=⋅=-202022)2cos 1(cos 2cos 2sin 22ππ令2)2sin 21(20ππ=+=t t .(7)dy y ⎰--22228;解⎰⎰⎰---⋅=-=-44222222cos 2cos 22sin 24228ππxdx x xy dy y dy y 令)2(2)2sin 21(22)2cos 1(224444+=+=+=--⎰πππππy x dx x .(8)⎰-121221dx xx ;解41)cot ()1sin 1(cos sin cos sin 12424224212122πππππππ-=--=-=⋅=-⎰⎰⎰t t dt t tdt t t t x dx x x 令.(9)⎰-adx x a x 0222; 解⎰⎰⎰=⋅⋅=-2024202202222sin4cos cos sin sin ππtdt a tdt a t a t a t a x dx x a xa令164sin 328)4cos 1(84204204204ππππa t a t a dt t a =-=-=⎰. (10)⎰+31221xxdx ;解⎰⎰⋅⋅=+34223122secsec tan 1tan 1ππtdt t t tx xxdx 令3322sin 1sin cos 34342-=-==⎰ππππt dt tt. (11)⎰--1145xxdx ;解61)315(81)5(81454513133211=--=-=--⎰⎰-u u du u u x x xdx 令. (12)⎰+411xdx ;解)32ln 1(2|)1|ln (2)111(2211121212141+=+-=+-=⋅+=+⎰⎰⎰u u du u udu u u x x dx 令.(13)⎰--14311x dx ;解2ln 21|)1|ln (2)111(2)2(11111210210021143-=-+=-+=-⋅-=---⎰⎰⎰u u du u du u u ux x dx 令.(14)⎰-axa xdx 20223;解)13(3)3(3121320202222222022-=--=---=-⎰⎰a x a x a d x a xa xdx a a a.(15)dt te t ⎰-1022;解2110102221021)2(222-----=-=--=⎰⎰e etd e dt tet t t .(16)⎰+21ln 1e x x dx; 解)13(2ln 12ln ln 11ln 1222111-=+=+=+⎰⎰e e e xx d xxx dx .(17)⎰-++02222x x dx;解 2)1arctan(1arctan )1arctan()1(112202022022π=--=+=++=++---⎰⎰x dx x x x dx .(18)⎰-222cos cos ππxdx x ;解32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x . (19)⎰--223cos cos ππdx x x ;解⎰⎰---=-222223cos 1cos cos cos ππππdx x x dx x x34cos 32cos 32sin cos )sin (cos 20230223202=-=+-=--⎰⎰ππππx xxdx x dx x x (20)⎰+π02cos 1dx x .解22cos 2sin 22cos 1000=-==+⎰⎰πππxxdx dx x .2. 利用函数的奇偶性计算下列积分: (1)⎰-ππxdx x sin 4;解 因为x 4sin x 在区间[-π, π]上是奇函数, 所以0sin 4=⎰-ππxdx x . (2)⎰-224cos 4ππθθd ;解⎰⎰⎰+==-202204224)22cos 1(8cos 42cos 4ππππθθθθθd x d d ⎰⎰++=++=20202)4cos 212cos 223(2)2cos 2cos 21(2ππθθd x x d x x23)4sin 412sin 23(20πθπ=++=x x . (3)⎰--2121221)(arcsin dx xx ;解⎰⎰⎰=-=--21221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx xx dx xx324)(arcsin 3232103π==x .(4)⎰-++55242312sin dx x x xx . 解 因为函数12sin 2423++x x x x 是奇函数, 所以012sin 552423=++⎰-dx x x x x .3. 证明:⎰⎰-=aa adx x dx x 022)(2)(ϕϕ, 其中ϕ(u )为连续函数.证明 因为被积函数ϕ(x 2)是x 的偶函数, 且积分区间[-a , a ]关于原点对称, 所以有⎰⎰-=aa adx x dx x022)(2)(ϕϕ.4. 设f (x )在[-b , b ]上连续, 证明⎰⎰---=bb bb dx x f dx x f )()(. 证明 令x =-t , 则dx =-dt , 当x =-b 时t =b , 当x =b 时t =-b , 于是⎰⎰⎰----=--=b b bb bbdt t f dt t f dx x f )()1)(()(,而 ⎰⎰---=-bb bb dx x f dt t f )()(, 所以⎰⎰---=bb bb dx x f dx x f )()(.5. 设f (x )在[a , b ]上连续., 证明⎰⎰-+=ba ba dx xb a f dx x f )()(. 证明 令x =a +b -t , 则dx =d t , 当x =a 时t =b , 当x =b 时t =a , 于是 ⎰⎰⎰-+=--+=b a ba ab dt t b a f dt t b a f dx x f )()1)(()(, 而 ⎰⎰-+=-+ba badx x b a f dt t b a f )()(,所以⎰⎰-+=ba ba dx xb a f dx x f )()(.6. 证明:⎰⎰>+=+11122)0(11x x x x dxx dx. 证明 令t x 1=, 则dt tdx 21-=, 当x =x 时x t 1=, 当x =1时t =1, 于是⎰⎰⎰+=-⋅+=+11121122211)1(1111xx xdt t dt t tx dx , 而 ⎰⎰+=+x x dx x dt t 1121121111,所以 ⎰⎰+=+1112211x xxdx x dx.7. 证明:⎰⎰-=-1010)1()1(dx x x dx x xm n n m.证明 令1-x =t , 则⎰⎰⎰⎰-=-=--=-10100110)1()1()1()1(dx x x dt t t dt t t dx x x m n n m n m n m , 即⎰⎰-=-1010)1()1(dx x x dx x x m n n m . 8. 证明: ⎰⎰=ππ020sin 2sinxdx xdx n n.证明 ⎰⎰⎰+=ππππ2020sin sin sin xdx xdx xdx nn n,而⎰⎰⎰⎰==---=2020202sin sin ))((sin sinπππππππxdx tdt dt t t x xdx n n nn 令,所以⎰⎰=ππ020sin 2sinxdx xdx n n.9. 设f (x )是以l 为周期的连续函数, 证明⎰+1)(a a dx x f 的值与a 无关.证明 已知f (x +l )=f (x ). ⎰⎰⎰⎰⎰⎰⎰-+=++=+++ala ll la ll a a adx x f dx x f dx x f dx x f dx x f dx x f dx x f 00001)()()()()()()(,而 ⎰⎰⎰⎰=+=++=+a a ala ldx x f dx l x f dt l t f l t x dx x f 000)()()()(令,所以 ⎰⎰=+la adx x f dx x f 01)()(.因此⎰+1)(a adx x f 的值与a 无关.10. 若f (t )是连续函数且为奇函数, 证明⎰xdt t f 0)(是偶函数; 若f (t )是连续函数且为偶函数, 证明⎰xdt t f 0)(是奇函数. 证明 设⎰=xdt t f x F 0)()(.若f (t )是连续函数且为奇函数, 则f (-t )=-f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x xx ===---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是偶函数.若f (t )是连续函数且为偶函数, 则f (-t )=f (t ), 从而)()()()1)(()()(0000x F dx x f dx u f du u f u t dt t f x F x x x x -=-=-=---==-⎰⎰⎰⎰-令,即⎰=xdt t f x F 0)()(是奇函数.11. 计算下列定积分: (1)⎰-10dx xe x ; 解11011010101021--------=--=+-=-=⎰⎰⎰e e e dx e xe xde dx xe xx x x x .(2)⎰e xdx x 1ln ; 解)1(414121121ln 21ln 21ln 21220212121+=-=⋅-==⎰⎰⎰e x e dx x x x x xdx xdx x ee e e e.(3)⎰ωπω20sin tdt t (ω为常数); 解⎰⎰⎰+-=-=ωπωπωπωπωωωωωωω20202020cos 1cos 1cos 1sin tdt tt t td tdt t 220222sin 12ωπωωωπωπ-=+-=t.(4)⎰342sin ππdx xx;解34343434342sin ln 4313cot cot cot sin ππππππππππππxxdx xx x xd dx x x++⋅-=+-=-=⎰⎰⎰23ln 21)9341(+-=π.(5)⎰41ln dx x x; 解 ⎰⎰⎰⋅-==4141414112ln 2ln 2ln dx xx x x x xd dx xx )12ln 2(442ln 8122ln 84141-=-=-=⎰x dx x.(6)⎰10arctan xdx x ;解x d x x x x xdx xdx x ⎰⎰⎰+⋅-==1022102102101121arctan 21arctan 21arctan214)41(218)arctan (218)111(21810102-=--=--=+--=⎰πππππx x x d x. (7)⎰202cos πxdx e x ; 解⎰⎰⎰-==202202202202sin 2sin sin cos ππππxdx e xe x d e xdx e x x x x⎰⎰⎰-+=-+=+=202202202202cos 42cos 4cos 2cos 2πππππππxdx e e xdx e xe e x d e e x x xx所以)2(51cos 202-=⎰ππe xdx e x ,于是(8)⎰212log xdx x ; 解⎰⎰⎰⋅-==212212221222122ln 121log 21log 21log dx x x x x xdx xdx x2ln 432212ln 212212-=⋅-=x . (9)⎰π02)sin (dx x x ; 解⎰⎰⎰-=-=ππππ02302022sin 4161)2cos 1(21)sin (x d x x dx x x dx x x πππππππ03000332cos 41622sin 412sin 416⎰⎰-=⋅+-=xxd xdx x xx 462sin 81462cos 412cos 416303003ππππππππ-=+-=+-=⎰x xdx x x .(10)⎰edx x 1)sin(ln ; 解法一 ⎰⎰⋅=101sin ln )sin(ln dt e t tx dxx te令.因为⎰⎰⎰-==⋅10101010cos sin sin sin tdt e te tde dt e t t tt t⎰⎰--⋅=-⋅=101010sin cos 1sin cos 1sin tdt e t e e tde e t t t⎰-+⋅-⋅=10sin 11cos 1sin tdt e e e t , 所以 )11cos 1sin (21sin 10+⋅-⋅=⎰e e tdt e t .因此)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e. 解法二⎰⎰⎰-⋅=⋅⋅-⋅=e e eedx x e dx x x x x x dx x 1111)cos(ln 1sin 1)cos(ln )sin(ln )sin(ln ⎰⋅⋅-⋅-⋅=e edx x x x x x e 111)sin(ln )cos(ln 1sin ⎰-+⋅-⋅=edx x e e 0)sin(ln 11cos 1sin , 故)11cos 1sin (21)sin(ln 1+⋅-⋅=⎰e e dx x e . (11)dx x e e⎰1|ln |; 解⎰⎰⎰⎰⎰-++-=+-=eee eee e e dx dx xx x x dx x dx x dx x 1111111111ln ln ln ln |ln |)11(2)1()11(1ee e e e -=---++-=.(12)⎰-1022)1(dx xm (m 为自然数); 解⎰⎰+=-2011022cos sin )1(πtdt t x dx xm m 令.根据递推公式⎰⎰--=20220cos 1cos ππxdx n n xdx n n ,⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅+⋅⋅⋅⋅⋅⋅--⋅--⋅+=-⎰为偶数为奇数m m m m m m m m m m m m m m dx x m325476 34121 2214365 34121)1(1022π. (13)⎰=π0sin xdx x J m m (m 为自然数). 解 因为⎰⎰⎰⎰-=----=ππππππππ0000sin sin )1)((sin )(sin tdt t tdt dt t t t x xdx x mm m m 令,所以 ⎰⎰⎰⎰=⋅===20200sin sin 22sin 2sin πππππππxdx xdx xdx xdx x J m m mmm (用第8题结果).根据递推公式⎰⎰--=20220sin 1sin ππxdx n n xdx n n , ⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅--⋅--⋅-⋅⋅⋅⋅⋅⋅--⋅--⋅-=为奇数为偶数m m m m m m m m m m m m m m J m 325476 45231 2214365 452312ππ.习题5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 2)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt e pt pt ωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx .(7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x . (8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102xx x dx x ,所以反常积分⎰-202)1(x dx发散. (9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x . (10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k k k x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令k kk x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点,同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx xx x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.总习题五1. 填空:(1)函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的______条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积______的条件;解 函数f (x )在[a , b ]上(常义)有界是f (x )在[a , b ]上可积的___必要___条件, 而f (x )在[a , b ]上连续是f (x )在[a , b ]上可积___充分___的条件;(2)对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的______条件;解 对[a , +∞)上非负、连续的函数f (x ), 它的变上限积分⎰xa dx x f )(在[a , +∞)上有界是反常积分⎰+∞a dx x f )(收敛的___充分___条件;(3)绝对收敛的反常积分⎰+∞a dx x f )(一定______; 解 绝对收敛的反常积分⎰+∞a dx x f )(一定___收敛___;(4)函数f (x )在[a , b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰ba dx x f )(______存在. 解 函数f (x )在[a ,b ]上有定义且|f (x )|在[a , b ]上可积, 此时积分⎰b a dx x f )(___不一定___存在.2. 计算下列极限:(1)∑=∞→+n i n nin 111lim ;解 )122(32)1(32111lim 103101-=+=+=+⎰∑=∞→x dx x n i n n i n . (2)121lim+∞→+⋅⋅⋅++p pp p n nn (p >0);解 11111])( )2()1[(lim 21lim 101101+=+==⋅⋅⋅⋅++=+⋅⋅⋅+++∞→+∞→⎰p x p dx x n n n n n n n p p p p p n p p p p n . (3)nn nn !lnlim ∞→; 解 ]ln 1)ln 2ln 1(ln 1[lim !lnlim n n nn n n n n nn ⋅-+⋅⋅⋅++=∞→∞→nn n n n n 1)]ln (ln )ln 2(ln )ln 1[(ln lim ⋅-+⋅⋅⋅+-+-=∞→⎰=⋅+⋅⋅⋅++=∞→10ln 1)ln 2ln 1(ln lim xdx n n n n n n1)ln ()ln (10101010-=-=-=⎰xx x dx x x .(4)⎰-→xaa x dt t f a x x )(lim, 其中f (x )连续; 解法一 )()(lim )(lima af xf dt t f ax x axa ax ==-→→⎰ξξ (用的是积分中值定理). 解法二 )(1)()(lim )(lim )(lim a af x xf dt t f a x dt t f x dt t f a x x xaa x xa a x x a a x =+=-=-⎰⎰⎰→→→ (用的是洛必达法则). (5)1)(arctan lim 22+⎰+∞→x dtt xx .解4)(arctan 1lim 1)(arctan lim 1)(arctan lim 22222202π=+=+=+∞→+∞→+∞→⎰x x x x x x x dtt x x xx . 3. 下列计算是否正确, 试说明理由:(1)⎰⎰----=-=+-=+111111222)1arctan ()1(1)1(1πx xx d x dx ;解 计算不正确, 因为x 1在[-1, 1]上不连续. (2)因为⎰⎰--++-=++111122111t t dt tx x x dx , 所以⎰-=++11201x x dx .解 计算不正确, 因为t1在[-1, 1]上不连续.(3)01lim 122=+=+⎰⎰-∞→+∞∞-A A A dx x xdx x x . 解 不正确, 因为⎰⎰⎰⎰-+∞→+∞→+∞∞--∞→+≠+++=+A A A b b a a dx xxdx x x dx x x dx x x 2020221lim 1lim 1lim 1. 4. 设p >0, 证明⎰<+<+10111p x dx p p. 证明 p pp p p p px x x x x x x ->+-=+-+=+>11111111. 因为⎰⎰⎰<+<-1010101)1(dx x dxdx x pp,而 110=⎰dx , pp p x x dx x p p+=+-=-+⎰1)1()1(10110, 所以⎰<+<+10111pxdx p p. 5. 设f (x )、g (x )在区间[a , b ]上均连续, 证明: (1)⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222;证明 因为[f (x )-λg (x )]2≥0, 所以λ2g 2(x )-2λ f (x )g (x )+f 2(x )≥0, 从而 0)()()(2)(222≥+-⎰⎰⎰ba ba ba dx x f dx x g x f dx x g λλ.上式的左端可视为关于λ的二次三项式, 因为此二次三项式大于等于0, 所以其判别式小于等于0, 即0)()(4])()([4222≤⋅-⎰⎰⎰ba ba ba dx x g dx x f dx x g x f ,亦即 ⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x f )()(])()([222. (2)()()()212212212)()()]()([⎰⎰⎰+≤+b ab a b a dx x g dx x f dx x g x f , 证明⎰⎰⎰⎰++=+ba ba ba ba dx x g x f dx x g dx x f dx x g x f )()(2)()()]()([222。

2012年超越考研暑期强化班讲义概率论同步训练解答


P{ X 1 2} P{1 X 3} F (3 0) F (1)
同步训练 P242
2 . 3
x 0, 0, 0.3, 0 x 1, 1. 设随机变量 X 的分布函数为 F ( x ) 求 X 的概率分布. 0.6, 1 x 2, x 2, 1,
. (答案:1 p )
2. 设随机变量 X ~ N (10, 2 ) ,已知 P{ X 20} p ,则 P{ X 0} 解:由题意, P{ X 20} 1 (
20 10 10 ) 1 ( ) p , 0 10 10 10 P{ X 0} 1 ( ) 1 ( ) ( ) 1 p .
fY ( y ) . (答案: fY ( y )
3(1 y )2 , y ) [1 (1 y )6 ]
解: FY ( y ) P{Y y} P{1 3 X y} P{ X (1 y )3 } ,


3
(1 y )
1 1 1 dx arctan(1 y )3 y ; 2 (1 x ) 2
1 2 0 . 0.3 0.3 0.4
x 0, 0, 2. 设随机变量 X 的密度函数为 f ( x ) k 求(1)常数 k ;(2) X 的分布函数 F ( x) ; , x 0, 1 x 2 x 0, 0, 2 1 (3) P arctan X . (答案: k , F ( x) 2 ) 4 arctan x, x 0, 2
同步训练 P233 1. 设盒子中有十只球,其中四只红球,三只白球和三只黑球,现从中不放回地取三次,每次取一个, 求三次所取的球颜色不同的概率.(答案: 解:设 A :所取求颜色不同;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档