ccc压缩机防喘振控制技术
CCC防喘振控制介绍资料[全]
![CCC防喘振控制介绍资料[全]](https://img.taocdn.com/s3/m/622df0264431b90d6c85c76a.png)
CCC公司技术特点 及其在炼油装置的应用
Compressor Controls Corporation (CCC) 美国压缩机控制公司
1
2012 Compressor Controls Corporation
交流内容
1. CCC公司控制技术特点 2.可用性与可靠性
qr2,op qr2
22
引入操作点至喘振控制线之间的距离
• 第一步: 引入参数 d:
d = 1 - Ss
• 第二步: 引入参数 DEV(偏差值): DEV = d - 喘振控制裕量
• 参数DEV 与压缩机的尺寸无关, 但对所有压缩机描述都是相同的
2012 Compressor Controls Corporation
2012 Compressor Controls Corporation
简化喘振参数采用Rc替代hr
• 用无压关缩的比坐标Rc系代替简化多变压头同样可以获得与入口条件
• 喘振接近变量 Ss 变成
Ss =
f1(Rc) q2r,op
这输里入R由c函对数应f的1我q们r 2可以得出
• 这种重转算速要法N提避用示免于了:监C使视C用C目T仍的d 然和。强Ts烈变建送议器安装Td 和 Ts 变送器 以及
jr Re
这里: • hr • qr • Ne ·a • jr • Re • Rc
= 简化的压头 = 简化的流量 = 线性化的转速 = 导叶角度 = 简化的功率 = 雷诺数 = 压比
15
控制算法
相关联的坐标系 (Hp, Qs)
• 无关坐标系(hr, qr2)
2012 Compressor Controls Corporation
压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机喘振原因及预防措施

压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
美国CCS压缩机防喘振控制器

喘振预防控制器数据手册喘振预防控制器CCS的喘振预防控制器(SPC)能够有效和可靠地保护压缩机避免喘振。
CCS 能精确地在条件大范围变化情况下界定喘振线并可设置控制线来优化喘振保护,不需要其他不必要的再循环或放气(装置)。
目前控制器在使用气体成分恒定的透平压缩机上的应用已经有详细描述。
喘振控制策略图1为喘振预防控制系统的配置和其与压缩工艺过程中的连接图。
它包括下列测量装置:转速变送器,导叶位置变送器,入口压力变松器,入口温度变送器。
注意安装测量压缩机流量和/或功率的传感器是期望(理想)的但不是必需的。
为预防压缩机喘振,该系统打开安装在紧邻压缩机排放输送管旁的防喘振阀门。
众所周知,动态压缩是由增加气流的特定机械能量(用多变压头表示)来实现的。
这个多变压头的增加(H p)可以这样计算:其中:B 是比例常数,是压比 (=Pd/Ps),σ是多变指数,是吸入温度,MW 是分子量,是平均压缩因数。
喘振极限条件的压比的数值,可以根据喘振试验获得的转速和(或)导叶位置经验性函数获得。
它也可根据压缩机厂商提供的理论上的压缩机性能图进行计算获得。
确定当前吸入温度(T s st)下的喘振极限多变压头为转速和(或)导叶位置方程如下:对于恒定气体组分的气体或空气,鼓风机在任意给定的转速和/或导向叶片位置情况下,我们假设压缩效应是可以忽略的。
喘振极限条件压比在不同吸入温度和任意给定的转速条件下可以计算为:这个包含吸入温度补偿因数关系的修正参数方程与不变坐标系下的标准版本不同。
多变指数不能被测量。
该变量需要按照当前气体组分和压缩机效率进行确定。
所以多变指数必须被假设。
在其被设置不精确的情况下,将可能导致对喘振极限设定点的错误估算。
温度校正线会出现负斜率,换句话说,增加吸入温度会引起在IGV同样速度下喘振线压力比值的减少。
另外,效率和气体组分假设上的变化值也会影响补偿系数使受影响跨度1%以内。
在算法中引入吸入温度的主要优势就在于,它能够在不断改变的气体组分和/或效率假设中保证精确的控制。
ITCC在压缩机防喘振控制中的应用史开钰

ITCC在压缩机防喘振控制中的应用史开钰发布时间:2021-09-07T08:26:04.896Z 来源:《中国科技人才》2021年第17期作者:史开钰孙建伟[导读] Woodword公司在美国生产的ITCC控制系统通过实验分析得到,它的一些优势是将它和先前的控制系统进行对比。
更加详细和有序地描述它的管理模式、控制软件、恢复过程和喘振识别系统,为在此方面辛勤付出的专业人士提供宝贵的经验。
青岛海湾化学有限公司山东青岛 266409摘要:Woodword公司在美国生产的ITCC控制系统通过实验分析得到,它的一些优势是将它和先前的控制系统进行对比。
更加详细和有序地描述它的管理模式、控制软件、恢复过程和喘振识别系统,为在此方面辛勤付出的专业人士提供宝贵的经验。
关键词:防喘振;控制程序;喘振恢复程序;喘振检测系统为了能够控制一些扩展业务以及新领域中的压缩机单元,我们采用了美国Woodword这家公司所生产出来的ITCC控制系统,也被称为透平压缩机综合控制系统。
透平压缩机综合控制系统的主要工作目的是为了确保压缩机的安全稳定的工作运行,并且能够在一些其他装置或调控系统的硬件损坏的时候,也可以对压缩机有一个迅速有效的保护。
此外,这种控制系统的所有硬件可以匹配动态参数并能够在执行整个系统的时候获得最佳效果。
[1]与先前的一些防喘振控制相比较,现在的系统在工厂节能方面有一个明显的提升,工艺的稳定性得到了很大的提升,比如在发生喘振的情况下,可以避免在正常使用中过大的电流回流等产生很大的能量消耗。
具有更好的经济效应和技术成熟上的优势。
1.ITCC控制系统在防喘振控制方面的优点1.1 先前的防喘振控制先前的压缩机控制系统由3个比较基本的部件构成。
除了PIC通过控制汽轮机的速度来调整压缩机的运转和SIC的运作之外,这三个独立硬件之间的工作是互不干扰,没有联系的。
在正常的工作运行时,压缩机的工作范围一般都是在等压线上缓慢移动。
压缩机喘振与3C防喘振控制器在空压机上的设计策略

压缩机喘振与3C防喘振控制器在空压机上的设计策略王飞【摘要】For successful application of 3C antisurge controller in the 3TY air compressor in the Chemical Branch of Solution , a simple analysis is about the reason and phenomenon of the compressor surge and the dangers of the surge of compressor equipment .The introduction is about antisurge controller being produced by American CCC (Compressor Control Company , hereinafter referred to as 3C) from the following aspects , the calculation of the variable surge and the meaning of various surge line of control and some advanced control methods and characteristics of antisurge control on compressor , as well as the requirement of on -site measurement signal of 3C antisurge control system and movement sensitivity of antisurge regulating valve .% 针对3 C防喘振控制器在解化化工分公司3 TY空压机上的的成功应用,简单分析了压缩机发生喘振的原因、现象及喘振对压缩机设备的危害性。
CCC防喘振控制介绍资料【全】

h p,red
= s
Rc - 1
q2 = DPos s,red
Ps
建立喘振线
• 喘振线上的各点(如右图)可 用至原点的斜率来表示.采 用实测方式得到.
2012 Compressor Controls Corporation
hr hr
qr,SLL
2
qr
2
• 喘振参数可以被定义 位如下: f1(hr ) Ss = 2 qr ,op • 喘振线各点即可用涵数f1(hr)对应的值 qr2 计算
模拟式控制器
100% 2012 Compressor Controls Corporation SCL SLL
操作点
•
• • • •
0% 100%
时间
• •
控制器输出
优秀的工程承包商,会对控制器执行速 率对压缩机的防喘振能力的影响进行评 估 建立压缩机的动态仿真 在动态仿真层面上对数字式控制器与模 拟式控制器进行对比 模拟式控制器无执行周期,响应迅速 精确整定的模拟式控制器,使超调量达 到最小 使数字式控制器获得同样的整定参数 使数字式控制器获得同样的扰动
2012 Compressor Controls Corporation
•
为了实现控制目标,对于几何结构不变的压缩机,我们希望喘振线(SLL) 由单一的曲线来表示
13
控制算法
• 产生全新的控制算法的过程:
2012 Compressor Controls Corporation
– 审查实际需要 – 开发一个数学模型 – 通过计算机建模对控制算法进行模拟 仿真 – 将此控制算法应用到现场
这里由函数f1我们可以得出 输入Rc对应的 qr 2
• 这种算法避免了使用Td 和 Ts 变送器 重要提示: CCC 仍然强烈建议安装Td 和 Ts 变送器 以及 转速N 用于监视目的。
压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常见的设备,用于将气体或蒸气压缩成高压气体的装置。
在压缩机运行过程中,可能会出现喘振现象,给生产带来一系列的问题,防止压缩机出现喘振现象是非常重要的。
本文将就压缩机防喘振系统出现的问题及防范措施进行探讨。
1. 噪音过大当压缩机出现喘振现象时,会导致机器工作不稳定,产生较大的噪音。
噪音过大不仅会影响生产场地的环境,也会对工人的身心健康造成影响。
2. 设备损坏喘振现象会导致压缩机产生振动,长期下去会导致机器损坏,减少设备的使用寿命,增加维护成本。
3. 产能下降当压缩机出现喘振现象时,会导致机器输出功率下降,从而使得生产产能受到严重影响。
4. 安全隐患喘振现象会给设备运行带来了不稳定因素,可能会引发设备故障,造成安全隐患。
二、压缩机防喘振系统的防范措施1. 定期维护检查要定期对压缩机进行维护检查,包括检查连接螺栓是否松动,轴承是否磨损,润滑油是否足够等,确保设备运行的稳定性。
2. 安装减振装置在压缩机设备上安装减振装置,如减振脚,减振垫等,能有效地减少设备的震动。
3. 保持压缩机平稳运行在使用压缩机时,要保持设备的平稳运行,避免频繁启停和负载变化,减少机器运行过程中的工况变化,降低喘振的发生几率。
4. 定期清洗要定期对压缩机进行清洗,清理设备内部的灰尘和杂物,保持设备的通风性能,防止因灰尘积聚导致设备运行不畅。
5. 合理设置控制系统通过合理设置控制系统,如安装变频器、压力传感器等,对压缩机的运行状态进行监控和调节,提高设备的运行效率,减少喘振现象的发生。
6. 增强员工培训对操作压缩机的员工进行专业的培训,使其能够正确地使用和保养压缩机设备,及时发现并解决设备运行中的异常情况。
7. 定期更换易损件对压缩机设备的易损件进行定期更换,避免因零部件磨损或老化导致设备产生异常振动。
三、总结在工业生产中,压缩机是一个非常重要的设备,防止压缩机出现喘振现象对生产的稳定性和效率有着重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CCC压缩机防喘振控制技术(Antisurge Control)
1. 喘振现象
喘振是涡轮压缩机特有的现象从图中可以看出压缩机运行点由D沿性能曲线上升流量减小压力升高由A点开始到B点压缩机出现负流量即出现
倒流B-C C-D这样
伴随喘振而来的是压缩机振动剧烈上升
如果不能有效控制会给压缩机造成严重的损伤
一般来讲在1-2秒内就以发生
2. 喘振控制
2.1 喘振线的确定
通常压缩机都会有一系列的性能曲线图由于压缩机入口条件的不同压力其喘振曲线是分散的多条曲线
CCC根据压缩机的设计理论
可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线
而一般来讲压缩机制造厂商提供的性能曲线是计算值特别是旧机组的性能会发生变化或者没有性能曲线
传统的测试方法需要由经验丰富的测试工程师来进行测试
这样做带来了巨大的风险
确往往会动作滞后或过早打开
CCC的喘振算法和控制算法能够在自动状态下测量喘振曲线这一功能是CCC的专利技术而且是世界独一无二的
2.2 喘振控制算法
在传统的防喘振控制算法中用运行点的流量与喘振点的流量比较放空阀这样做会造成大量的回流能量和造成工艺的扰动甚至中断
2,1)(op r s q hr f S = 2,1)(SLL r q hr f =
喘振线上的点1)(2,1==op r s q hr f S 因而
Ss <1的区域为安全区域
从而实现控制
各种控制线及其相互之间的关系
(1) Surge Limit Line, SLL
压缩机在不同的工况下有不同的性能曲线所有这些
点构成了一条喘振极限线SLL
CCC 防喘振控制算法在喘振极限线SLL 右边设置了一个可变的安全裕量
b
Ôö¼ÓѹËõ»úµÄÁ÷Á¿
Èç¹û²Ù×÷µã³¬¹ýÕâ¸ö¼«ÏÞ
RTL 位于SCL 与SLL 之间
如果操作点超过这个极限
安
全保险响应将增加喘振控制线的裕度(总b 值)SOL 线在喘振极限线的左
边
(5) Tight Shut-off Line, TSL TSL 定义最小的SCL 的偏差
二者之间的距离为d 1
2.3.2 CCC防喘振控制算法的控制功能
(1) PID控制响应
对于缓慢的小的扰动CCC防喘振控制算法的PI控制算法防止压缩机操作点回到SCL左侧的非安全控制区
而是用于加大CCC防喘振控制算法的安全裕量但并没有实质的喘振危险时
只有在操作点处于或者接近防喘振控制线SCL时
这样一来又能防止喘振的发生
当比例积分响应和特殊微分响应不能使压缩机操作点保持在SCL线的右边则RTL响应就会以快速重复的阶跃响应迅速打开防喘振阀
(3) 根据SOL线的安全保险响应
如果因意外情况过程变化使压缩机的操作点越过SLL 线和SOL线而发生喘振使喘振控制线右移在一个喘振周期内将喘振止住
那么防喘振控制算法的TSL响应将输出0或者100%的信号
CCC防喘振控制算法根据喘振发生的特点当操作点越过不同的控制线产生不同的控制响应这种控制响应既能防止喘振也不需要浪费能量
则喘振控制算法自动加大一个安全裕量b4
ÕâÒ»¶¯×÷×î¶à¿ÉÒÔ¼Ó´ó5次b4,并且可以手动或自动复位
当计算喘振接近度S S公式中所用的输入信号出现故障时
(7) 手动控制
手动控制可以让操作员手动控制防喘振阀的开度一种是完全的手动另一种方式是在手动操作中
(8) 解耦控制
对于有性能控制的机组
当压缩机进入喘振调节时如性能控制变量为入口压力时两个控制回路是互相反作用的使机组更加接近喘振CCC的性能控制算法和喘振控制算法会将各自的输出加权到对方的控制响应中去迅速稳定系统
CCC的控制算法能够在机组达到最小控制转速后或当出口单向阀打开时将机组并入到工艺系统中去将机组切出系统
(11) CCC喘振控制算法功能框图
3. 采用CCC防喘振控制算法的益处
采用先进的防喘振控制算法
而不必打开回流阀
内置的回路解耦算法允许性能控制算法和防喘振控制算法之间更快地协调并消除防喘振控制动作可能产生的间断效应
CCC防喘振控制算法消除了因喘振或者过载引起的不必要停车
消除损害性的喘振
(5) 压缩机运行更可靠FallBack¿ØÖÆËã·¨Äܹ»ÔÚ±äËÍÆ÷·¢Éú¹ÊÕÏʱ
(6) 操作简化
(7)更低的工程成本用户不必进行软件设计和软件组
态
(8) 降低压缩机初始投资。