第二章液体在固体表面的润湿作用20158

合集下载

3.4 固液界面(润湿作用)解读

3.4 固液界面(润湿作用)解读

接触角的测定
(1)透过高度法 固体粉末装在一以多孔板为底的玻管中,液面在毛细作用 下沿管中粉末柱上升h。
gh
2 l g cos q r
ghr cos q 2 l g
由上式可见,只要测得粉末间孔隙的平均半径 r及透过高度 h,即可结合已知的 l 求 g θ。但由于r值无法直接测定,故常 用一已知表面张力,密度和对粉末接触角 θ为0的液体来标 定。
Wi G ( ls g-s ) Wi 0能浸湿。

浸湿功(work of immersion)
铺展系数(spreading coefficient)
铺展系数(spreading coefficient)
等温、等压条件下,单位面积的液固界面取 代了单位面积的气固界面并产生了单位面积的气 液界面,这过程表面自由能变化值的负值称为铺 展系数,用S表示。若S,说明液体可以在固体 表面自动铺展。
Wa G ( ls gl g-s )

粘附功(work of adhesion)
浸湿功(work of immersion)
等温、等压条件下,将具有单位表面积的固 体可逆地浸入液体中所作的最大功称为浸湿功, 它是液体在固体表面取代气体能力的一种量度。 只有浸湿功大于或等于零,液体才能浸湿固 体。在浸湿过程中,消失了单位面积的气、固表 面,产生了单位面积的液、固界面,所以浸湿功 等于该变化过程表面自由能变化值的负值。
影响接触角测定的因素
除平衡时间和温度外,影响接触角稳定的因素还有接触角滞
后和吸附作用。 (1)接触角滞后 ①前进接触角和后退接触角 前进接触角,以液固界面取代固气界面后形成的接触角为前 进接触角θA,如将固体板插入液体中;后退接触角则相反, 即以固气界面取代固液界面后形成的接触角叫后退接触角,用 θR表示,如水滴在斜玻璃板上,流动可形成前进接触角和后 退接触角。 ②接触角滞后及原因 指前进接触角与后退接触角之差称为接触角滞后(θA-θR)

什么是润湿作用

什么是润湿作用

什么是润湿作用
润湿作用是指液体在与固体接触时,能够在固体表面上形成一层平均和连续的薄液体膜,使固体表面被液体湿润的现象。

润湿作用可以分为沾湿、浸湿和铺展三种类型。

润湿作用是一种流体从固体表面置换另一种流体的过程,在日常生活和生产实际中,如洗涤、印染、矿物浮选等,是最常见的现象之一。

因此,研究润湿现象有极强的现实意义。

此外,润湿作用在表面涂料、化妆品、医疗器械、涂层材料等领域也有广泛应用。

以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业人士。

请叙述润湿的原理

请叙述润湿的原理

请叙述润湿的原理润湿是指在两种不同状态的物质接触面上,液体在固体表面上均匀分布形成的情况。

具体而言,润湿是液体在固体表面上产生的一种现象,液体在这种情况下倾向于展开并保持与固体表面直接接触的状态,而不是形成球状。

润湿现象是由一系列的物理和化学因素共同作用形成的,涉及表面张力、表面能、接触角等多个因素。

润湿的原理可以从两个方面来解释:表面张力和界面能。

首先,表面张力是润湿现象的主要原理之一。

液体分子有一种相互间吸引的力,称为相互吸引力。

在液体的内部,所有的液体分子都受到周围分子的吸引力。

然而,在液体表面,分子只能被同侧和对面的液体分子吸引,而不能被周围的气体或固体分子吸引。

因此,液体表面的分子之间会形成一个类似于薄膜的结构,这种现象称为表面张力。

当液体接触到一个固体表面时,如果液体分子与固体表面的相互吸引力比内部分子之间的吸引力强,液体会在固体表面上均匀分布,形成润湿。

其次,润湿还与固体表面的界面能有关。

固体表面的界面能是指单位面积上液体分子在与固体接触时要克服的能量。

在液体接触到固体表面时,如果液体分子要克服的界面能小于它们自身的内部吸引力,液体就会在固体表面上润湿。

当液体分子能够克服固体表面的界面能时,它们与固体表面更稳定地接触,这种情况下接触角会较小。

相反,如果液体分子要克服的界面能大于内部吸引力,液体就无法润湿固体表面,形成一个水滴或球状体,接触角较大。

还可以从接触角的角度来解释润湿现象。

接触角是由液滴与固体表面之间形成的一个界面,它与固体表面的界面能有关。

接触角越小表示固体表面越容易被液体湿润,液体分子在固体表面上均匀分布的可能性就越大。

相反,接触角越大表示固体表面越不容易被液体湿润,液体形成球状的可能性就越大。

综上所述,润湿是由表面张力和界面能共同作用形成的。

液体在和固体表面接触时,如果液体分子的吸引力和克服固体表面界面能的能力均较强,液体就会在固体表面上润湿。

润湿现象在自然界和生活中起着重要的作用,例如润湿现象在染料、薄膜涂层、液滴形状控制等领域有着广泛的应用。

润湿作用

润湿作用
32 7
14
19
α-Al2O3 43 26 19
43 12
18
21
碳氟比合物<碳氢化合物<含其他杂原子的 有机物<金属等无机物。
6.3.4影响润湿作用的因素
1.温度 ➢温度升高时,短链表面活性剂的润湿性能
不如长链的好。 ➢低温时,长链的不如短链的好。 ➢对于聚环氧乙烷类非离子表面活性剂,湿
度接近浊点时,润湿性能最佳。
S SV SL LV A LV
S>0,A>
LV,即固液粘附张力大于液体表面张力即可发生铺展过程。
2.液体在液体表面上的铺展
SO /W W O WO
当SO/W>0时,即恒温恒压下体系表面自由焓降低,
则该种油能在水面上铺展。
• 若SO/W<0,ΔG>0,则表示油不能在水面上铺展,
图6-8 液体在固体上的铺展
当铺展面积为单位值时,这个过程的能量变化为:
G SV SL LV S
式中,S称为铺展系数。
S>0时,液体可以在固体表面自动展开
S SV SL LV SV SL LV LV SW SL LV 2 LV Wa Wc
S>0,即固液粘附功大于液体内部内聚功时,铺展润湿 是一个自发过程,液体可以自行铺展于固体表面。
图6-4 沾湿过程
体系的自由能:
G SV LV SL Wa
式中,Wa为粘附功。
粘附功代表液体与固体分子间相互作用力大小的表 征。
两个液柱的接触过程中,体系的自由能降低值为:
G LV LV 0 2 LV WC
式中,WC-内聚功。
WC代表液体自身结合的牢固程度,是液体分子间相
2)硬固体的部分浸湿
实质是体系的固-气界面被固-液界面部分取代的过程。

润湿作用的应用及原理

润湿作用的应用及原理

润湿作用的应用及原理一、什么是润湿作用润湿作用是指液体在与固体接触时,能够在固体表面上形成一层平均和连续的薄液体膜,使固体表面被液体湿润的现象。

润湿作用广泛应用于各行各业,例如表面涂料、化妆品、医疗器械、涂层材料等。

二、使用润湿作用的应用领域润湿作用在很多领域都有重要的应用,以下为一些常见的应用领域:1. 化妆品润湿作用在化妆品中起着重要的作用。

化妆品中的润湿剂能够帮助产品更好地附着在皮肤表面,提高化妆品的使用体验。

同时,润湿作用还可以增加化妆品在皮肤上的持久性,使其更加耐用。

2. 医疗器械润湿作用在医疗器械中也有广泛的应用。

例如,在外科手术中,医疗器械通常需要与组织和体液接触,润湿作用可以帮助器械更好地与组织接触,并减少对组织的创伤。

3. 涂料润湿作用在涂料领域也有重要的应用。

涂料的润湿剂可以改善涂料在基材表面的附着,提高涂料的抗刮擦性和耐久性。

此外,润湿作用还可以减少涂料施工时的气泡和裂痕,提高涂料的光泽度。

4. 纺织工业在纺织工业中,润湿作用可以帮助纺织品更好地吸收染料,提高染色效果。

润湿剂可以改善纺织品与染料之间的接触,使染料能够快速、均匀地渗透到纤维中,提高染色的效果。

5. 粮食储藏润湿作用也可用于粮食储藏。

在贮存过程中,粮食表面积少的因素大大限制了湿气的渗透和沉积,采用润湿技术可以增加粮食表面积,提高粮食的储存效果。

三、润湿作用的原理润湿作用的原理涉及表面张力、界面能的概念及表面活性剂的作用,以下是润湿作用的一般原理:•表面张力:润湿作用的关键是液体的表面张力。

表面张力越小,润湿作用越好。

因为表面张力越小,液体越容易渗透到固体表面上,并形成一层薄液体膜。

•界面能:固体表面和液体之间具有一定的能量差异,称为界面能。

润湿作用的原理是通过降低界面能差异,使液体能够更好地湿润固体表面。

•表面活性剂:表面活性剂是一种能够降低表面张力的物质。

通过添加表面活性剂,可改变液体的表面性质,改善润湿作用。

表面活性剂润湿作用

表面活性剂润湿作用

固体表面上的原子或分子的价键力是未饱和的,与内部原子或分子比较有多余的能量。

所以,固体表面与液体接触时,其表面能往往会减小。

通常,暴露在空气中的固体表面积总是吸附气体的,当它与液体接触时,气体如被推斥而离开表面,则固体与液体直接接触,这种现象称为润湿。

一、润湿过程在清洁的玻璃板上滴一滴水,水在玻璃表面上立即铺展开来;而在石蜡上滴一滴水,水则不能铺展而保持滴状,如图1所示。

从水面与固体面的接触点沿水面引切线,切线与固体面之间的夹角θ称为接触角。

水与玻璃的接触角接近于零,而与石蜡的接触角约为1100。

接触角小的固体易为液体润湿,反之,接触角大的固体则不易被液体润湿。

因此,接触角的大小可作为润湿的直观尺度。

又如,在玻璃板上滴一滴酒精,酒精滴也会在玻璃板上铺展开来,其接触角为零,铺展情形与水的情况没有什么差异。

当固体物质不是玻璃时,其润湿情况有显著不同。

因此,在研究润湿时,接触角是一个重要判据。

为对润湿尺度给以更严格的规定,下面讨论润湿过程。

图1.接触角润湿即固体表面吸附的气体为液体所取代的现象,这就是说发生润湿时,固一气界面消失,形成新的固-液界面。

在这种过程中能量(自由能)必发生变化,自由能变量的大小可作为润湿作用的尺度。

固一气界面消失,新的固-液界面产生有多种方式,所以润湿的类型也相应有多种。

图2为三种类型润湿。

图2(a)为铺展润湿,水、酒精等在玻璃表面上铺展即为这种铺展润湿。

发生这种润湿时能量变化由式一决定:(式一)式中y s——固体的表面张力;Y L——液体的表面张力;Y SL——固体和液体的界面张力;W S——铺展功,亦称做铺展系数。

W S的物理意义从图可以清楚地看出:在固体表面上铺展的液体膜,在逆过程中减少单位面积所需的能量。

经过这种过程后,固体产生lcm2的新表面,同时消失1cm2液体表面和lcm2固-液界面,所以从式一由表面张力和界面张力立即算出W s。

在发生这种润湿的过程中,释放出的能量和W s相等,W s≥0时发生润湿。

润湿作用

润湿作用

润湿作用关键词:表面张力比表面能第一节润湿作用润湿是有条件的,润湿能否进行,取决于界面性质及界面能的变化,其润湿的程度可以用接触角的大小来判断。

一、表面张力与表面过剩自由能表面张力与表面过剩自由能是描述物体表面状态的物理量。

液体表面或固体表面的分子与其内部分子的受力情形是不同的,因而所具有的能量也是不同的。

以液体为例,如图1-1所示,处在液相内部的分子,四周被同类分子所包围,受周围分子的引力是对称的,因而相互抵消,合力为零;处在液体表面的分子则不然,因为液相的分子密度远大于气相的分子引力,致使合力不再为零,而是具有一定的量值且指向液相的内侧。

由于这个拉力的存在,使得液体表面的分子,相对于液体内部分子处于较高能量态势,随时有向液体内部迁移的可能,处于一种不稳定的状态。

液体表面分子受到的拉力形成了液体的表面张力,相对于液体内部所多余的能量,就是液体的表面过剩自由能。

由于表面张力或表面过剩自由能的存在,在没有外力作用时,液体都具有自动收缩其表面成为球形的趋势,这是因为在体积一定的几何形体中球体的表面积最小。

图1-1液体表面分子与内部分子能量的不同图1-2表面张力实验示意图图1-2是表面张力实验的示意图。

Ⅱ形框架的AB边是可以上下滑动的,长度为ι。

将框架直立于液体中,AB边也被浸没。

缓慢地提起AB边,便在框架内形成一个逐渐扩展的液体薄膜。

随着液膜的扩展,提起长度为ι的AB边所需要的力也要逐渐增加。

设:当AB边提升到高出液面h的位置时,为保持液膜平衡而不收缩,需要施加的力为F,则此力F应与液膜的两个表面所提供的力相平衡。

ι越长,F值越大。

因此,在A B边上,单位长度液面上受的力为:F=γ·2ι(1-1)比例系数γ定义为表面张力系数,表示垂直通过液体表面任一单位长度、与液面相切地收缩表面的力,常简称为表面张力。

表面张力的量纲是〔力/长度〕,常用的单位是N/m(牛顿/米)。

某一种液体,在一定的温度和压力下,有一定的γ值。

3.4 固液界面(润湿作用)

3.4 固液界面(润湿作用)

Wa G ( l s g l g-s )

粘附功(work of adhesion)
浸湿功(work of immersion)
等温、等压条件下,将具有单位表面积的固 体可逆地浸入液体中所作的最大功称为浸湿功, 它是液体在固体表面取代气体能力的一种量度。 只有浸湿功大于或等于零,液体才能浸湿固 体。在浸湿过程中,消失了单位面积的气、固表 面,产生了单位面积的液、固界面,所以浸湿功 等于该变化过程表面自由能变化值的负值。
gh
0 lg 0 0
h cosq = 0 0 lg h
0 lg
通过测定h、h0可求得θ。使用此方法应注意粒子的
均匀性及装填情况。
(2)透过速度法 可润湿粉末的液体在粉末中上升可称为液体在毛 细管中的流动,其流动速度根据Poiseulle方程可得
接触角的测定
dh 2 r cos q dt 8 h r cos q 2 h t 2 dh 2 r cos q dt 2
s - g l -s cosq l -g
接触角(contact angle)
接触角的示意图:
接触角的测定
1、角度测量法 是一类应用最广、较方便简单、最直接的方法。其原理 是用量角器直接量出三相交界处流动界面与固体平面的夹 角。主要做法有投影法、摄影法、显微量角法、斜板法和 光点反射法。 (1)投影和摄影法 (2)显微量角法 用一安装有量角器和叉丝的低倍显微镜观察液面,直接 读出角度。 (3)斜板法 原理是将固体板插入液体中,当板面与液 面的夹角恰为接触角时,液面一直延伸至三相交界处而不 出现弯曲,此夹角即为接触角。
固体的润湿性质
可得一很好的直线,将直线外推至 COSθ=1处(θ=0), 相应的表面张力将为此固体的润湿临界表面张力,称 为 γc 、 γc 表示液体同系列表面张力小于此值的液体方 可在该固体上自行铺展,即S=0,若为非同系列液体, 以COSθ对γgl 作图通常也显示线性关系,将直线外推 至COSθ=1处,亦可得γc。 γc是表征固体表面润湿性的经验参数,对某一固体而 言, γc 越小,说明能在此固体表面上铺展的液体便越少, 其可润湿状越差(即表面能较低)。 从实验测得各种低能表面的γc值,并总结出一些经验律:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档