2011-2017新课标高考数学导数分类汇编(文)

合集下载

2012年高考文科数学解析分类汇编:导数(逐题详解)

2012年高考文科数学解析分类汇编:导数(逐题详解)

2012年高考文科数学解析分类汇编:导数一、选择题1 .(2012年高考(重庆文))设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是2 .(2012年高考(浙江文))设a>0,b>0,e 是自然对数的底数( )A .若e a +2a=e b+3b,则a>bB .若e a +2a=e b+3b,则a<bC .若e a -2a=e b-3b,则a>bD .若e a -2a=e b-3b,则a<b3 .(2012年高考(陕西文))设函数f(x)=2x+lnx 则 ( )A .x=12为f(x)的极大值点 B . x=12为f(x)的极小值点 C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点4 .(2012年高考(山东文))设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 ( ) A .12120,0x x y y +>+> B .12120,0x x y y +>+< C .12120,0x x y y +<+>D .12120,0x x y y +<+<5 .(2012年高考(辽宁文))函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)6 .(2012年高考(湖北文))如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π- B .1πC .21π-D .2π7 .(2012年高考(福建文))已知32()69,f x x x x abc a b c =-+-<<,且()()()0f a f b f c ===.现给出如下结论:①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <. 其中正确结论的序号是 ( )A .①③B .①④C .②③D .②④二、填空题8 .(2012年高考(上海文))已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,1),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ .9 .(2012年高考(课标文))曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________ 三、解答题10.(2012年高考(重庆文))已知函数3()f x ax bx c =++在2x =处取得极值为16c -(1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最大值.11.(2012年高考(浙江文))已知a∈R,函数3()42f x x ax a =-+(1)求f(x)的单调区间(2)证明:当0≤x≤1时,f(x)+ 2a ->0.12.(2012年高考(天津文))已知函数3211()(0)32a f x x x ax a a -=+-->(I)求函数)(x f 的单调区间;(II)若函数)(x f 在区间(2,0)-内恰有两个零点,求a 的取值范围;(III)当1a =时,设函数)(x f 在区间]3,[+t t 上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-,求函数()g t 在区间]1,3[--上的最小值.13.(2012年高考(陕西文))设函数()(,,)nn f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设n 为偶数,(1)1f -≤,(1)1f ≤,求b+3c 的最小值和最大值;(3)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围;14.(2012年高考(山东文))已知函数ln ()(e xx kf x k +=为常数,e=2.71828是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.[15.(2012年高考(辽宁文))设()ln 1f x x x =+-,证明:(Ⅰ)当x ﹥1时,()f x ﹤32( 1x -) (Ⅱ)当13x <<时,9(1)()5x f x x -<+16.(2012年高考(课标文))设函数f (x )= e x-ax -2(Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f´(x )+x +1>0,求k 的最大值17.(2012年高考(江西文))已知函数2()()xf x ax bx c e =++在[]0,1上单调递减且满足(0)1,(0)0f f ==.(1)求a 的取值范围;(2)设()()()g x f x f x '=--,求()g x 在[]0,1上的最大值和最小值.18.(2012年高考(湖南文))已知函数f(x)=e x-ax,其中a>0.[@、中国^教育出版&网~](1)若对一切x∈R,f(x) ≥1恒成立,求a 的取值集合;[z(2)在函数f(x)的图像上去定点A(x 1, f(x 1)),B(x 2, f(x 2))(x 1<x 2),记直线AB 的斜率为k ,证明:存在x 0∈(x 1,x 2),使0()f x k '=恒成立.19.(2012年高考(湖北文))设函数()(1)(0)nf x ax x b x =-+>,n 为正整数,,a b 为常数,曲线()y f x =在(1,(1))f 处的切线方程为1x y +=.(1)求,a b 的值; (2)求函数()f x 的最大值; (3)证明:1()f x ne<. 20.(2012年高考(广东文))(不等式、导数)设1a <,集合{}0A x R x =∈>,(){}223160B x R x a x a =∈-++>,D A B = .(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.21.(2012年高考(福建文))已知函数3()sin (),2f x ax x a R =-∈且在]2,0[π上的最大值为32π-,(1)求函数()f x 的解析式;(2)判断函数()f x 在(0,)π内的零点个数,并加以证明.22.(2012年高考(大纲文))已知函数321()3f x x x ax =++.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.23.(2012年高考(北京文))已知函数2()1f x ax =+(0a >),3()g x x bx =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值;(2)当3,9a b ==-时,求函数()()f x g x +在区间[,2]k 上的最大值为28,求k 的取值范围.24.(2012年高考(安徽文))设定义在(0,+∞)上的函数1()(0)f x ax b a ax=++> (Ⅰ)求()f x 的最小值;(II)若曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值.2012年高考文科数学解析分类汇编:导数参考答案一、选择题 1. 【答案】:C【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题. 2. 【答案】A【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性.【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3. 解析:22()x f x x -'=,令()0,f x '=得2x =,2x <时,()0f x '<,1()ln f x x x=+为减函数;2x >时,()0f x '>,1()ln f x x x=+为增函数,所以2x =为()f x 的极小值点,选D.4. 解析:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得3322b =.不妨设12x x <,则32223x b ==.所以231()()(2)F x x x x =--,比较系数得3141x -=,故31122x =-.3121202x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案应选B. 另解:令)()(x g x f =可得b x x+-=21. 设b x y xy +-=''=',12不妨设21x x <,结合图形可知,21x x <, 即210x x <-<,此时021>+x x ,112211y x x y -=-<=,即021<+y y .答案应选B.5. 【答案】B【解析】b x y +-=''y x1x x211ln ,,00,02y x x y x y x x x x''=-∴=->∴< 由≤,解得-1≤≤1,又≤1,故选B 【点评】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题.6. C 【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用. 7. 【答案】C【解析】(0),(1)4,(3)275427(0)f abc f abc f abc abc f =-=-=-+-=-= , 又()3(1)(3)f x x x '=--,所以()f x 在(,1)-∞和(3,)+∞上单调增加,在(1,3)上单调递减,故13a b c <<<<,(0)(1)0,(0)(3)0f f f f ∴<>【考点定位】本题考查函数的零点,函数的单调性极值,考查分析判断能力、必然与或然的思想.二、填空题8. [解析] 如图1,⎩⎨⎧≤<-≤≤=1,220,2)(2121x x x x x f , 所以⎩⎨⎧≤<+-≤≤==1,220,2)(212212x x x x x x xf y ,易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MND 与OMP 全等,面积相等,故所求面积即为矩形ODMP 的面积S=412121=⨯.9. 【命题意图】本题主要考查导数的几何意义与直线方程,是简单题.xy A BC 1 1 图1(O )Nx y OD M 1 P 图2【解析】∵3ln 4y x '=+,∴切线斜率为4,则切线方程为:430x y --=.三、解答题 10. 【答案】:(Ⅰ)1327(Ⅱ)427【解析】::(Ⅰ)因3()f x ax bx c =++ 故2()3f x ax b '=+ 由于()f x 在点2x = 处取得极值 故有(2)0(2)16f f c '=⎧⎨=-⎩即1208216a b a b c c +=⎧⎨++=-⎩ ,化简得12048a b a b +=⎧⎨+=-⎩解得112a b =⎧⎨=-⎩(Ⅱ)由(Ⅰ)知 3()12f x x x c =-+,2()312f x x '=-令()0f x '= ,得122,2x x =-=当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数 当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数.由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)f c =-由题设条件知1628c += 得12c =此时(3)921,(3f c f c -=+==-+=,(2)164f c =-=-因此()f x 上[3,3]-的最小值为(2)4f =-【考点定位】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.(1)先对函数()f x 进行求导,根据(2)0f '==0,(2)16f c =-,求出a,b 的值.(1)根据函数()f x =x3-3ax2+2bx 在x=1处有极小值-1先求出函数中的参数a,b 的值,再令导数等于0,求出极值点,判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值.再代入原函数求出极大值和极小值.(2)列表比较函数的极值与端点函数值的大小,端点函数值与极大值中最大的为函数的最大值,端点函数值与极小值中最小的为函数的最小值.11. 【命题意图】本题是导数中常规的考查类型主要利用三次函数的求导判定函数的单调区间,并综合绝对值不等式考查了学生的综合分析问题的能力.【解析】(1)由题意得2()122f x x a '=-,当0a ≤时,()0f x '≥恒成立,此时()f x 的单调递增区间为(),-∞+∞.当0a >时,()12()()66a a f x x x '=-+,此时函数()f x 的单调递增区间为,66a a ⎡⎤-⎢⎥⎣⎦.(2)由于01x ≤≤,当2a ≤时,33()2422442f x a x ax x x +-=-+≥-+. 当2a >时,333()242(1)244(1)2442f x a x a x x x x x +-=+--≥+--=-+.设3()221,01g x x x x =-+≤≤,则233()626()()33g x x x x '=-=-+. 则有 x30,3⎛⎫⎪ ⎪⎝⎭333,13⎛⎫ ⎪ ⎪⎝⎭1()g x ' - 0 + ()g x1减极小值增1所以min 343()()1039g x g ==->. 当01x ≤≤时,32210x x -+>. 故3()24420f x a x x +-≥-+>.12.解:(1)2()(1)(1)()f x x a x a x x a '=+--=+-,由()0f x '=,得121,0x x a =-=>13.14.解:(I)1ln ()e x x k x f x --'=,由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞. (III)证明:由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e xx x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.另证:因为)0(),ln 1(1)()(>--='=x x x x e x f x x g x,设x x x x h ln 1)(--=,则2ln )(--='x x h ,令2,02ln )(-==--='e x x x h ,当),0(2-∈e x 时0)(>'x h ,)(x h 单调递增;当),(2+∞∈-e x 时0)(<'x h ,)(x h 单调递减.所以当0>x 时,221)()(--+=≤e e h x h ,而当0>x 时110<<x e ,所以当0>x 时21)ln 1(1)(-+<--=e x x x e x g x ,综上可知结论成立.15. 【答案与解析】【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、运算能力、应用所学知识解决问题的能力,难度较大. 16. (Ⅰ) 解:()x f 的定义域为R ,()a e x f x -=';若0≤a ,则()0>'x f 恒成立,所以()x f 在R 总是增函数若0>a ,令()0>'x f ,求得a x ln >,所以()x f 的单增区间是()∞+,ln a ; 令()0<'x f , 求得 a x ln <,所以()x f 的单减区间是()a ln ,∞-(Ⅱ) 把()⎩⎨⎧-='=ae xf a x 1 代入()()01>++'-x x f k x 得:()()011>++--x e k x x ,因为0>x ,所以01>-x e ,所以:()()11-->--x e k x x ,11--->-x e x k x , 11-+<-x e x x k ,所以:(*))0(11 >+-+<x x e x k x令()x e x x g x +-+=11,则()()()212---='x x x e x e e x g ,由(Ⅰ)知:()()2--=x e x h x 在()∞+,0单调递增,而()()⎩⎨⎧><0201h h ,所以()x h 在()∞+,0上存在唯一零点α,且()2,1∈α; 故()x g '在()∞+,0上也存在唯一零点且为α,当()α,0∈x 时, ()0<'x g ,当()∞+∈,αx 时,()0>'x g ,所以在()∞+,0上,()()αg x g =m in ;由()0='αg 得:2+=ααe ,所以()1+=ααg ,所以()()3,2∈αg , 由于(*)式等价于()αg k <,所以整数的最大值为217. 【解析】(1)由(0)1f c ==,(1)0f =⇒1,1c a b =+=-,则2()[(1)1]x f x ax a x e =-++,2'()((1))x f x ax a x a e =+--,依题意须对于任意(0,1)x ∈,有()0f x '<,当0a >时,因为二次函数2(1)y ax a x a =---的图像开口向上,而(0)0f a '=-<,所以须(1)(1)0f a e '=-<,即01a <<,当1a =时,对任意(0,1)x ∈,有2()(1)0x f x x e '=-<,符合条件;当0a =时,对任意(0,1x ∈,()0x f x xe '=-<,()f x 符合要求,当0a <时,因(0)0f a '=>,()f x 不符合条件,故a 的取值范围为01a ≤≤.(2)因()(21),()(21)x xg x ax e g x ax a e '=-+=-+-当0a =时,()0x g x e '=>,()g x 在0x =上取得最小值(0)1g =,在1x =上取得最大值(1)g e =;当1a =时,对于任意(0,1)x ∈,有()20x g x xe '=-<,()g x 在0x =上取得最大值(0)2g =,在1x =上取得最小值(1)0g =;当01a <<时,由1()002a g x x a-'=⇒=>,18. 【解析】解:(),x f x e a '=-令()0ln f x x a '==得. [当ln x a <时()0,()f x f x '<单调递减;当ln x a >时()0,()f x f x '>单调递增,故当ln x a =时,()f x 取最小值(ln )ln .f a a a a =-于是对一切,()1x R f x ∈≥恒成立,当且仅当ln 1a a a -≥. ①令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1a =时,①式成立.综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()().x x f x f x e e k a x x x x --==--- 令2121()(),x x xe e xf x k e x x ϕ-'=-=--则 12112121()()1,x x x e x e x x x x ϕ-⎡⎤=----⎣⎦- 21221221()()1.x x x e x e x x x x ϕ-⎡⎤=---⎣⎦- 令()1t F t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t -->从而2121()10x x e x x ---->,1212()10,x x e x x ---->又1210,x e x x >-2210,x e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在 012(,)x x x ∈使0()0,x ϕ=即0()f x k '=成立.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出()f x 取最小值(ln )ln .f a a a a =-对一切x∈R,f(x) ≥1恒成立转化为min ()1f x ≥从而得出求a 的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.19. 【解析】(1)因为(1)f b =,由点(1,)b 在1x y +=上,可得110b b +=⇒=因为1()(1)n n f x ax a n x -'=-+,所以(1)f a '=-又因为切线1x y +=的斜率为1-,所以11a a -=-⇒=,所以1,0a b ==(2)由(1)可知,11()(1),()(1)()1n n n n n f x x x x x f x n x x n +-'=-=-=+-+ 令()01n f x x n '=⇒=+,即()f x '在(0,)+∞上有唯一的零点01n x n =+.在(0,)1n n +上,()0f x '>,故()f x 单调递增;而在(,)1n n +∞+上,()0f x '<,()f x 单调递减,故()f x 在(0,)+∞的最大值为1()()(1)111(1)nn n n n n n f n n n n +=-=++++. (3)令1()ln 1(0)t t t t ϕ=-+>,则22111()(0)t t t t t t ϕ-'=-> 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减,而在(1,)+∞上,()0t ϕ'>,()t ϕ单调递增, 故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=,所以()0(1)t t ϕ>> 即1ln 1(1)t t t >->,令11t n =+,得11ln 1n n n +>+,即11ln()ln n n e n++> 所以11()n n e n++>,即11(1)n n n n ne +<+ 由(2)知,11()(1)n n n f x n ne+≤<+,故所证不等式成立. 【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.20.解析:(Ⅰ)考虑不等式()223160x a x a -++>的解. 因为()()()2314263331a a a a ∆=⎡-+⎤-⨯⨯=--⎣⎦,且1a <,所以可分以下三种情况: ①当113a <<时,0∆<,此时B =R ,()0,D A ==+∞. ②当13a =时,0∆=,此时{}1B x x =≠,()()0,11,D =+∞ . ③当13a <时,0∆>,此时()223160x a x a -++=有两根,设为1x 、2x ,且12x x <,则()()()13133314a a a x +---=,()()()23133314a a a x ++--=,于是{}12B x x x x x =<>或. 当103a <<时,()123102x x a +=+>,1230x x a =>,所以210x x >>,此时()()120,,D x x =+∞ ;当0a ≤时,1230x x a =≤,所以10x ≤,20x >,此时()2,D x =+∞.综上所述,当113a <<时,()0,D A ==+∞;当13a =时,()()0,11,D =+∞ ;当103a <<时,()()120,,D x x =+∞ ;当0a ≤时,()2,D x =+∞.其中()()()13133314a a a x +---=,()()()23133314a a a x ++--=.(Ⅱ)()()26616f x x a x a '=-++,令()0f x '=可得()()10x a x --=.因为1a <,所以()0f x '=有两根1m a =和21m =,且12m m <.①当113a <<时,()0,D A ==+∞,此时()0f x '=在D 内有两根1m a =和21m =,列表可得x ()0,aa(),1a1 ()1,+∞()f x '+ 0 - 0 + ()f x递增极小值递减极大值递增所以()f x 在D 内有极大值点1,极小值点a . ②当13a =时,()()0,11,D =+∞ ,此时()0f x '=在D 内只有一根113m a ==,列表可得 x10,3⎛⎫⎪⎝⎭131,13⎛⎫ ⎪⎝⎭()1,+∞()f x '+ 0 - + ()f x递增极小值递减递增所以()f x 在D 内只有极小值点a ,没有极大值点. ③当103a <<时,()()120,,D x x =+∞ ,此时1201a x x <<<<(可用分析法证明),于是()0f x '=在D 内只有一根1m a =,列表可得x ()0,aa()1,a x()2,x +∞()f x '+-+()f x递增 极小值 递减 递增所以()f x 在D 内只有极小值点a ,没有极大值点.④当0a ≤时,()2,D x =+∞,此时21x >,于是()f x '在D 内恒大于0,()f x 在D 内没有极值点.综上所述,当113a <<时,()f x 在D 内有极大值点1,极小值点a ;当103a <≤时,()f x 在D 内只有极小值点a ,没有极大值点.当0a ≤时,()f x 在D 内没有极值点.21. 【考点定位】本题主要考查函数的最值、零点、单调性等基础知识,考查推理论证能力、运算求解能力、考查函数与方程思想、数形结合思想、分类讨论思想、转化化归思想. 解:()(sin cos ),(0,),sin cos 02f x a x x x x x x x π'=+∈∴+>当0a =时,3()2f x =-不合题意; 当0a <时,()0f x '<,()f x 单调递减,max 3[()](0)2f x f ==-,不合题意; 当0a >时,()0f x '>,()f x 单调递增,max33[()]()2222f x f a πππ-==-=1a ∴=,所以综上3()sin 2f x x x =-(2)()f x 在(0,)π上有两个零点.证明如下: 由(1)知3()sin 2f x x x =-,33(0)0,()0222f f ππ-=-<=> ∴()f x 在[0,]2π上至少有一个零点,又由(1)知()f x 在[0,]2π上单调递增,故在[0,]2π上只有一个零点,当x 2ππ⎡⎤∈⎢⎥⎣⎦,时,令()()sin cos g x f x x x x '==+, 10)02g g πππ=>=-<(),(,()g x 在2ππ⎡⎤⎢⎥⎣⎦,上连续,∴2m ππ⎡⎤∈⎢⎥⎣⎦,,()0g m =')2cos -sin 0g x x x x =<(,∴()g x 在2ππ⎡⎤⎢⎥⎣⎦,上递减,当2x m π⎡⎤∈⎢⎥⎣⎦,时,()()0g x g m >=,')0f x >(,()f x 递增,∴当(,)2m m π∈时,3()()022f x f ππ-≥=>∴()f x 在(,)m π上递增,∵()0,()0f m f π><∴()f x 在(,)m π上只有一个零点,综上()f x 在(0,)π上有两个零点.22. 【命题意图】本试题考查了导数在研究函数中的运用.第一问就是三次函数,通过求解导数求解单调区间.另外就是运用极值概念,求解参数值的运用.解:(1)依题意可得2()2f x x x a '=++当440a ∆=-≤即1a ≥时,220x x a ++≥恒成立,故()0f x '≥,所以函数()f x 在R 上单调递增;当440a ∆=->即1a <时,2()20f x x x a '=++=有两个相异实根1224411,112ax a x a ---==---=-+-且12x x <故由2()20f x x x a '=++>⇒(,11)x a ∈-∞---或(11,)x a ∈-+-+∞,此时()f x 单调递增由2()201111f x x x a a x a '=++<⇒---<<-+-,此时此时()f x 单调递增递减综上可知当1a ≥时,()f x 在R 上单调递增;当1a <时,()f x 在(,11)x a ∈-∞---上单调递增,在(11,)x a ∈-+-+∞单调递增,在(11,11)a a ----+-单调递减. (2)由题设知,12,x x 为方程()0f x '=的两个根,故有2211221,2,2a x x a x x a <=--=--因此321111()33a f x =+同理222()(1)33a f x a x =-- 因此直线l 的方程为2(1)33ay a x =--设l 与x 轴的交点为0(,0)x ,得02(1)ax a =-而22322031()()()(12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+---- 由题设知,点0(,0)x 在曲线()y f x =的上,故0()0f x =,解得0a =或23a =或34a = 所以所求a 的值为0a =或23a =或34a =. 【点评】试题分为两问,题面比较简单,给出的函数比较常规,这一点对于同学们来说没有难度,但是解决的关键还是要看导数的符号对函数单调性的影响,求解函数的单调区间.第二问中,运用极值的问题,和直线方程的知识求解交点,得到参数的值.23. 【考点定位】此题应该说是导数题目中较为常规的类型题目,考醒的切线、单调性、极值以及最值问题都是果本中要求的重点内容.也是学生掌握比较好的知识点,在题目占能够发现(3)28F -=和分析出区间[,2]k 包含极大值点13x =-,比较重要.解:(1)()2f x ax '=,2()=3g x x b '+.因为曲线()y f x =与曲线()y g x =在它们的交点()1c ,处具有公共切线,所以(1)(1)f g =,(1)(1)f g ''=.即11a b +=+且23a b =+.解得3,3a b ==(2)记()()()h x f x g x =+当3,9a b ==-时,32()391h x x x x =+-+,2()369h x x x '=+- 令()0h x '=,解得:13x =-,21x =;()h x 与()h x '在(,2]-∞上的情况如下:x (,3)-∞- 3-(3,1)-1 (1,2)2 ()h x + 0 —0 +()h x '↑ 28↓ -4↑3由此可知:当3k ≤-时,函数()h x 在区间[,2]k 上的最大值为(3)28h -=; 当32k -<<时,函数()h x 在区间[,2]k 上的最大值小于28. 因此,k 的取值范围是(,3]-∞-24. 【解析】(I)11()22f x ax b ax b b ax ax=++≥+=+ 当且仅当11()ax x a ==时,()f x 的最小值为2b + (II)由题意得:313(1)22f a b a =⇔++= ①2113()(1)2f x a f a ax a ''=-⇒=-= ②由①②得:2,1a b ==-。

三年高考(2019-2021)数学(文)真题分类汇编——导数及其应用(选择、填空题)(原卷版)

三年高考(2019-2021)数学(文)真题分类汇编——导数及其应用(选择、填空题)(原卷版)

导数及其应用(选择题、填空题) 专题汇编1.【2021年全国高考乙卷数学(文)】设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b <B .a b >C .2ab a <D .2ab a >2.【2021年全国新高考Ⅰ卷数学】若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<3.【2021年天津高考数学】设a ∈R ,函数22cos(22).()2(1)5,x a x a f x x a x a x a ππ-<⎧=⎨-+++≥⎩,若()f x 在区间(0,)+∞内恰有6个零点,则a 的取值范围是( ) A .95112,,424⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦B .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .9112,,344⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭D .11 ,2,3447⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭4.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=5.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-6.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >07.【2021年全国新高考Ⅰ卷数学】函数()212ln f x x x =--的最小值为______.8.【2021年全国新高考II 卷数学】已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,Ax f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 9.【2021年北京市高考数学】已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.10.【2020年高考全国Ⅰ卷文数】曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 .11.【2020年高考全国Ⅲ卷文数】设函数e ()x f x x a=+.若e (1)4f '=,则a =_________.12.【2020年高考北京】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________.13.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.14.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 15.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .16.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .。

2011年高考文科数学试题分类汇编—集合

2011年高考文科数学试题分类汇编—集合

2011年高考数学试题分类汇编——集合1、(2011安徽文科)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U ⋂等于 (A )}{,,,1456 (B )}{,15 (C ) }{4 (D ) }{,,,,12345 2、(2011北京文科)已知全集U=R ,集合{}21P x x =≤,那么U C P =A. (),1-∞-B. ()1,+∞C. ()1,1-D. ()(),11,-∞-+∞3、(2011福建文科)若集合M={-1,0,1},N={0,1,2}则M ∩N 等于 A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}4、(2011广东文科)已知集合(){,|A x y x y =、为实数,且}221x y +=,(){,|B x y x y =、为实数,且}1x y +=,则A B 的元素个数为( )A .4B .3C .2D .15、(2011湖南文科)设全集{1,2,3,4,5},{2,4},U U M N M C N === 则N =( ) A .{1,2,3} B .{1,3,5} C.{1,4,5} D.{2,3,4} 6(2011江西文科)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( )A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 7(2011辽宁文科)已知集合A ={x 1|>x },B ={x 21|<<-x }},则A B =A .{x 21|<<-x }B .{x 1|->x }C .{x 11|<<-x }D .{x 21|<<x }8(2011全国大纲卷文科)设集合{}1,2,3,4U =,{}1,2,3,M ={}2,3,4,N =则U=⋂ð(M N ) (A ){}12,(B ){}23,(C ){}2,4 (D ){}1,4 9(011新课标文)已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有( )个 A.2B.4C .6 D810(2011山东文科)设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N = A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3]11(2011四川文科)若全集{1,2,3,4,5}M =,{2,4}N =,则M N =ð(A )∅ (B ){1,3,5} (C ){2,4} (D ){1,2,3,4,5}12(2011重庆文科)设错误!未找到引用源。

2011年高考文科数学试题导数

2011年高考文科数学试题导数

二、函数与导数(一)选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞) (重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为 A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是A .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =A.1 B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为〖答〗A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -= (全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A (A )10个 (B )9个 (C )8个 (D )1个(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。

高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分

(1)f(x)存在唯一的极值点;
(2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.
49.(2019·江苏,19,16 分,难度)设函数 f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为 f(x)的导函数.
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f'(x)的零点均在集合{-3,1,3}中,求 f(x)的极小值;
3
38.(2015·全国 1·文 T14)已知函数 f(x)=ax +x+1 的图象在点(1,f(1))处的切线过点(2,7),则 a= .
2
39.(2015·全国 2·文 T16)已知曲线 y=x+ln x 在点(1,1)处的切线与曲线 y=ax +(a+2)x+1 相切,则 a= .
x
1
40.(2015·陕西·理 T15)设曲线 y=e 在点(0,1)处的切线与曲线 y=x (x>0)上点 P 处的切线垂直,则 P 的坐
T13) 已 知 函 数
y=f(x) 的 图 象 是 折 线 段
ABC, 其 中
A(0,0),B
1 2
,5
,C(1,0). 函 数
y=xf(x)(0≤x≤1)的图象与 x 轴围成的图形的面积为________________.
44.(2012·全国·文 T13)曲线 y=x(3ln x+1)在点(1,1)处的切线方程为 .
34.(2017·天津,文 10)已知 a∈R,设函数 f(x)=ax-ln x 的图象在点(1,f(1))处的切线为 l,则 l 在 y 轴上的
截距为 .

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编 考点01 利用导数求函数单调性,求参数(2)若不等式()1f x ≥恒成立,求a 的取值范围.考点02 恒成立问题1.(2023年全国新高考Ⅱ卷(文))(1)证明:当01x <<时,sin x x x x 2-<<; (2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.2.(2020年全国高考Ⅱ卷(文)数学试题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2019∙全国Ⅰ卷数学试题)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x [0∈,π]时,f (x )≥ax ,求a 的取值范围.4.(2019年全国高考Ⅱ卷(文))已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.考点03 三角函数相关导数问题a=时,求b的取值范围;(i)当0(ii)求证:22e+>.a b4.(2021年全国高考Ⅰ卷数学试题)已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点;∈,π]时,f(x)≥ax,求a的取值范围.(2)若x[0考点04 导数类综合问题参考答案考点01 利用导数求函数单调性,求参数考点02 恒成立问题 1考点03 三角函数相关导数问题2022年8月11日高中数学作业学校:___________姓名:___________班级:___________考号:___________考点04 导数类综合问题 一、解答题)(【点睛】思路点睛:函数的最值问题,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系4.(2022∙全国新高考Ⅱ卷(文))已知函数(2) 和首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;当时,的解为:当113,ax⎛⎫--∈-∞⎪时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,()1+,a x与联立得化简得3210--+=,由于切点的横坐标x x x综上,曲线过坐标原点的切线与曲线的公共点的坐标为和【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注。

导数(学生版)—2024年高考真题数学试题分类汇编

导数(学生版)—2024年高考真题数学试题分类汇编

2024年高考数学真题分类汇编--导数一、选择题:在每小题给出的四个选项中,只有一个选项是正确的.1(新课标II卷)设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a2+b2的最小值为()A.18B.14C.12D.12(甲卷理科)设函数f x =e x+2sin x1+x2,则曲线y=f x 在0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.23二、选择题:在每小题给出的选项中,有多项符合题目要求.3(新课标II卷). 设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题:4(新课标I卷)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a= .5曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.四、解答题:6(新课标I卷)已知函数f(x)=lnx2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f(x)>-2当且仅当1<x<2,求b的取值范围.7(新课标II卷). 已知函数f(x)=e x-ax-a3.(1)当a=1时,求曲线y=f(x)在点1,f(1)处的切线方程;(2)若f(x)有极小值,且极小值小于0,求a的取值范围.8(甲卷理科)已知函数f x =1-ax-x.ln1+x(1)当a=-2时,求f x 的极值;(2)当x≥0时,f x ≥0恒成立,求a的取值范围.9已知函数f x =a x-1-ln x+1.(1)求f x 的单调区间;(2)若a≤2时,证明:当x>1时,f x <e x-1恒成立.10(北京卷)已知f x =x+k ln1+x处切线为l.在t,f tt>0(1)若切线l的斜率k=-1,求f x 单调区间;(2)证明:切线l不经过0,0;(3)已知k=1,A t,f t,其中t>0,切线l与y轴交于点B时.当2S△ACO=15S△ABO,,O0,0,C0,f t符合条件的A的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)11设函数f x =x ln x .(1)求f x图象上点1,f 1 处切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.12(上海卷)对于一个函数f x 和一个点M a ,b ,令s x =x -a 2+f x -b 2,若P x 0,f x 0 是s x 取到最小值的点,则称点P 是M 在f x 的 “最近点”.(1)对于f x =1xx >0 ,求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的 “最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的 “最近点”,且直线MP 与y =f x 在点P 处的切线垂直;(3)已知y =f x 在定义域R 上存在导函数f x ,且函数g x 在定义域R 上恒正. 设点M 1t -1,f t -g t ,M 2t +1,f t +g t ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的 “最近点”,试判断f x 的单调性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2017新课标高考数学导数分类汇编(文)2011-2017新课标(文科)导数压轴题分类汇编【2011新课标】21. 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,f (x )>ln xx -1【解析】(1)221(ln )'()(1)x x b x f x x xα+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩ 即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

(2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2(2ln x -x 2-1x ), 考虑函数,则22222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得,从而当,且时,.【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间(2)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值 【解析】(1)f (x )的定义域为(,)-∞+∞,()x f x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增.若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.(2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0)(1)x x k x x e +<+>-①.令1()(1)x x g x x e +=+-,则221(2)()1(1)(1)xx x x x xe e e x g x e e ----'=+=--. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >,所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点.ln ()1x f x x >-ln ()1xf x x >-0x >1x ≠ln ()1xf x x >-设此零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>.所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 【解析】(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).【2013新课标2】21.已知函数f(x)=x 2e -x . (1)求f(x)的极小值和极大值;(2)当曲线y =f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解析】(1)f(x)的定义域为(-∞,+∞), f′(x)=-e -x x(x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f′(x)<0;当x ∈(0,2)时,f′(x)>0. 所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f(x)取得极小值,极小值为f(0)=0;当x =2时,f(x)取得极大值,极大值为f(2)=4e -2.(2)设切点为(t ,f(t)),则l 的方程为y =f′(t)(x -t)+f(t). 所以l 在x 轴上的截距为m(t)=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞). 令h(x)=2x x+(x≠0),则当x ∈(0,+∞)时,h(x)的取值范围为[22∞); 当x ∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[223,+∞]. 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[223,+∞].【2014新课标1】21.设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。

【解析】(1)()(1)af x a x b x'=+--,由题设知 (1)0f '=,解得b 1 (2) f (x )的定义域为(0,∞),由(1)知, 21()ln 2a f x a x x x -=+-,()1()(1)111a a a f x a x x x x x a -⎛⎫'=+--=-- ⎪-⎝⎭(i)若12a ≤,则11a a≤-,故当x ∈(1,∞)时, f '(x ) 0 , f (x )在(1,∞)上单调递增. 所以,存在0x ≥1, 使得 0()1a f x a ≤-的充要条件为(1)1a f a ≤-,即1121a aa--<- 所以2 1 a 2 1;(ii)若112a <<,则11a a >-,故当x ∈(1, 1a a -)时, f '(x ) <0 , x ∈(,1aa+∞-)时,()0f x '>,f (x )在(1,1a a -)上单调递减,f (x )在,1a a+∞-单调递增. 所以,存在0x ≥1,, 使得 0()1a f x a ≤-的充要条件为()11a af a a≤--, 而()2()ln 112111a a a a af a a a a a a=++>-----,所以不符合题意. (ⅲ) 若1a >,则11(1)1221a a af a ---=-=<-。

综上,a 的取值范围为:()()2211,-⋃+∞【2014新课标2】21. 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (1)求a ;(2)证明:当时,曲线()y f x =与直线2y kx =-只有一个交点。

【解析】(1)2()36f x x x a '=-+,(0)f a '=曲线()y f x =在点(0,2)处的切线方程为2y ax =+,由题设得22a-=-,所以1a = (2)由(1)知,32()32f x x x x =-++设32()()23(1)4g x f x kx x x k x =-+=-+-+ 由题设知10k ->当0x ≤时,2()3610g x x x k '=-+->,()g x 单调递增,(1)10,(0)4g k g -=-<=, 所以()0g x =在(,0]-∞有唯一实根。

当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->2()363(2),()h x x x x x h x '=-=-在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=所以()0g x =在(0,)+∞没有实根综上()0g x =在R 由唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点。

【2015新课标1】21. 设函数x 。

(1)讨论()f x 的导函数'()f x 零点的个数; (2)证明:当0a >时,2()2ln f x a a a≥+。

【解析】【2015新课标2】21. 已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【解析】已知()()ln 1f x x a x =+-..),1()1,0)(00)(0.1)(')1(上是减函数上是增函数,在在(时,函数当)上是增函数;,在(时,函数当+∞>∞+≤-=aa x f a x f a a xx f Θ (2)由(1)知,当.ln 1)1(1)(0a a af a x x f a --==>时取得最大值在时,函数.01ln ,22ln 1<-+->--a a a a a 整理得由 .1,0(,10),1()(,0)1(0)(,0)(',00,11',1ln )()即上述不等式即函数。

又)是增,在()(则设∈<<∴<=∞+>∴>∴>+=-+=a a g a g g x g x g x a xx g x x x g Θ【2016新课标1】21. 已知函数f (x )=(x −2)e x +a(x −1)2. (I)讨论f(x)的单调性;(II)若f(x)有两个零点,求的取值范围. 【解析】(I)(i)设,则当时,;当时,. 所以在单调递减,在单调递增. (ii)设,由得x=1或x=ln(-2a).①若,则,所以在单调递增. ②若,则ln(-2a)<1,故当时,;当时,,所以在单调递增,在单调递减.③若,则,故当时,,当时,。

相关文档
最新文档