3.2.1合并同类项与移项
人教版七年级上册数学第3章3.2.1移项合并同类项同步练习d

人教版七年级上册数学第3章 一元一次方程3.2.1移项与合并一、填空题1.解方程中的移项就是“把等式_______某项_______后移到_______.”例如,把方程3x +20=8x 中的3x 移到等号的右边,得_______.在2.解实际问题列方程时用到的一个基本的相等关系是“表示____________的_________ ______相等.”3.目前,合并含相同字母的项的基本法则是ax +bx +cx =_______,它的理论依据是______. 4.解形如ax +b =cx +d 的一元一次方程就是通过_______、_______、_______等步骤使方程向着____的形式转化,从而求出未知数.5.若3x +2a =12和方程3x -4=2的解相同,则a =______.6.已知x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =______. 7.列出方程,再求x 的值:(1) x 的25%比它的2倍少7.方程:___________,解得x =_______.(2) x 的3倍与9的和等于x 的31与23的差.方程:________________,解得x =______;8.一元一次方程t t 213=-化为t =a 形式的方程为___________. 二、解答题9.(1) 3x =-12(2)6x =-2(3)-2x =4(4) 214-=x(5) -x =-2 (6) -3x =0(7) 421=-x (8)3232=-x三、选择题10.下列两个方程的解相同的是( ).(A) 方程021=+x 与方程021=+x (B)方程3x =x +1与方程2x =4x -1 (C) 方程5x +3=6与方程2x =4 (D)方程6x -3(5x -2)=5与方程6x -15x =3 11.方程3141=x 正确的解是( ). (A)x =12 (B)121=x (C)34=x(D)43=x12.下列说法中正确的是( ).(A) 1-x =2x -1移项后得1-1=2x +x (B) 3x =5+2可以由3x +2=5移项得到(C)由5x =15得515=x 这种变形也叫移项 (D)1-7x =2-6x 移项后得1-2=7x -6x 二、解答题 13.解下列方程(1)21132-=-x x (2)21323-=-x(3) x +13=5x +37 (4) 3x +14=-714.你能在日历上圈出一个竖列上相邻的3个数,使得它们的和是15吗?说明理由.。
人教版数学七年级上册3.2《解一元一次方程(一)——合并同类项与移项1》教学设计

人教版数学七年级上册3.2《解一元一次方程(一)——合并同类项与移项1》教学设计一. 教材分析人教版数学七年级上册3.2《解一元一次方程(一)——合并同类项与移项》这一节主要让学生掌握一元一次方程的解法。
通过前面的学习,学生已经了解了方程的概念和一元一次方程的定义,本节内容将进一步引导学生学习如何解一元一次方程。
教材首先介绍了合并同类项和移项的概念,然后通过具体的例题让学生掌握解一元一次方程的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和运算能力,对于方程的概念和一元一次方程的定义已经有了一定的理解。
但是,学生在解方程的过程中,可能对合并同类项和移项的概念理解不深,需要通过具体的例题和练习来巩固。
三. 教学目标1.了解合并同类项和移项的概念。
2.学会解一元一次方程的方法。
3.能够独立完成解一元一次方程的练习。
四. 教学重难点1.合并同类项和移项的概念。
2.解一元一次方程的方法。
五. 教学方法采用讲解法、例题演示法、练习法、小组讨论法等。
六. 教学准备1.PPT课件。
2.例题和练习题。
3.笔记本和文具。
七. 教学过程1.导入(5分钟)教师通过复习方程的概念和一元一次方程的定义,引导学生进入本节内容。
2.呈现(15分钟)教师讲解合并同类项和移项的概念,并通过PPT展示具体的例题,让学生理解并掌握解一元一次方程的方法。
3.操练(10分钟)教师给出一些练习题,让学生独立完成,检验学生对合并同类项和移项概念的理解以及对解一元一次方程方法的掌握。
4.巩固(10分钟)教师挑选一些学生的作业进行讲解,分析其解题思路,引导学生总结解题方法。
5.拓展(5分钟)教师给出一些拓展题目,让学生分组讨论,培养学生的合作能力和解决问题的能力。
6.小结(5分钟)教师对本节课的内容进行总结,强调合并同类项和移项的概念以及解一元一次方程的方法。
7.家庭作业(5分钟)教师布置一些家庭作业,让学生巩固本节课所学内容。
8.板书(5分钟)教师在黑板上列出本节课的重点内容,方便学生复习。
3.2.1合并同类项解一元一次方程(教案)

举例:在方程2x + 3 = 7中,将3移项到等号右边时,需要变为-3。
(2)合并同类项时系数的处理:学生在合并同类项时,可能会忽略系数相加减的规则,这是一个难点。
举例:对于方程3x + 4x = 20,学生需注意系数3和4相加得7。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了合并同类项解一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)一元一次方程的应用:将实际问题转化为数学模型,并求解,是学生容易感到困惑的地方。
举例:当遇到“小明买了3本书和4本书一共花了20元”这样的问题时,学生需要学会将其转化为方程3x + 4x = 20。
(4)解决含有未知数系数的方程:对于系数不同的方程,学生需要学会通过运算将系数变为相同,然后进行合并同类项。
3.培养学生的数学建模能力:让学生在实际问题中运用一元一次方程,学会将现实问题转化为数学模型,从而增强数学应用意识。
4.培养学生的合作交流能力:通过小组讨论和课堂互动,引导学生分享解题思路,提高合作交流能力,培养团队精神。
三、教学难点与重点
1.教学重点
(1)合并同类项法则的应用:重点在于让学生掌握合并同类项的法则,并能够熟练应用于简化方程,为解一元一次方程打下基础。
具体内容包括以下方程类型的解题方法:
(1)x + a = b
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案

3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
3.2.1合并同类项与移项(1)

随堂练习
1
洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型,Ⅱ型,Ⅲ 型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划 各生产多少台?
解:设Ⅰ型
x 台,Ⅱ型 2x台,Ⅲ型 14 x
x 2x 14x 25500
台,则:
合并, 得17 x 25500
系数化1, 得x 1500
上面解方程中”合并同类项”起了什么作用?
理性提升
1.合并同类项的作用:合并
同类项起到了简化的作用,即把 含有未知数的项合并,从而把方 程转化为mx=n,使其更接近x=a的 形式(其中m、n、a是常数) . 2.系数化为1的依据是等式 的基本性质2(等式两边同乘同 一个数,或同除以同一个不为零 的数,结果仍相等)
前年购买量+去年购买量+今年购买量=140台
x+2x+4x=140
思考:怎样解 这个方程呢?
“总量=各部分量的和”是一个基本的相等关系.
方法构想 1
Байду номын сангаас
分析:解方程,就是把 方程变形,变为 x = a (a为常数)的形式.
x 2x 4x 140
合并同类项
7 x 140
系数化为1
x 20
1 2 1 )x 2 3
2、等式有什么性质?用等式的性质解方程; (1)6x=42 (2)x+7=-16
解:两边同除以6得x=7 解:两边同减7得x=-25
问题1: 某校三年共购买计算机140台,去年购买数量 是前年的2倍,今年购买数量又是去年的2倍,前 年这个学校购买了多少台计算机? 设前年购买x台。可以表示出:去年购买计算 机 2 x 台,今年购买计算机 4 x 台。 你能找出问题中的相等关系吗?
3.2.1解一元一次方程(一)----合并同类项与移项课件

系数化为1,得:
5x = 4
1.5x=-0.3
系数化为1,得:
X=4/5
X = - 0.2
(3) 3 x 1.3 x 5 x 2.7 x 12 3 6 4 解:合并同类项,得:
4x = - 60
系数化为1,得:
X = - 15
x 3x 7; (4) 2 2
解:合并同类项,得: 2X=7 系数化为1,得: X=7/2
合并同类项,得: 5x=25 系数化为1,得: X=5
[练习二] 解下列方程:
(1)x 2 3 x (2) x 1 2 x
5 5 3x (4) x 2 x 1 2 x (3) 3
(5) x 3x 1.2 4.8 5 x (6) 5x-200=2x+100
[思考]
[ 思 考 :方程 3x 20 ]
4 x 25 的两边都含有的项(3x与4 x )
和常数项( 20与 25),
怎样才能把它化成
x a (a为常数)的形式呢?
解:利用等式的性质1,得 3x+20-4x=4x+25-4x 3x+20 -4x =25 。 3x+20-4x-20=25-20 。 3x-4x=25 -20。
解:(1)合并同类项得: 两边除以4 ,得 ∴ X= 2; (2) 合并同类项得:
(1)9x—5 x =8 ; (2)4x-6x-x =-15;
4x=
=
8
x的系数化为1,得 ∴ X=
-3x
-15
5(1) 6x —x = 4 ;
解:合并同类项,得: (2)-4x + 6x-0.5x =-0.3; 解:合并同类项,得:
【七年级数学上册】《3.2 解一元一次方程(1)-合并同类项与移项》导学案 新人教版

《3.2 解一元一次方程(1)─合并同类项与移项》导学案【学习目标】1.会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程;2.培养学生观察、分析、概括的能力;3.初步渗透特殊—一般—特殊的辩证唯物主义思想【学习重点】:会合并同类项解一元一次方程;【学习难点】:会列一元一次方程解决实际问题;【使用说明与学法指导】1、先认真阅读学习目标;2、再认真阅读86—87页内容,并用红笔标注重点;3、阅读教材后认真完成导学案.预习案【预习自学】1.等式性质 1:2:2.解方程:(1)x-9=8;(2) 3x+1=4;3.下列各题中的两个项是不是同类项?(1)3x y与-3x y (2)0.2a b与0.2ab(3)11abc与9bc (4)3m n 与-n m(5)4xy z与4 x yz (6)6 与x4.能把上题中的同类型合并成一项吗?如何合并?5.合并同类型的法则是什么?依据是什么【我的疑惑】________________________________________________________探究案探究点:合并解一元一次方程问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x;这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.2.自己试着完成例1 解下列方程:(1)2x-5/2x=6-8; (2)7x-2.5x+3x-1.5x=-15×4-6×3合并同类项,得系数化为1,得所以-3x= ,9x=答:这三个数是、、讨论:以上列方程解决实际问题的关键。
3.2解一元一次方程(1) ——合并同类项与移项教学设计

3.2解一元一次方程(1)——合并同类项与移项教学设计教学目标:知识与技能理解合并同类项法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。
过程与方法通过探索合并同类项法则的过程,培养学生观察、思考、归纳的能力,积累数学探究活动的经验。
情感、态度与价值观通过探索合并同类项法则,并进一步探索一元一次方程一般解法的过程,感受数学活动充满创造性,激发学生学习数学的兴趣。
教学重点:合并同类项法则的探索及应用。
教学难点:合并同类项法则的理解和灵活应用。
教学过程:一、温故知新:1.等式性质 1: 2:;1.师:你们知道等式的基本性质是什么?2.利用等式的基本性质解方程:(投影)解方程:(1)x-9=8;(2) 3x+1=4教师请两名学生板演,后集体订正。
公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,•重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与还原》。
“对消”与“还原”是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。
二、自主探究:1.问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?投影仪展示问题:(要求学生展开讨论,教师请举手的同学回答下列问题)①这道题应设什么为未知数?②本题的相等关系是什么?③去年购买的计算机,今年购买的计算机用代数式应怎样表示?④这道题的方程是什么?⑤怎样用等式的基本性质解方程?教师展示解一元一次的过程:所列方程x+2x+4x=140,如何解这个方程呢?教师分析:2x表示2×x,4x表示4×x,x表示1×x.根据分配律,x+2x+4x=(1+2+4)x=7x.这样就可以把含x的项合并为一项,合并时要注意x 的系数是1,不是0.分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x;这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;下面的框图表示了解这个方程的具体过程:↓合并同类项↓系数化为1由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.2.自己试着完成例1 解方程 364155.135.27⨯-⨯-=-+-x x x x ;3. 问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x 名学生,根据第一种分法,分析已知量和未知量间的关系;(1)每人分3本,那么共分出______本;共分出3x 本和剩余的20本,可知道这批书共有________本; 根据第二种分法,分析已知量与未知量之间的关系.(2)每人分4本,那么需要分出_______本;需要分出4x 本和还缺少25本那么这批书共有________本;这批书的总数是一个定值(不变量),表示它的两个式子应相等; 根据这一相等关系,列方程: ___________;本题还可以画示意图,帮助我们分析:注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x 的项(3x 与4x ),•也都含有不含字母的常数项(20与-25)怎样才能使它转化为x=a (常数)的形式呢?要使方程右边不含x 的项,根据等式性质1,两边都减去4x ,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20 -4x-20 =4x-25 -4x-20 即 3x-4x=-25-20将它与原来方程比较,相当于把原方程左边的+20变为-20 后移到方程右边,把原方程右边的4x变为-4x 后移到左边.像上面那样,把等式一边的某项变号后移到另一边,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,•也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.↓移项↓合并同类项↓系数化为1由此可知这个班共有45个学生.4. 例2 解方程 3x+7=32-2x (自己动手做一做)【课堂练习】1.课本第89页练习;2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么? _____________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程: _______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;3.解方程(1)6x-7=4x -5 (2)12x-6 =34x(3)3x+5=4x+1 (4)9-3y=5y+5【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;【拓展训练】1.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程 _________合并,得_________系数化为1,得 x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)2.某学生读一本书,第一天读了全书的13多2页,第二天读了全书的12少1•页,•还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:______+______+_____=全书页数;列方程:_______________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
3.2 解一元一次方程(一)
——合并同类项与移项(1)
约公元825年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁文译本取名为 《对消与还原》.“对消”与 “还原”是什么意思呢?
某校三年共购买计算机140台,去 年购买数量是前年的2倍,今年购买的 数量又是去年的2倍.前年这个学校购 买了多少台计算机?
合并同类项的目的就是化简方程, 它是一种恒等变形,可以使方程变得简
单,并逐步使方程向x=a的形式转化 .
1.教科书第89页练习.
2.解“问题2”的两个方程.
1.教科书第93页习题3.2第1、3的(1)(2)、6 题. 2.补充作业 (1)三个连续整数之和为36, 求:这三个整数分别是多少? (2)某科技兴趣小组共32人,其中男生与女生的人 数之比为3:5,问男、女生各有多少人?
还有不同的设法么?还 可以列怎样的方程?
方法二: 方法三:设Fra bibliotek年购买计算机x台.
设今年购买计算机x台.
x x 2 x 140 2
x x x 140 4 2
如何将此方程转化为 x = a(a为常数)的形式?
x 2x 4x 140
合并同类项
7 x 140
系数化为1
分析: 设前年这个学校购买了计算机x台,则去年购买计算机 _____ 2x 台,今年购买计算机_____ 4x 台,
根据问题中的相等关系: 前年购买量+去年购买量+今年购买量=140台
根据题意,列得方程
x + 2x +4x = 140.
某校三年共购买计算机140台,去年购买数 量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机?
等式性质2
理论依据?
x 20
解方程
7 x 2.5x 3x 1.5 x 15 4 6 3.
解:合并同类项,得
6 x 78.
系数化为1,得
x 13 .
1.你今天学习的解方程有哪些步骤?
2.合并同类项在解方程的过程中起到了 什么作用?
驶向胜利 的彼岸
合并同类项的作用: