六年级上册知识点汇总
数学六年级上册知识点汇总

数学六年级上册知识点汇总一、整数1. 整数的概念整数是由正整数、0和负整数组成的集合,用"Z"表示。
2. 整数的比较当比较两个整数的大小时,可以通过大小关系符号(大于、小于、等于)来表示。
3. 整数的运算整数之间可以进行加法、减法和乘法运算,运算结果仍为整数。
- 加法运算:两个整数相加,结果为两个整数的代数和。
- 减法运算:一个整数减去另一个整数,结果为两个整数的代数差。
- 乘法运算:两个整数相乘,结果为两个整数的代数积。
4. 整数的绝对值一个整数的绝对值是该整数到零的距离,负整数的绝对值为正整数。
二、分数1. 分数的概念分数是由一个整数作为分子、一个正整数作为分母所构成的表达形式。
2. 分数的化简将一个分数约简为最简形式,即分子和分母没有公因数。
3. 分数的加法和减法分数之间可以进行加法和减法运算,运算结果仍为分数。
- 加法运算:分数相加,要求分母相同,分子相加后得到新的分子。
- 减法运算:分数相减,要求分母相同,分子相减后得到新的分子。
4. 分数的乘法和除法分数之间可以进行乘法和除法运算,运算结果仍为分数。
- 乘法运算:分数相乘,分子相乘得到新的分子,分母相乘得到新的分母。
- 除法运算:分数相除,将除数的倒数与被除数相乘得到新的分子和分母。
三、小数1. 小数的概念小数是指有限小数和无限循环小数的统称,有限小数可以表示为分数。
2. 小数的读法与写法根据小数点的位置读出小数的整数部分和小数部分,小数点后的数值可以用百分数或分数形式表示。
3. 小数的大小比较当比较两个小数的大小时,可以通过大小关系符号(大于、小于、等于)来表示。
4. 小数的运算小数之间可以进行加法、减法和乘法运算,运算结果仍为小数。
四、面积与周长1. 面积的概念面积是指平面图形所占的二维空间大小,用平方单位来表示。
2. 面积的计算常见图形的面积计算公式:- 矩形的面积 = 长 ×宽- 正方形的面积 = 边长 ×边长- 三角形的面积 = 底边长 ×高 ÷ 2- 圆的面积= π × 半径 ×半径3. 周长的概念周长是指闭合图形边界的长度,用长度单位来表示。
小学数学六年级上册40个重要知识点归纳

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
语文六年级上册知识点汇总

语文六年级上册知识点汇总一、字词部分。
1. 生字词。
- 要求会写的字:如“邀”“俯”“瀑”等,要掌握其正确的书写笔顺、字形结构(如左右结构、上下结构等)。
- 多音字:如“蒙”(mēng、méng、měng),要能根据不同的读音组词,理解不同读音下的字义区别。
例如“蒙骗”(mēng)、“启蒙”(méng)、“蒙古”(m ěng)。
- 近义词和反义词:像“静谧 - 安静(近义词)”“茂盛 - 稀疏(反义词)”等,通过近义词和反义词的学习,加深对词语意思的理解。
2. 词语理解与运用。
- 理解课文中的重点词语,如“德高望重”形容品德高尚,声望很高。
能够准确运用这些词语进行造句,提高语言表达能力。
例如“这位老教授德高望重,深受学生们的爱戴。
”- 积累四字词语,如“悬崖峭壁”“狂风怒号”等,体会词语所描绘的景象,并且在写作中恰当运用,增强文章的生动性。
二、句子部分。
1. 修辞手法。
- 比喻:把一种事物比作另一种事物,使表达更形象生动。
例如“索溪像一个从深山中蹦跳而出的野孩子。
”本体是“索溪”,喻体是“野孩子”,比喻词是“像”。
- 拟人:把事物当作人来写,赋予事物人的动作、神态、思想等。
如“鸟儿在枝头唱歌。
”将鸟儿当作人,“唱歌”是人的行为。
- 排比:三个或三个以上结构相同或相似、语气一致、意思相关或相同的句子排列在一起。
例如“心灵是一方广袤的天空,它包容着世间的一切;心灵是一片宁静的湖水,偶尔也会泛起阵阵涟漪;心灵是一块皑皑的雪原,它辉映出一个缤纷的世界。
”- 夸张:对事物的形象、特征、作用、程度等作扩大或缩小的描述。
如“飞流直下三千尺,疑是银河落九天。
”“三千尺”是夸张的写法,突出了瀑布的雄伟壮观。
2. 句子转换。
- 陈述句与反问句的转换。
例如“这是伟大的奇观。
”改为反问句是“这难道不是伟大的奇观吗?”反问句表达的语气更强烈。
- 把字句与被字句的转换。
如“我把作业做完了。
”转换为“作业被我做完了。
六年级数学上册期末复习知识点汇总(人教版)

六年级数学上册期末复习知识点汇总(人
教版)
1. 数的读写和数位在数表中的比较
- 掌握百以内数的读写方法
- 进一步练百以内数字的大小比较
- 在数表中比较数位的大小
2. 术语的认识和深化
- 理解单位和量的关系,研究长度、容量、时间等单位的名称和换算
- 认识图线表、拔河运动、神奇图等特殊的数学问题
- 进一步掌握理论题中的数学术语,如加法、减法、乘法、除法等
3. 两位数和三位数的认识
- 认识两位数和三位数,并通过具体的例子进行演算
- 进一步研究如何将两位数和三位数的大小进行比较
- 在实际问题中运用两位数和三位数进行计算
4. 数量和对应关系的探讨
- 了解相等的概念,并通过具体例子进行对比
- 研究图表和表格的分析,找出其中的规律
- 运用对应关系解决实际问题,如物品的分组、排列等
5. 探究几何图形和图形的特征
- 了解常见的平面图形和立体图形,如三角形、四边形、圆、长方体、正方体等
- 掌握几何图形的命名及其特征
- 研究分析和比较不同几何图形的性质和关系
6. 数据的收集和分析
- 研究如何进行数据的收集、整理和表示
- 给出简单的表格和图表,进行数据的分析和总结
- 运用数据分析解决实际问题,如人数统计、天气变化等
以上是六年级数学上册的期末复习知识点汇总,希望同学们认真复习,并做好复习笔记和习题,以便顺利应对期末考试。
祝大家取得好成绩!。
人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总一、分数乘法•分数乘法的意义:理解分数乘法的两种意义——求一个数的几分之几是多少,以及分数乘整数的意义。
•分数乘法的计算方法:掌握分数乘法的计算法则,能熟练进行分数乘法运算,并理解分数乘法运算的算理。
•分数乘法与加减法的混合运算:能够进行分数乘法与加减法的混合运算,并合理运用运算律进行简便计算。
•解决实际问题:能将分数乘法运算应用于解决实际问题,如分数应用题。
二、位置与方向(二)•根据方向和距离确定物体的位置:学会根据方向和距离在平面图上确定物体的位置,能描述简单的路线图。
•在方格纸上用数对表示位置:进一步巩固用数对表示位置的方法,并能在方格纸上根据数对确定点的位置。
•比例尺的应用:理解比例尺的意义,能根据比例尺计算图上距离或实际距离。
三、分数除法•分数除法的意义:理解分数除法的意义,掌握分数除以整数的计算方法。
•一个数除以分数的计算方法:学会一个数除以分数的计算方法,并能进行分数除法的简便计算。
•分数除法的混合运算:能够进行分数除法的混合运算,包括与加、减法的混合运算。
•解决实际问题:能将分数除法运算应用于解决实际问题,如分数除法应用题。
四、比•比的意义:理解比的意义,掌握比的基本性质。
•比与分数、除法的关系:理解比与分数、除法之间的联系与区别,能够进行比与分数、除法的互化。
•比的应用:掌握比的应用,如按比例分配问题等。
五、圆•圆的认识:认识圆,掌握圆的基本特征,理解直径与半径的关系。
•圆的周长:理解圆周率的意义,掌握圆的周长计算公式,并能进行圆的周长的计算。
•圆的面积:理解圆的面积公式的推导过程,掌握圆的面积计算公式,并能进行圆的面积的计算。
•圆的对称性:理解圆是轴对称图形,能找出圆的对称轴。
六、百分数(一)•百分数的意义:理解百分数的意义,掌握百分数的读写方法。
•百分数与小数、分数的互化:学会百分数与小数、分数的互化方法。
•百分数的应用:能将百分数应用于解决实际问题,如折扣问题、纳税问题、利息问题等。
六年级数学上册知识点汇总

六年级数学上册知识点汇总六年级数学上册主要包括整数、分数、小数、正比例和反比例、图形与尺规作图等知识点。
以下是这些知识点的详细汇总:一、整数1. 整数的概念:整数包括自然数、0和负整数。
2. 整数的加法和减法:同号相加为同号,异号相减取绝对值相减。
3. 整数的乘法和除法:同号相乘为正,异号相乘为负;除法时,被除数的符号与商的符号相同。
二、分数1. 分数的概念:分数由分子和分母组成,分母表示分成几等份,分子表示取几份。
2. 分数的加法和减法:分母相同时可相加减,否则通分后再计算。
3. 分数的乘法和除法:乘法时分子相乘,分母相乘;除法时乘以倒数。
三、小数1. 小数的概念:小数是比分数更精确的数。
2. 小数的加法和减法:小数点对齐后进行加减运算。
3. 小数的乘法和除法:小数相乘时先忽略小数点,最后根据小数位数确定小数点位置;小数相除时将除数乘以倍数使之为整数后再计算。
四、正比例和反比例1. 正比例的关系:两个量成正比例时,一个量的增大引起另一个量增大,二者的比值保持不变。
2. 反比例的关系:两个量成反比例时,一个量的增大引起另一个量减小,二者的乘积保持不变。
3. 正比例和反比例的应用:利用正比例和反比例的性质进行问题求解,如比例系数、单位比值等。
五、图形与尺规作图1. 图形的认识:认识常见的图形,如三角形、矩形、圆等。
2. 尺规作图:利用尺规绘制各种图形,如已知边长画正方形、已知半径画圆等。
以上即为六年级数学上册的主要知识点汇总,通过系统的学习和巩固可以帮助学生更好地掌握数学知识,提高解题能力。
希望同学们能够认真学习,不断提升自己的数学水平!。
人教版六年级数学上册各单元知识点汇总

第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
六年级上册语文知识点汇总

六年级上册语文知识点汇总一、字词盘点1. 掌握生字:窜觅跪拗确凿菜畦桑葚轻捷蟋蟀臃肿脑髓相宜书塾蝉蜕人迹罕至人声鼎沸2. 认识生词:菜畦:菜地。
秕谷:干瘪的谷子。
蝉蜕:幼蝉化为成蝉时所脱下的皮。
花圃:种花草的园地。
栅栏:用竹、木、铁条等组成的阻拦物。
相宜:合适;符合。
缠络:缠结连络。
方正:指人行为、品性正直无邪。
消释:消除;解决。
质朴:朴素;不矫饰。
二、美句积累1. 从前对巴特农神庙怎么干,现在对圆明园也怎么干,只是更彻底,更漂亮,以至于荡然无存。
我们所有大教堂的财宝加在一起,也许还抵不上东方这座了不起的富丽堂皇的博物馆。
那儿不仅仅有艺术珍品,还有大堆的金银制品。
丰功伟绩!收获巨大!两个胜利者,一个塞满了腰包,这是看得见的,另一个装满了箱箧。
他们手挽手,笑嘻嘻地回到了欧洲。
这就是这两个强盗的故事。
2. 我们欧洲人是文明人,中国人在我们眼中是野蛮人。
这就是文明对野蛮所干的事情。
将受到历史制裁的这两个强盗,一个叫法兰西,另一个叫英吉利。
不过,我要抗议,感谢您给了我这样一个抗议的机会。
治人者的罪行不是治于人者的过错;政府有时会是强盗,而人民永远也不会是强盗。
3. 现在,我证实,发生了一次偷窃!两个征服者卑鄙无耻地偷窃了一座精美绝伦的神庙。
因为这件事是如此可耻,让人难以启齿,所以你们也尽量闭口不谈。
4. 一天,几个日本侵华分子在河北省遵化市考察“东陵”。
当他们十分傲慢地打开裕陵妃嫔墓时,一位日本学者认出了木门上的“二龙戏珠”图中的“珠子”为“玻璃泡”,而他的中国“向导”却说“这是珍珠”。
当日本学者指出“珠子”是玻璃时,“向导”的脸红了起来,并争辩道:“中国什么都好,就是不喜欢用真东西。
”5. 我希望有朝一日,解放了的干干净净的法兰西会把这份战利品归还给被掠夺的中国,那才是真正的物主。
我相信我们的政府会采取明智的态度,我不希望你们认为我的言论有亲英反法的成分。
相反,我对你们这个民族极大的同情。
他值得我抱以同情之理由,远超过俄罗斯民族或德意志民族。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元分数乘法一、分数乘法(一)分数乘法的意义:一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”:单位“1” 在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:(1)“的” 相当于“×” ,“占”、“相当于”“是”、“比”是“ = ”(2)分率前是“的”字:用单位“1”的量×分率=具体量例如:甲数是20,甲数的1/3是多少?列式是:20×1/34、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;例如:甲数是50,乙数比甲数少1/2,乙数是多少?列式是:50×(1-1/2)(比多):单位“1”的量×(1+分率)=具体量例如:小红有30元钱,小明比小红多3/5,小红有多少钱?列式是:50×(1+3/5)3、求一个数的几倍是多少:用一个数×几倍;4、求一个数的几分之几是多少:用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)第二单元位置与方向(二)一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法一、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
运用,a×2/3=b×1/4求a和b是多少。
把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:乘法:因数 ×因数 = 积除法:积 ÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
二、分数除法解决问题1,解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程用 X×分率=具体量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。
列方程为:X×1/3=20(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/32、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量÷ (1-分率)= 单位“1”的量;例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)(比多):具体量÷ (1+分率)= 单位“1”的量例如:一种商品现在是80元,比原价增加了1/7,原价多少?列式是:80÷(1+1/7)3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/44、求一个数比另一个数多几分之几的方法:用两个数的相差量÷单位“1”的量 =分数即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)第四单元比(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)15∶ 10= 3/2前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15∶ 10=15÷10=15/10=3/2(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:(2)用求比值的方法。
注意:最后结果要写成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2还可以15∶10 = 15÷10 = 3/2最简整数比是3∶25、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
一般有两种解题法1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。
要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4第五单元圆的认识一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同一个圆内或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。