2018年研究生数学建模A题
2018年数学建模国赛a讲解

2018年数学建模国赛a讲解【实用版】目录一、2018 年数学建模国赛 A 题概述二、解题思路及方法1.题目解析2.建模方法3.解题过程三、参赛体验及建议1.参赛体验2.建议与心得正文一、2018 年数学建模国赛 A 题概述2018 年数学建模国赛 A 题的题目是“集成电路板焊接工艺的优化”,要求参赛选手通过建立数学模型,对回焊炉内部的温度分布进行分析和调整,以保证焊接质量。
这个问题涉及到预热区、恒温区、回流区和冷却区四个大温区的温度控制,需要运用热传导方程等知识进行求解。
二、解题思路及方法1.题目解析题目要求解决的问题是在集成电路板等电子产品生产中,如何通过机理模型来分析和调整回焊炉内部的温度分布,以保证焊接质量。
为了达到这个目标,需要对回焊炉内部的温度场进行建模和求解。
2.建模方法为了解决这个问题,可以采用如下建模方法:(1)将回焊炉内部划分为若干个小温区,从而将问题简化为二维或三维热传导问题。
(2)根据预热区、恒温区、回流区和冷却区的功能特点,建立相应的边界条件和初始条件。
(3)运用有限差分法、有限元法等数值计算方法求解热传导方程,得到回焊炉内部各个小温区的温度分布。
3.解题过程(1)根据题目描述,首先对回焊炉内部进行网格划分,将整个区域划分为若干个小温区。
(2)根据回焊炉内部各个小温区的功能特点,建立相应的边界条件和初始条件。
(3)运用有限差分法、有限元法等数值计算方法求解热传导方程,得到回焊炉内部各个小温区的温度分布。
(4)根据计算结果,分析回焊炉内部温度分布的合理性,提出针对性的优化建议。
三、参赛体验及建议1.参赛体验参加 2018 年数学建模国赛 A 题的体验是紧张而充实的。
在比赛过程中,我们需要在有限的时间内快速理解题目,建立数学模型,并完成求解和撰写论文。
这个过程需要我们具备较强的团队协作能力、沟通能力和抗压能力。
2.建议与心得(1)提高数学基础:数学建模竞赛要求参赛选手具备扎实的数学基础,尤其是在微积分、线性代数、概率论等方面。
数学建模期末考试2018A试的题目与答案

数学建模期末考试2018A试的题⽬与答案华南农业⼤学期末考试试卷(A 卷)2012—2013学年第⼆学期考试科⽬:数学建模考试类型:(闭卷)考试考试时间: 120分钟学号姓名年级专业⼀、(满分12分)⼀⼈摆渡希望⽤⼀条船将⼀只狼、⼀只⽺、⼀篮⽩菜从河岸⼀边带到河岸对⾯、由于船得限制、⼀次只能带⼀样东西过河、绝不能在⽆⼈瞧守得情况下将狼与⽺放在⼀起;⽺与⽩菜放在⼀起、怎样才能将它们安全得带到河对岸去? 建⽴多步决策模型,将⼈、狼、⽺、⽩菜分别记为i = 1、2、3、4、当i 在此岸时记xi=1、否则为0;此岸得状态下⽤s =(x 1、x2、x 3、x 4)表⽰。
该问题中决策为乘船⽅案、记为d= (u1, u 2, u 3, u 4)、当i 在船上时记u i = 1、否则记u i = 0。
(1)写出该问题得所有允许状态集合;(3分)(2) 写出该问题得所有允许决策集合;(3分)(3) 写出该问题得状态转移率。
(3分)(4)利⽤图解法给出渡河⽅案、 (3分)解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1),(1,0,1,0)}及她们得5个反状(3分)(2) D = {(1,1,0,0),(1,0,1,0), (1,0,0,1),(1,0,0,0)}(6分)(3) s k+1 = s k + (—1) k d k (9分)(4)⽅法:⼈先带⽺、然后回来、带狼过河、然后把⽺带回来、放下⽺、带⽩菜过去、然后再回来把⽺带过去.或: ⼈先带⽺过河、然后⾃⼰回来、带⽩菜过去、放下⽩菜、带着⽺回来、然后放下⽺、把狼带过去、最后再回转来、带⽺过去。
(12分)1、⼆、(满分12分) 在举重⽐赛中、运动员在⾼度与体重⽅⾯差别很⼤、请就下⾯两种假设、建⽴⼀个举重能⼒与体重之间关系得模型:(1)假设肌⾁得强度与其横截⾯得⾯积成⽐例。
6分(2)假定体重中有⼀部分就是与成年⼈得尺⼨⽆关、请给出⼀个改进模型。
2018年数学建模a题方法优缺点评价

2018年数学建模a题方法优缺点评价【原创实用版3篇】目录(篇1)I.引言A.介绍数学建模的概念和背景B.说明该题的背景和目的II.数学建模的方法A.描述常用的数学建模方法B.解释每种方法的基本思想C.分析这些方法的优缺点III.方法优缺点的评价A.分析各种方法的优点和缺点B.讨论这些优缺点对数学建模的影响C.评估各种方法的实用性IV.结论A.总结文章的主要观点B.提出对数学建模的建议C.展望数学建模的未来发展正文(篇1)2018年数学建模A题的方法优缺点评价数学建模是一种将实际问题转化为数学问题的过程,它需要运用各种数学方法和工具来解决问题。
在2018年数学建模A题中,要求对几种常用的数学建模方法进行优缺点评价。
下面将对各种方法进行介绍和分析。
一、解析法解析法是一种通过解析问题中的数学模型来解决问题的方法。
它主要包括微积分、线性代数、概率论等数学工具,通过对这些工具的应用来推导问题的解。
解析法的优点是可以得到精确的解,但缺点是要求问题足够简单,否则可能会出现数值不稳定等问题。
二、模拟法模拟法是一种通过建立模型来模拟实际问题的方法。
它可以通过计算机模拟来模拟实际问题的变化规律,从而得出问题的解。
模拟法的优点是可以模拟复杂的动态过程,但缺点是需要大量的计算资源,并且需要建立合适的模型。
三、统计分析法统计分析法是一种通过统计分析数据来解决问题的方法。
它可以通过对数据的分析来发现数据的规律,从而得出问题的解。
目录(篇2)I.题目背景A.数学建模a题简介B.题目所涉及的领域和知识点II.题目分析A.题目要求的具体内容B.题目难点和重点的分析III.方法和优缺点评价A.方法的优点1.解题思路的简洁性2.模型建立的高效性3.模型结果的准确性B.方法的缺点1.方法适用范围的局限性2.方法计算复杂度较高C.方法的使用场景和限制1.适用于线性方程组的求解2.不适用于非线性方程组的求解D.方法的选择和使用建议1.根据问题的性质选择合适的方法2.根据计算资源和时间限制选择合适的方法IV.结论和展望A.方法在数学建模中的应用价值B.方法的发展趋势和展望正文(篇2)2018年数学建模a题方法优缺点评价2018年数学建模a题是一个关于土壤肥力评估的问题,要求选手们根据土壤样本数据,建立数学模型,并使用所给算法求解。
2018数学建模a题优秀论文

2018数学建模a题优秀论文Background: On high frequencies (HF, defined to be 3 –30 mHz), radio waves can travel long distances (from one point on the earth’s surface to another distant point on the earth’s surface) by multiple reflections off the ionosphere and off the earth. For frequencies below the maximum usable frequency (MUF), HF radio waves from a ground source reflect off the ionosphere back to the earth, where they may reflect again back to the ionosphere, where they may reflect again back to the earth, and so on, travelling further with each successive hop. Among other factors, the characteristics of the reflecting surface determine the strength of the reflected wave and how far the signal will ultimately travel while maintaining useful signal integrity. Also, the MUF varies with the season, time of day, and solar conditions. Frequencies above the MUF are not reflected/refracted, but pass through the ionosphere into space. In this problem, the focus is particularly on reflections off the ocean surface. It has been found empirically that reflections off a turbulent ocean are attenuated more than reflections off a calm ocean. Ocean turbulence will affect the electromagnetic gradient of seawater, altering the local permittivity and permeability of the ocean, and changing the height and angle of the reflection surface. A turbulent ocean is one in which wave heights, shapes, and frequencies change rapidly, and the direction of wavetravel may also change.Problem:Part Ⅰ: Develop a mathematical model for this signal reflection off the ocean. For a 100-watt HF constant-carrier signal, below the MUF, from a point source on land, determine the strength of the first reflection off a turbulent ocean and compare it with the strength of a first reflection off a calm ocean. (Note that this means that there has been one reflection of this signal off the ionosphere.) If additional reflections (2 through n) take place off calm oceans, what is the maximum number of hops the signal can take before its strength falls below a usable signal-to-noise ratio (SNR) threshold of 10 dB?Part Ⅱ: How do your findi ngs from Part I compare with HF reflections off mountainous or rugged terrain versus smooth terrain?Part Ⅲ: A ship travelling across the ocean will use HF for communications and to receive weather and traffic reports. How does your model change to accommodate a shipboard receiver moving on a turbulent ocean? How long can the ship remain in communication using the same multi-hop path?Part Ⅳ: Prepare a short (1 to 2 pages) synopsis of your results suitable for publication as a short note in IEEE Communications Magazine.Your submission should consist of:One-page Summary Sheet,Two-page synopsis,Your solution of no more than 20 pages, for a maximum of 23 pages with your summary and synopsis.Note: Reference list and any appendices do not count toward the 23-page limit and should appear after your completed solution.中文赛题:多跳高频无线电传播背景:在高频时(HF,定义为3 - 30 mhz),无线电波可以通过电离层和地球的多次反射,传播很长的距离(从地球表面的一个点到地球表面的另一个遥远的点)。
2018年数学建模国赛a讲解

2018年数学建模国赛a讲解
数学建模竞赛的问题涉及范围广泛,挑战性很强,可以测试参赛者的数学、计算机编程、软件应用、数据处理和团队协作能力。
2018年的数学建模国
赛A题主要考察的是传热学和热力学的基本原理,以及如何将这些原理应用于实际问题中。
首先,对于一个传热问题,我们需要建立传热模型来描述热量在物质中的传递方式和效率。
在这个问题中,参赛者需要综合考虑多种传热方式(传导、对流和辐射),以及各种影响传热效率的因素,如物质的热导率、热扩散率、对流系数等。
其次,参赛者需要利用所建立的传热模型进行数值模拟,以求解温度分布和参数优化问题。
这需要使用数值计算方法,如有限差分法、有限元法等,将连续的传热过程离散化,转换为可以计算的数学问题。
最后,参赛者需要根据实际问题的需求,选择合适的材料和工艺参数,进行优化设计。
这需要对材料的性质和加工工艺有一定的了解,能够根据实际情况选择合适的材料和工艺参数,并进行实验验证。
综上所述,数学建模竞赛考察的是参赛者的综合能力和实际应用能力,需要具备扎实的数学基础、计算机编程能力、团队协作能力和对实际问题的洞察力。
通过参加数学建模竞赛,可以锻炼和提高参赛者的综合素质和创新能力。
2018年全国研究生数学建模竞赛最终获奖名单_A题

二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 二等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖
队长姓名 张广龙 顾哲豪 缪骞 聂飞龙 张靖婷 吴静 蒋俐 郑哲 周东雪 朱庆凯 苏浩 赵虹雨 王超 张紫茵 唐鹏 张晨阳 沈奥 王凯丽 谢涛敏 宋德魁 初文奇 彭嘉琳 杨镜琳 柴聪 石欣禾 董刘宏 王荣欢 钱启昕 孟家瑶 王志强 车纳 王若潇 易然 黄益伦 谢俊飞 黄式浩 宫宇 许博闻 姜柳 陈韬
18102520128 18102520184 18102520244 18102520258 18102520501 18102560007 18102700067 18102800043 18102860013 18102860100 18102860377 18102860464 18102870003 18102870039 18102870074 18102910005 18102930020 18102940024 18103360021 18103360022 18103360043 18103360054 18103360058 18103560010 18103610024 18103850025 18103860049 18104180001 18104220079 18104250113 18104250129 18104460011 18104770001 18104910013 18104970066 18105000019 18105000023 18105000038 18105330033 18105330096 18106130080
2018年数学建模国赛a讲解

2018年数学建模国赛a讲解【最新版】目录一、2018 年数学建模国赛 A 题概述二、参赛者的体验与心得三、解题思路与方法四、2022 年数学建模国赛 A 题解题思路五、总结正文一、2018 年数学建模国赛 A 题概述2018 年数学建模国赛 A 题的主题是集成电路板等电子产品生产中的回焊炉温度控制问题。
题目要求参赛者通过机理模型来进行分析研究,对回焊炉内部设置若干个小温区进行优化,以保证焊接质量。
二、参赛者的体验与心得根据参赛者的分享,数学建模国赛难度逐年提升,对参赛者的挑战也越来越大。
然而,只要团队成员之间相互合作、认真负责,仍然可以取得优异的成绩。
参赛者表示,通过参加比赛,不仅可以提高自己的专业技能,还可以锻炼团队协作能力和沟通能力。
三、解题思路与方法针对 2018 年数学建模国赛 A 题,参赛者采用了以下解题思路:1.充分了解题目背景和要求,明确问题的核心所在;2.建立数学模型,包括预热区、恒温区、回流区、冷却区等各个部分的温度控制;3.利用数学方法求解模型,得到最优解;4.对结果进行分析,并撰写论文说明解题过程和结论。
四、2022 年数学建模国赛 A 题解题思路2022 年数学建模国赛 A 题的主题尚未公布,但根据历年题目特点,可以预测题目可能会涉及以下领域:1.工程技术类问题,如机械设计、电子电路等;2.计算机与信息科学类问题,如数据挖掘、人工智能等;3.经济管理类问题,如金融风险、市场预测等;4.环境生态类问题,如气候变化、资源优化等。
针对以上预测,参赛者可以提前学习相关领域的知识,熟悉常见的建模方法和技巧,以便在比赛中更好地发挥。
五、总结数学建模国赛是一个锻炼思维能力、团队协作能力和创新能力的平台,参赛者可以通过这个比赛提高自己的专业技能,拓宽视野,为将来的职业生涯打下坚实基础。
2018数学建模美赛题目

2018数学建模美赛题目
2018年数学建模美赛题目如下:
A题是多跳高频(HF)广播传播问题。
在高频(HF,定义为3-30 MHz)上,无线电波可以通过电离层和地球以外的多次反射传播很长的距离。
对于低于最大可用频率(MUF)的频率,来自地面源的HF无线电波从电离层反射回地球,在此它们可能再次反射回电离层,在此又可能反射回地球,依此类推。
随着每个连续的跃点走得更远。
除其他因素外,反射表面的特性决定了反射波的强度以及信号最终传播的距离,同时又保持了有用的信号完整性。
而且,MUF随季节、一天中的时间和太阳条件而变化。
MUF上方的频率不会被反射/折射,而是通过电离层进入太空。
在这个问题中,重点特别放在
海洋表面的反射上。
C题是能源生产问题。
能源生产和使用是任何经济结构的主要部分。
这个问题提供了一个数据集,包含了美国四个州在过去50年的能源生产和消费数据,以及一些人口和经济信息。
参赛者需要使用这些数据来回答以下问题:这四个州的能源生产和消费模式有何不同?这些模式如何随时间变化?这些模式如何与人口和经济活动相关联?如何预测未来的能源生产和消费趋势?如何优化能源生产和消费以减少对环境的影响?
以上内容仅供参考,建议查阅美赛官网获取更准确的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中国研究生数学建模竞赛A题
关于跳台跳水体型系数设置的建模分析
国际泳联在跳水竞赛规则中规定了不同跳水动作的代码及其难度系数(见附件1),它们与跳水运动员的起跳方式(起跳时运动员正面朝向、翻腾方向)及空中动作(翻腾及转体圈数、身体姿势)有关。
裁判员们评分时,根据运动员完成动作的表现优劣及入水效果,各自给出从10到0的动作评分,然后按一定公式计算该运动员该动作的完成分,此完成分乘以该动作的难度系数即为该运动员该动作的最终得分。
因此,出于公平性考虑,一个跳水动作的难度系数应充分反映该动作的真实难度。
但是,有人说,瘦小体型的运动员在做翻腾及转体动作时有体型优势,应当设置体型系数予以校正,请通过建模分析,回答以下问题:
1. 研究分析附件1的APPENDIX 3-4,关于国际泳联十米跳台跳水难度系数的确定规则,你们可以得到哪些对解决以下问题有意义的结论?
2. 请应用物理学方法,建立模型描述运动员完成各个跳水动作的时间与运动员体型(身高,体重)之间的关系。
3. 请根据你们的模型说明,在10米跳台跳水比赛中设置体型校正系数有无必要。
如果有,校正系数应如何设置?
4. 请尝试基于你们建立的上述模型,给出表1中所列的十米跳台跳水动作的难度系数。
你们的结果与附件1中规定的难度系数有无区别?如果有区别,请作出解释。
表1: 十米跳台难度系数表(部分动作)
[动作代码说明](1)第一位数表示起跳前运动员起跳前正面朝向以及翻腾方向,1、3表示面朝水池,2、4表示背向水池;1、2表示向外翻腾,3、4表示向内翻腾。
(2)第三位数字表示翻腾圈数,例如407,表示背向水池,向内翻腾3周半。
(3)B表示屈体,C表示抱膝。
(4)如果第一位数字是5,表示有转体动作,此时,第二位数字意义同说明(1),第三位数字表示翻腾圈数,第四位数字表示转体圈数,例如5375,表示面向水池向内翻腾3周半,转体2周半。
附件1:2017-2021_diving
附件2:参考文献。