风机控制系统结构原理
无感FOC风机控制原理

Ls is , Ls is 为电感电势 f , f为转子磁链(旋转磁链),
s Ls s 0
0 is f i Ls s f
无感FOC的控制核心——转子位置估算
转子位置反正切估算 反正切法
角度位置计算
速度估算 对角位置进行差分计算,再经过一阶低通滤波计算速度
无感启动方式
电机启动经历锁定、开环、闭环三种运行状态
启动---角度切换
从开环切换到闭环是关键步骤 采用逐步切换减小切换的电流变化
实验波形
电机转子位置和速度信息来自估算器而不是传感器
无感FOC的控制核心——转子位置估算
PMSM电机模型
静止坐标系下电压方程
s , s 为定子磁链,
us Rs u s 0
0 is d s i Rs s dt s
B C A
N
[11
0]
N
N
N
S
[100]
N
[100] [110] [010] [011] [001] [101] [100]
S
[01
S
0]
N
[10 1]
S
FOC的控制核心——SVPWM
参考电压矢量合成
利用基本电压空间矢量的线性时间组合得到定子参考电压Vref。
eg. 位于A区
FOC的控制核心——SVPWM
无传感器磁场定向控制(FOC) 风机控制原理
主要内容
风机用直流无刷电机 FOC的控制原理 无感FOC的控制原理
主要内容
风机用直流无刷电机 FOC的控制原理 无感FOC的控制原理
风力发电机组控制系统

昝润鹏双馈机运行原理图•控制系统利用DSP或单片机,在正常运行状态下,主要通过对运行过程中对输入信号的采集、传输、分析,来控制风电机组的转速和功率;如发生故障或其它异常情况能自动地检测并分析确定原因,自动调整排除故障或进入保护状态•DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号。
再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
•控制系统主要任务就是能自动控制风电机组依照其特性运行、故障的自动检测并根据情况采取相应的措施。
•控制系统包括控制和检测两部分,控制部分又分为手动和自动。
运行维护人员可在现场根据需要进行手动控制,自动控制应该在无人值守的条件下实施运行人员设置的控制策略,保证机组正常安全运行。
•检测部分将各种传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询,也要送到风电场中央控制室的电脑系统,通过网络或电信系统现场数据还能传输到业主所在城市的办公室。
•第一:低于切入风速区域。
一旦满足切入条件,控制启动风机。
•第二:切入风速到额定风速区域。
控制目标是最大风能捕获,通常将桨距角保持在某个优化值不变,通过发电机转矩控制叶轮转速,实现最佳叶尖速比。
•第三:超过额定风速区域。
通过变桨控制保持输出功率和叶轮转速恒定。
叶尖速比:叶轮的叶尖线速度与风速之比。
叶尖速比在5-15时,具有较高的风能利用系数Cp(最大值是0.593)。
通常可取6-8。
•风传感器:风速、风向;•温度传感器:空气、润滑油、发电机线圈等;•位置传感器:润滑油、刹车片厚度、偏航等;•转速传感器:叶轮、发电机等;•压力传感器:液压油压力,润滑油压力等;•特殊传感器:叶片角度、电量变送器等;•⑴控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。
风机变频器控制原理-40页PPT资料

US12 US32
U VW
PS,QS
+PE
PM
To Step Up Transformer
690VAC / 50Hz
1500/1A
iL1..3
3x40A
3x32A
690V + 400V auxiliary power for
nacelle load
grid contactor K2
500/0,12A
与发电机的接线
变频器—接线
塔筒上部:发电机电缆 →BUS BAR
塔筒下部:BUS BAR→变频 器
变频器—系统原理
变频器—系统原理(ALSTOM)
变频器—硬件结构及功能(ALSTOM)
并网柜
控制柜
功率模块柜
变频器—硬件结构及功能(ALSTOM)
变频器—硬件结构及功能(ALSTOM)
并网柜
变频器—硬件结构及功能(ALSTOM)
stator voltage interface crowbar interface
K,L,M
Crowbar
DFIG
Enc
Quadrature encoder with marker pulse
rotor position feedback
电网侧交流滤波电抗器: 抑制功率元件通断引起的 电磁干扰
变频器控制单元: 电网电压、电流测量;功率测量;电 网监测;与主控制器通讯
变频器—硬件结构及功能(ALSTOM)
功率模块柜
与转子的 连接电缆 的螺栓
变频器—硬件结构及功能(ALSTOM)
• 功率模块柜: • 1 变频 • 2 功率回路滤波 • 3 功率回路保护(Crow-bar)
风力发电系统的控制原理

风力发电系统的控制原理风力涡轮机特性:1,风能利用系数Cp风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示:P---风力涡轮实际获得的轴功率r---空气密度S---风轮的扫风面积V---上游风速根据贝兹〔Betz〕理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。
2,叶尖速比l为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。
n---风轮的转速w---风轮叫角频率R---风轮半径V---上游风速在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。
从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。
如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。
涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。
图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。
在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。
每条曲线都有一个上升段和下降段,其中下降段是稳定工作段〔若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。
〕它是工作区段。
在工作区段中,倾角越大,l和Cp越小。
3,变速发电的控制变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确〔机组惯量大〕。
三段控制要求:低风速段N<Nn,按输出功率最大功率要求进行变速控制。
联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f〔n〕关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。
图3是风速变化时的调速过程示意图。
设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得与变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。
风机变桨系统结构、原理及典型故障处理

当风速低于额定风速时,通过调整叶片角度 从风中吸收更多的风能,得到最佳的发电功率;
当安全链被打开时,叶片转到顺桨位置,可 作为空气动力制动装置使机组安全停机;
利用风和叶轮的相互作用,减小摆动从而将 机械负载最小化。
顺桨位置
采用变桨矩调节,风机的启动性好、刹车机构 简单,叶片顺桨后风轮转速可以逐渐下降、额定点 以前的功率输出饱满、额定点以后的输出功率平滑、 风轮叶根承受的动、静载荷小。变桨系统作为基本 制动系统,可以在额定功率范围内对风机转速进行 控制。
变桨系统的构成
变桨系统包括三个主要部件,变桨轴承、变 桨驱动装置-变桨电机和变桨齿轮箱、变桨控制 柜。如果一个驱动装置发生故障,另两个驱动装 置可以安全地使风机停机。
变桨系统如何实现变桨控制
从站PLC控制操作
电气变桨系统,3 个变桨变频器控 制的变桨电机间 接变速装置(伺 服电机)
机舱内的电池系 统
变桨系统的Leabharlann 点变桨控制系统是通过改变叶片角度,实现功率 变化来进行调节的。通过在叶片和轮毂之间安装的 变桨驱动装置带动变桨轴承转动从而改变叶片角度, 由此控制叶片的升力,以达到控制作用在风轮叶片 上的扭矩和功率的目的。
电机连接 工作时间
动态工作
用一个风扇强制风冷
一个内置在定子绕组中的 Pt-100
变频器操作,增加 du/dt 值,增加铁心损耗,增加电 压峰值
单传动, 闭合环路
100 %,当制动器有飞轮 时,电机必须持续保持叶 片在工作位置
最大加速度125 1 rpm/s
扭矩限制 电缆长度 使用寿命
工作位置
变桨系统原理
风机的结构和工作原理

风机的结构和工作原理
风机是一种常见的动力机械设备,其结构和工作原理对于理解其工作原理和性
能具有重要意义。
本文将从风机的结构和工作原理两个方面进行详细介绍。
首先,我们来看一下风机的结构。
风机主要由叶轮、机壳、电机和控制系统组成。
叶轮是风机的核心部件,它负责将风能转化为机械能。
叶轮通常由多个叶片组成,叶片的形状和数量会影响风机的性能。
机壳是叶轮的外部保护装置,它可以起到导流和集中风力的作用。
电机是风机的动力源,它通过电能转化为机械能,驱动叶轮旋转。
控制系统则可以根据需要对风机进行启动、停止、调速等操作,以保证风机的正常运行。
接下来,我们来了解一下风机的工作原理。
当风机启动时,电机会带动叶轮旋转。
当风力作用于叶轮上时,叶轮会受到风力的作用而转动,同时叶片的形状和数量会使风力转化为机械能。
转动的叶轮会产生气流,气流经过机壳后被集中,然后通过风机出口排出。
在这个过程中,风能被转化为机械能,从而实现了风机的工作。
除了以上介绍的基本结构和工作原理外,风机还有很多衍生形式和应用。
例如,风力发电机就是利用风机的工作原理来产生电能的设备,它在现代能源领域中具有重要的地位。
此外,风机还可以用于工业通风、空气净化、气体输送等领域,发挥着重要的作用。
总的来说,风机的结构和工作原理是相辅相成的,只有充分理解其结构和工作
原理,才能更好地应用和维护风机。
希望本文的介绍能够对大家有所帮助,谢谢阅读!。
风电基础知识培训风机控制系统原理

风电基础知识培训风机控制系统原理近年来,随着可再生能源的快速发展,风能作为一种清洁、可持续的能源形式备受瞩目。
而风电发电作为其中的核心技术之一,风机控制系统起着至关重要的作用。
本文将介绍风机控制系统的原理,使读者对风电发电有更深入的了解。
一、风机控制系统的基本组成风机控制系统主要由三个核心部分组成:风机机械系统、传感器及测量系统、控制算法和执行器。
1. 风机机械系统风机机械系统包括风机叶片和轴传动系统。
风机叶片能够根据风力的大小和方向实现自动调整,以获得最大的能量采集效率。
轴传动系统负责将叶片的动力传递给发电机。
2. 传感器及测量系统传感器及测量系统主要用于监测风力的大小、方向、叶片运行状态等信息。
常见的传感器包括风向传感器、风速传感器、叶片角度传感器等。
这些传感器将实时采集的数据传输给控制算法进行处理。
3. 控制算法和执行器控制算法和执行器是整个风机控制系统的"大脑"和"手臂"。
控制算法根据传感器采集到的数据,计算出最佳的风机工作方式,并控制执行器改变风机叶片的角度和发电机转速等参数。
执行器根据控制算法的指令进行相应的调整和动作。
二、风机控制系统的原理风机控制系统的原理是根据风力的变化和叶片的角度调整来实现风能的最大化利用。
1. 风力调整通过风向传感器和风速传感器的数据,控制算法可以判断风力的大小和方向。
根据不同风力下对风机叶片的最佳运行状态的要求,控制算法可以调整叶片的角度,使其能够面对最强的风力。
这样可以提高风机的出力效率,将风能最大化地转化为电能。
2. 叶片角度调整叶片角度的调整与风力调整有一定的关联。
叶片角度的调整可以根据实时采集到的数据预测风速的变化,并做出相应的调整,以实现最佳的叶片运行状态。
当风力较小时,叶片的角度可以调整为更大,以增大叶片的受力面积;当风力较大时,叶片的角度可以自动调整为较小,以减小叶片的受力面积。
3. 发电机转速调整根据风速和负荷的变化,控制算法可以调整发电机的转速,以保持整个系统的稳定运行。
风机自动化控制的原理及控制方式分析

风机自动化控制的原理及控制方式分析风机是一种常见的机械设备,广泛应用于许多领域,如制造业、建筑、航空航天、能源等。
风机的控制一直是重要的研究领域,因为它可以实现风机的高效运行,降低能耗和维护成本,并保证生产过程的稳定性和可靠性。
因此,风机的自动化控制已经成为了一个非常关键的研究方向。
风机自动化控制的原理是将传统的手动操作转化为自动化控制,提高风机的运行效率和性能。
如何控制风机的自动化是关键,风机自动化控制系统有传感器、执行器、控制器组成。
传感器用于获取风机的状态数据,例如风量、压力、温度、振动等,控制器负责对传感器采集的数据进行处理,判断当前状态,然后向执行器发出指令,改变风机的操作状态,例如调整风速、开关风机、调整风门等。
风机自动化控制有许多不同的控制方式,其可以根据不同的需求选择。
以下是一些常见的控制方式:1. 基于PID控制器的控制方式PID控制器是最常用的控制器,经常用于风机的自动化控制。
其控制原理基于反馈控制,可以实时调整控制变量,使其接近于设定值,从而达到更好的控制效果。
逻辑控制可以实现一些简单的风机控制功能,例如开关风机、调节风门等。
逻辑控制通常采用开关或触点作为输入信号,并根据预定的逻辑规则向执行器发出指令。
此外,逻辑控制通常可以与其他控制方式结合使用,例如PID控制器。
模糊控制是一种新型的智能控制方式,可以有效解决非线性、不确定性等问题。
通过建立模糊控制系统,可以提高风机的控制精度和鲁棒性。
4. 基于人工神经网络的控制方式人工神经网络是一种具有强大学习能力和自适应性的控制策略。
它可以学习并模仿人类决策过程,并根据历史数据来优化控制参数。
因此,人工神经网络是一种理想的高级控制方案,可以实现更加精确的控制效果。
总结风机自动化控制是现代工业生产的重要组成部分,其能够提高生产效率和产品质量,减少维护成本和能耗。
风机自动化控制的控制方式多种多样,可以根据实际需求选择。
在实际应用中,应该根据实际情况进行选择,以实现最佳的控制效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风机控制系统结构一、风力发电机组控制系统的概述风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标:1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。
2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。
3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。
4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。
对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。
主要完成下列自动控制功能:1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。
停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。
2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。
同样,在小风自动脱网停机后,5min内不能软切并网。
3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。
4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围±15°。
5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。
6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。
其余时间(运行期间、正常和故障停机期间)均处于归位状态。
7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,还应该自动投入偏航控制,使风力发电机组的机舱轴心线与风向成一定的角度,增加风力发电机组脱网的安全度,待机舱转约90°后,机舱保持与风向偏90°跟风控制,跟风范围±15°。
8)在电网中断、缺相和过电压的情况下,风力发电机组应停止运行,此时控制系统不能供电。
如果正在运行时风力发电机组遇到这种情况,应能自动脱网和抱闸停机,此时偏航机构不会动作,风力发电机组的机械结构部分应能承受考验。
9)风力发电机组塔架内的悬挂电缆只允许扭转±2.5 圈,系统已设计了正/反向扭缆计数器,超过时自动停机解缆,达到要求后再自动开机,恢复运行发电。
10)风力发电机组应具有手动控制功能(包括远程遥控手操),手动控制时“自动”功能应该解除,相反地投入自动控制时,有些“手动”功能自动屏蔽。
11)控制系统应该保证风力发电机组的所有监控参数在正常允许的范围内,一旦超过极限并出现危险情况,应能自动处理并安全停机。
二、控制系统的组成1. 电控系统从功能划分主要包括正常运行控制、阵风控制、最佳运行控制(最佳叶尖速比控制)、功率控制、安全保护控制、变桨距控制等部分。
如图1所示:图12. 从控制结构上来划分,电控系统可以分为以下四个部分,如图2所示:1)电网级控制部分:主要包括总的有功和无功控制,远程监控等。
2)整机控制部分:主要包括最大功率跟踪控制,速度控制,自动偏航控制等。
3)变流器部分:主要包括双馈发电机的并网控制,有功无功解耦控制,亚同步和超同步运行控制等。
4)变桨控制部分:又分为统一变桨控制和独立变桨控制两种,大型风电机组大多采用了独立变桨方式。
(减少紊流对风电机组的影响,平衡各个叶片的受力状况以及系统安全保障冗余的考虑)图23. 在控制过程中,风电机组将被控制在功率优化区和功率限制区范围内,如图3所示。
1)功率优化区:其中,区间A-B,C-D为固定转速区;区间B-C为变速区,在此区间内实现最佳叶尖速比控制。
(运行点B,C的位置由风电机组决定。
)2)功率限制区:在此区间,通过变桨距的方式限制输入功率为额定功率,但在阵风控制时,输入的瞬时功率会超过额定功率。
在图3中,双馈发电机的运行转速范围为:900转/分-2000转/分,额定转速为1800转/分。
当转速在900转/分-1800转/分之间时,可以进行最佳叶尖速比控制;而高于1800转/分的转速范围用于阵风控制,这样不但可以减少阵风对风电机组主传动链的冲击,同时也可以降低对变桨距系统响应速度的要求。
图3500100015002000E风速(m/s)机械功率(kW)转速(rpm)500100015002000额定转速电气功率(kW)风电机组功率曲线功率/转速曲线图4 1.0兆瓦变速机组电控系统图5 1.0兆瓦变速机组电控系统三、控制系统主要参数(恒速恒频)四、控制系统工作原理主开关合上后,风力发电机组控制器准备自动运作。
首先系统初始化,检查控制程序、微控制器硬件和外设、传感器来的脉冲及比较所选的操作参数,备份系统工作表,接着就正式起动。
起动的第一秒钟内,先检查电网、设置各个计数器、输出机构初始工作状态及晶闸管的开通角。
所有这些完成后,风力发电机组开始自动运行。
用于风轮的叶尖本来是90°,现在恢复为0°,风轮开始转动。
计算机开始时刻监测各个参数、输入,判断是否可以并网,判断参数有否超过极限、执行偏航、相位补偿、机械制动或空气制动。
其中相位补偿的作用在于使功率因数保持在0.95-0.99之间。
其详细的控制系统工作原理流程框图(见图9-2)。
五、风力发电机组的基本控制策略(一) 风力发电机组的工作状态风力发电机组总是工作在如下状态之一:①运行状态;②暂停状态;③停机状态;④紧急停机状态。
每种工作状态可看作风力发电机组的一个活动层次,运行状态处在最高层次,紧停状态处在最低层次。
为了能够清楚地了解机组在各种状态条件下控制系统是如何反应的,必须对每种工作状态作出精确的定义。
这样,控制软件就可以根据机组所处的状态,按设定的控制策略对调向系统、液压系统、变桨距系统、制动系统、晶闸管等进行操作,实现状态之间的转换。
以下给出了四种工作状态的主要特征及其简要说明。
(1) 运行状态:1)机械刹车松开;2)允许机组并网发电;3)机组自动调向;4)液压系统保持工作压力;5)叶尖阻尼板回收或变桨距系统选择最佳工作状态;(2) 暂停状态:1)机械刹车松开;2)液压泵保持工作压力;3)自动调向保持工作状态;4)叶尖阻尼板回收或变距系统调整桨叶节距角向90o方向;5)风力发电机组空转。
这个工作状态在调试风力发电机组时非常有用,因为调试风力机的目是要求机组的各种功能正常,而不一定要求发电运行。
(3) 停机状态:1)机械刹车松开;2)液压系统打开电磁阀使叶尖阻尼板弹出,或变距系统失去压力而实现机械旁路;3)液压系统保持工作压力;4)调向系统停止工作。
(4) 紧急停机状态:1)机械刹车与气动刹车同时动作;2)紧急电路 (安全链) 开启;3)计算机所有输出信号无效;4)计算机仍在运行和测量所有输入信号当紧停电路动作时,所有接触器断开,计算机输出信号被旁路,使计算机没有可能去激活任何机构。
(二)工作状态之间转变定义了风力发电机组的四种工作状态之后,我们进一步说明各种工作状态之间是如何实现转换的。
按图3-8箭头所示,提高工作状态层次只能一层一层地上升,而要降低工作状态层次可以是一层或多层。
这种工作状态之间转变方法是基本的控制策略,它主要出发点是确保机组的安全运行。
如果风力发电机组的工作状态要往更高层次转化,必须一层一层往上升,用这种过程确定系统的每个故障是否被检测。
当系统在状态转变过程中检测到故障,则自动进入停机状态。
当系统在运行状态中检测到故障,并且这种故障是致命的,那么工作状态不得不从运行直接到紧停,这可以立即实现而不需要通过暂停和停止。
下面我们进一步说明当工作状态转换时,系统是如何工作的。
1.工作状态层次上升紧停→停机如果停机状态的条件满足,则:1)关闭紧停电路;2)建立液压工作压力;3)松开机械刹车。
停机→暂停如果暂停的条件满足,则:1)起动偏航系统;2)对变桨距风力发电机组,接通变桨距系统压力阀。
暂停→运行如果运行的条件满足,则:1)核对风力发电机组是否处于上风向;2)叶尖阻尼板回收或变桨距系统投入工作;3)根据所测转速,发电机是否可以切入电网。
2.工作状态层次下降工作状态层次下降包括3种情况:(1) 紧急停机。
紧急停机也包含了3种情况,即:停止→紧停;暂停→紧停;运行→紧停。
其主要控制指令为:1)打开紧停电路;2)置所有输出信号于无效;3)机械刹车作用;4)逻辑电路复位。
(2) 停机。
停机操作包含了两种情况,即:暂停→停机;运行→停机。
暂停→停机1)停止自动调向;2)打开气动刹车或变桨距机构回油阀 (使失压)。
运行→停机1)变桨距系统停止自动调节;2)打开气动刹车或变桨距机构回油阀 (使失压)3)发电机脱网。
(3) 暂停。
主要控制指令为:1)如果发电机并网,调节功率降到0后通过晶闸管切出发电机;2)如果发电机没有并入电网,则降低风轮转速至0。
(三) 故障处理图3-8所示的工作状态转换过程实际上还包含着一个重要的内容:当故障发生时,风力发电机组将自动地从较高的工作状态转换到较低的工作状态。
故障处理实际上是针对风力发电机组从某一工作状态转换到较低的状态层次可能产生的问题,因此检测的范围是限定的。
为了便于介绍安全措施和对发生的每个故障类型处理,我们给每个故障定义如下信息:1 故障名称;2 故障被检测的描述;3 当故障存在或没有恢复时工作状态层次;4 故障复位情况 (能自动或手动复位,在机上或远程控制复位)。
(1)故障检测。
控制系统设在顶部和地面的处理器都能够扫描传感器信号以检测故障,故障由故障处理器分类,每次只能有一个故障通过,只有能够引起机组从较高工作状态转入较低工作状态的故障才能通过。
(2)故障记录。
故障处理器将故障存储在运行记录表和报警表中。
(3)对故障的反应。
对故障的反应应是以下三种情况之一:1)降为暂停状态;2)降为停机状态;3)降为紧急停机状态。
(4)故障处理后的重新起动。
在故障已被接受之前,工作状态层不可能任意上升。
故障被接受的方式如下:如果外部条件良好,一些外部原因引起的故障状态可能自动复位。
一般故障可以通过远程控制复位,如果操作者发现该故障可接受并允许起动风力发电机组,他可以复位故障。