风机控制系统结构原理

风机控制系统结构原理
风机控制系统结构原理

风机控制系统结构

一、风力发电机组控制系统的概述

风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标:

1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。

2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。

3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。

4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。

主要完成下列自动控制功能:

1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。

2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。

3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。

4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围

±15°。

5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。

6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。

7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

还应该自动投入偏航控制,使风力发电机组的机舱轴心线与风向成一定的角度,增加风力发电机组脱网的安全度,待机舱转约90°后,机舱保持与风向偏90°跟风控制,跟风范围±15°。

8)在电网中断、缺相和过电压的情况下,风力发电机组应停止运行,此时控制系统不能供电。如果正在运行时风力发电机组遇到这种情况,应能自动脱网和抱闸停机,此时偏航机构不会动作,风力发电机组的机械结构部分应能承受考验。

9)风力发电机组塔架内的悬挂电缆只允许扭转±2.5 圈,系统已设计了正/反向扭缆计数器,超过时自动停机解缆,达到要求后再自动开机,恢复运行发电。

10)风力发电机组应具有手动控制功能(包括远程遥控手操),手动控制时“自动”功能应该解除,相反地投入自动控制时,有些“手动”功能自动屏蔽。

11)控制系统应该保证风力发电机组的所有监控参数在正常允许的范围内,一旦超过极限并出现危险情况,应能自动处理并安全停机。

二、控制系统的组成

1. 电控系统从功能划分主要包括正常运行控制、阵风控制、最佳运行控制(最佳叶尖速比控制)、功率控制、安全保护控制、变桨距控制等部分。如图1所示:

图1

2. 从控制结构上来划分,电控系统可以分为以下四个部分,如图2所示:

1)电网级控制部分:主要包括总的有功和无功控制,远程监控等。

2)整机控制部分:主要包括最大功率跟踪控制,速度控制,自动偏航控制等。

3)变流器部分:主要包括双馈发电机的并网控制,有功无功解耦控制,亚同步和超同步运行控制等。

4)变桨控制部分:又分为统一变桨控制和独立变桨控制两种,大型风电机组大多采用了独立变桨方式。(减少紊流对风电机组的影响,平衡各个叶片的受力状况以及系统安全保障冗余的考虑)

图2

3. 在控制过程中,风电机组将被控制在功率优化区和功率限制区范围内,如图3所示。

1)功率优化区:其中,区间A-B,C-D为固定转速区;区间B-C为变速区,在此区间内实现最佳叶尖速比控制。(运行点B,C的位置由风电机组决定。)

2)功率限制区:在此区间,通过变桨距的方式限制输入功率为额定功率,但在阵风控制时,输入的瞬时功率会超过额定功率。

在图3中,双馈发电机的运行转速范围为:900转/分-2000转/分,额定转速为1800转/分。当转速在900转/分-1800转/分之间时,可以进行最佳叶尖速比控制;而高于1800转/分的转速范围用于阵风控制,这样不但可以减少阵风对风电机组主传动链的冲击,同时也可以降低对

变桨距系统响应速度的要求。

图3

500

1000

1500

2000

E

风速(m/s)

机械功率(kW)

转速(rpm)

500

1000

1500

2000

额定转速

电气功率(kW)

风电机组功率曲线

功率/转速曲线

图4 1.0兆瓦变速机组电控系统

图5 1.0兆瓦变速机组电控系统

三、控制系统主要参数(恒速恒频)

四、控制系统工作原理

主开关合上后,风力发电机组控制器准备自动运作。首先系统初始化,检查控制程序、微控制器硬件和外设、传感器来的脉冲及比较所选的操作参数,备份系统工作表,接着就正式起动。起动的第一秒钟内,先检查电网、设置各个计数器、输出机构初始工作状态及晶闸管的开通角。所有这些完成后,风力发电机组开始自动运行。用于风轮的叶尖本来是90°,现在恢复为0°,风轮开始转动。计算机开始时刻监测各个参数、输入,判断是否可以并网,判断参数有否超过极限、执行偏航、相位补偿、机械制动或空气制动。其中相位补偿的作用在于使功率因数保持在0.95-0.99之间。其详细的控制系统工作原理流程框图(见图9-2)。

五、风力发电机组的基本控制策略

(一) 风力发电机组的工作状态

风力发电机组总是工作在如下状态之一:①运行状态;②暂停状态;③停机状态;④紧急停机状态。每种工作状态可看作风力发电机组的一个活动层次,运行状态处在最高层次,紧停状态处在最低层次。

为了能够清楚地了解机组在各种状态条件下控制系统是如何反应的,必须对每种工作状态作出精确的定义。这样,控制软件就可以根据机组所处的状态,按设定的控制策略对调向系统、液压系统、变桨距系统、制动系统、晶闸管等进行操作,实现状态之间的转换。

以下给出了四种工作状态的主要特征及其简要说明。

(1) 运行状态:

1)机械刹车松开;

2)允许机组并网发电;

3)机组自动调向;

4)液压系统保持工作压力;

5)叶尖阻尼板回收或变桨距系统选择最佳工作状态;

(2) 暂停状态:

1)机械刹车松开;

2)液压泵保持工作压力;

3)自动调向保持工作状态;

4)叶尖阻尼板回收或变距系统调整桨叶节距角向90o方向;

5)风力发电机组空转。

这个工作状态在调试风力发电机组时非常有用,因为调试风力机的目是要求机组的各种功能正常,而不一定要求发电运行。

(3) 停机状态:

1)机械刹车松开;

2)液压系统打开电磁阀使叶尖阻尼板弹出,或变距系统失去压力而实现机械旁路;

3)液压系统保持工作压力;

4)调向系统停止工作。

(4) 紧急停机状态:

1)机械刹车与气动刹车同时动作;

2)紧急电路 (安全链) 开启;

3)计算机所有输出信号无效;

4)计算机仍在运行和测量所有输入信号

当紧停电路动作时,所有接触器断开,计算机输出信号被旁路,使计算机没有可能去激活任何机构。

(二)工作状态之间转变

定义了风力发电机组的四种工作状态之后,我们进一步说明各种工作状态之间是如何实现转换的。

按图3-8箭头所示,提高工作状态层次只能一层一层地上升,而要降低工作状态层次可以是一层或多层。这种工作状态之间转变方法是基本的控制策略,它主要出发点是确保机组的安全运行。

如果风力发电机组的工作状态要往更高层次转化,必须一

层一层往上升,用这种过程确定系统的每个故障是否被检测。

当系统在状态转变过程中检测到故障,则自动进入停机状态。

当系统在运行状态中检测到故障,并且这种故障是致命的,

那么工作状态不得不从运行直接到紧停,这可以立即实现而不

需要通过暂停和停止。

下面我们进一步说明当工作状态转换时,系统是如何工作的。

1.工作状态层次上升

紧停→停机

如果停机状态的条件满足,则:

1)关闭紧停电路;

2)建立液压工作压力;

3)松开机械刹车。

停机→暂停

如果暂停的条件满足,则:

1)起动偏航系统;

2)对变桨距风力发电机组,接通变桨距系统压力阀。

暂停→运行

如果运行的条件满足,则:

1)核对风力发电机组是否处于上风向;

2)叶尖阻尼板回收或变桨距系统投入工作;

3)根据所测转速,发电机是否可以切入电网。

2.工作状态层次下降

工作状态层次下降包括3种情况:

(1) 紧急停机。紧急停机也包含了3种情况,即:停止→紧停;暂停→紧停;运行→紧停。其主要控制指令为:

1)打开紧停电路;

2)置所有输出信号于无效;

3)机械刹车作用;

4)逻辑电路复位。

(2) 停机。停机操作包含了两种情况,即:暂停→停机;运行→停机。

暂停→停机

1)停止自动调向;

2)打开气动刹车或变桨距机构回油阀 (使失压)。

运行→停机

1)变桨距系统停止自动调节;

2)打开气动刹车或变桨距机构回油阀 (使失压)

3)发电机脱网。

(3) 暂停。主要控制指令为:

1)如果发电机并网,调节功率降到0后通过晶闸管切出发电机;

2)如果发电机没有并入电网,则降低风轮转速至0。

(三) 故障处理

图3-8所示的工作状态转换过程实际上还包含着一个重要的内容:当故障发生时,风力发电机组将自动地从较高的工作状态转换到较低的工作状态。故障处理实际上是针对风力发电机组从某一工作状态转换到较低的状态层次可能产生的问题,因此检测的范围是限定的。

为了便于介绍安全措施和对发生的每个故障类型处理,我们给每个故障定义如下信息:

1 故障名称;

2 故障被检测的描述;

3 当故障存在或没有恢复时工作状态层次;

4 故障复位情况 (能自动或手动复位,在机上或远程控制复位)。

(1)故障检测。控制系统设在顶部和地面的处理器都能够扫描传感器信号以检测故障,故障由故障处理器分类,每次只能有一个故障通过,只有能够引起机组从较高工作状态转入较低工作状态的故障才能通过。

(2)故障记录。故障处理器将故障存储在运行记录表和报警表中。

(3)对故障的反应。对故障的反应应是以下三种情况之一:

1)降为暂停状态;

2)降为停机状态;

3)降为紧急停机状态。

(4)故障处理后的重新起动。在故障已被接受之前,工作状态层不可能任意上升。故障被接受的方式如下:

如果外部条件良好,一些外部原因引起的故障状态可能自动复位。

一般故障可以通过远程控制复位,如果操作者发现该故障可接受并允许起动风力发电机组,他可以复位故障。

有些故障是致命的,不允许自动复位或远程控制复位,必须有工作人员到机组工作现场检查,这些故障必须在风力发电机组内的控制面板上得到复位。

故障状态被自动复位后10min将自动重新起动。但一天发生次数应有限定,并记录显示在控制面板上。

如果控制器出错可通过自检(WATCH DOG)重新起动。

五、恒速恒频风力发电机组控制系统组成

控制系统组成框图,如图9-1所示。这是定桨距双速发电机型机组控制系统的组成,对于变桨距风力发电机组只是发电机软切人控制略有区别。

控制系统由微机控制器(包括监控显示运行控制器、并网控制器、发电机功率控制器)、运行状态数据监测系统、控制输出驱动电路模板(输出伺服电动机、液压伺服机构、机电切换装置)等系统组成。主要有空气断路器、控制切换接触器、过电流、过电压及避雷保护器件、电流、电压及温度的变换电路、发电机并网控制装置、偏航控制系统、相位补偿系统、停机制动控制装置。传感信号主要由信号接口电路完成,它们向计算机控制器提供电气隔离标准信号。这些信号有模拟量20点、开关量60多点、频率量10 多点,信号的电压和电流范围一般为工业标准信号。

1. 控制系统输入信号系统监测的参数有三相电压、三相电流、电网频率、功率因数、输出功率、发电机转速、风轮转速、发电机绕组温度、齿轮箱油温、环境温度、控制板温度、机械制动闸片磨损及温度、电缆扭绞、机舱振动、风速仪和风向标等。为了得到系统运行的情况,系统还需监测各接触器的开关、液压阀压力状况、偏航运作和按键输入等情况。而控制系统输出控制的是并网晶闸管触发、相补偿、旁路接触器的开合、空气断路器的开合、空气制动、机械制动和偏航。这些控制输出都需要状态反馈,所以系统的输入量包括20多点模拟量、10点频率量、60 多点开关量。他们主要为系统的模拟输入量:发电机和电网的三相电压、三相电流和发电机绕组温度、齿轮箱油温、环境温度、传动机构等旋转机构的热升温度;频率输入量有风轮转速、发电机转速、风速仪、风向仪,偏航正反向计数、扭缆正反向计数等;开关输入量主要有按键信号16 个、制动闸片磨损、制动闸片热、风向标0°、风向标90°、

偏航顺时针传感、偏航逆时针传感、机舱振动、偏航电动机过载、旁路接触器状态、风轮液压压力信号(风轮转速过高时出现)、机械制动液压压力高、机械制动液压压力低、外部错误信号等等。

2. 控制系统输出信号而系统的控制输出主要是控制各电磁阀、接触器线圈、空气断路器的开合输出。电磁阀和接触器侧的开合则与发电动机的并网、偏航电动机(顺时针和逆时针)的动作、相位补偿的三步投切、空气制动及机械制动系统的动作等。还有系统的软并网和软脱网控制。此外,对变桨距风力发电机组还要求根据风速变化调节变桨距控制输出。

六、双馈异步风力发电系统

1. 双馈异步风力发电系统的基本概念和一般结构

2.双馈异步发电机的数学模型

3.双馈异步风力发电系统的稳态分析

华锐风机偏航系统滑动衬垫更换方案

华锐风机偏航系统滑动衬 垫更换方案 Prepared on 22 November 2020

偏航系统滑动衬垫更换步骤 工具: 侧面轴承更换工装一套(100T千斤顶,顶升轴,侧面轴承支撑架,拆卸螺栓一套),液压千斤顶,吊葫芦,钢丝绳,O型锁扣,撬棍,10"活扳,记号笔,液压站,3MXT扳头,55套筒,1"驱动方电动冲击扳手,50开口2个,55敲击扳手2个,小棘轮1套,4mm内六角,对中垫片若干。 更换步骤: 前期准备工作: 1. 将滑动衬垫用LOCTITE496黏贴在滑垫保持装置和滑动衬垫压板上,在 滑垫保持装置上涂抹LOCTITE496。 a 下表面滑动衬垫的黏贴

打磨并清理下表面滑动衬垫压板 将胶水涂 将胶水涂抹到滑动衬垫压板上,涂成米字形,将直径为110mm的滑垫装入垫板上,用手压紧滑垫左右旋转180度,以保证胶水在滑垫和垫板均匀分布。

b. 上表面滑动衬垫的黏贴 将滑垫安装槽清理干净

在滑垫安装槽内将胶水涂成“米”字形 将直径为100mm的滑动衬垫装入安装槽,用力压紧,并左右旋转,以保证胶水在滑垫和保持装置之间均匀分布。 具体更换步骤: 更换前的准备工作:

1.将机舱吊车旋臂梁支架旋转至机舱爬梯口上方,用钢丝绳和O 型锁扣将葫芦吊装上,葫芦吊挂钩应置于机舱爬梯口中心位置,固定机舱内小吊车旋臂支架。如图所示: 2.机舱偏航,使得侧面轴承正下方错开塔筒吊物口和塔筒爬梯口。 3.将靠机舱爬梯口边的三个侧面轴承的预紧力调节螺栓(M30)松开至能手动旋转状态。同时将六个侧面轴承编号,我们将靠近机舱爬梯边齿轮箱侧的侧面轴承标号为1,随后将其余侧面轴承逆时针依次编号为2-6。 用O 形环 钢丝绳与 1 6 5 4 2 3

风机叶片原理和结构

风机叶片的原理、结构和运行维护 潘东浩 第一章风机叶片报涉及的原理 第一节风力机获得的能量 一.气流的动能 1 2 i 3 E= 2 mv =2 p Sv 式中m——气体的质量 S——风轮的扫风面积,单位为m2 v 气体的速度,单位是m/s p ------空气密度,单位是kg/m3 E 气体的动能,单位是W 风力机实际获得的轴功率 P=2 p sJc p 式中P----- 风力机实际获得的轴功率,单位为W; p ------空气密度,单位为kg/m3; S ----- 风轮的扫风面积,单位为m2; v ----- 上游风速,单位为m/s. C p ---------- 风能利用系数 三.风机从风能中获得的能量是有限的,风机的理论最大效率

n Q 0.593 即为贝兹(Betz)理论的极限值。 第二节叶片的受力分析 一.作用在桨叶上的气动力 上图是风轮叶片剖面叶素不考虑诱导速

度情况下的受力分析。在叶片局部剖面上,W是来流速度V和局部线速度U的矢量和。速度W在叶片局部剖面上产生升力dL和阻力dD,通过把dL和dD分解到平行和垂直风轮旋转平面上,即为风轮的轴向推力dFn和旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用的旋转力矩,驱动风轮转动。 上图中的几何关系式如下: W =V U ①=0 + a dFn=dDs in ① +dLcos ① dFt=dLs in ①-dDcos ① dM=rdFt=r(dLsin ①-dDcos①) 其中,①为相对速度W与局部线速度U (旋转平面)的夹角,称为倾斜角;0为弦线和局部 线速度U (旋转平面)的夹角,称为安装角或节距角; a为弦线和相对速度W的夹 角,称为攻角。 ?桨叶角度的调整(安装角)对功率的影响。(定桨距) 改变桨叶节距角的设定会影响额定功率的输出,根据定桨距风力机的特点,应当尽量提高低 风速时的功率系数和考虑高风速时的失速性能。定桨距风力发电机组 在额定风速以下运行时,在低风速区,不同的节距角所对应的功率曲线几乎是重合的。但在 高风速区,节距角的变化,对其最大输出功率(额定功率点)的影响是十分明显的。事实 上,调整桨叶的节距角,只是改变了桨叶对气流的失速点。根据实验结果,节距角越小,气 流对桨叶的失速点越高,其最大输出功率也越高。这就是定桨距风力机可以在不同的空气密 度下调整桨叶安装角的根据。 不同安装角的功率曲线如下图所示: 750KW国产桨叶各安装角实际功率Illi线对比图 ! --------- ——B ----------------! *pitchy—00 P itch=-3. 00 pitcta-L T5 pi 75 ―*—pitch=-Q. 00 * 1 -------- piteh=l.00——= ---------------- i

轴流风机技术说明

轴流风机技术说明 8.1采用规范与标准 设备及施工技术所涉及的产品标准规范、工程标准规范、验收标准规范等应遵照(但不限于)下列技术标准和规范。出现两个标准不一致,或本技术规格书所使用的标准与供货商所使用的标准不一致时,除非特别说明,应按较高标准执行,并且所有标准采用合同生效时的最新版本。 《通风机基本型式尺寸参数及性能曲线》(GB/T 3235) 《工业通风机尺寸》(GB/T 17774) 《消防排烟风机耐高温试验方法》(GA 211) 《工业通风机用标准化风道进行性能试验》(GB 1236) 《声学、风机和其它通风设备辐射入管道的声功率测定、管道法》(GB/T 17697) 《空调风机噪声声功率级测定—混响室法》(JB/T 10504) 《工业通风机现场性能试验》(GB/T 10178) 《一般用途轴流通风机技术条件》(JB/T 10562); 《通风机转子平衡》(JB/T 91014) 《工业通风机叶轮超速试验》( JB/T 6445) 《风机包装通用技术条件》(JB/T 6444) 《工业通风机噪声限值》( JB/T 8690) 《通风机振动检测及其限值》(JB/T 8689) 《空调用通风机安全要求》(GB 10080) 《风机和罗茨鼓风机噪声测量方法》(GB/T 2888) 8.2技术要求 整体技术要求 (1)风机表面应清洁、平整、无碰伤、划痕及锈斑;漆层牢固、色泽均匀一致,无起泡、缩皱和剥落现象。 (2)电机为内置式。

(3)风机由机壳、叶轮、电机、软接头、电源接线盒等组成,吸风端无接管的风机需设置集流器和入口网罩。 (4)风机应为高效、低噪声设备。 (5)排风机(兼排烟风机)、排烟风机具有耐高温280℃、持续运行1h的功能要求。 (6)风机出口最大风速不超过17m/s。 (7)风机电机的底座及支架应有特别的锁紧及固定以保证安全可靠。 (8)在额定转速的工作区域内,风机的实测空气动力性能曲线与提供的性能曲线偏差应满足一下要求:(9)在额定流量、压力下,风机的流量、压力最大偏差不大于±5%,风机效率最大偏差不大于3%,噪声达到《工业通风机噪声限值》JB/T8690要求。 (10)风机使用寿命年限不小于15年,第一次大修前安全运转时间≥24000h。 (11)风机配用电机采用380V / 50Hz电源,电源接线盒须考虑合乎规定的进线要求并设于机壳外便于操作处(根据各车站设计要求确定)。 (12)由于风机设置在地下机房内,要求风机结构紧凑,且风机整体设计应考虑风机的拆卸维修,连接风机的软接、基础固定螺栓均可灵活拆卸。 (13)耐高温风机配套的软接需耐高温280℃/1h。 (14)风机叶轮的动、静平衡应满足G2.5级振动要求。所有风机在装配后应做整机动平衡,其标准应基于ISO 1940及AMCA 204/3标准G 2.5 级,出厂前并在每台风机上附有由计算机打印出的振动频谱分析图表。 8.3主要部件和材料性能 (1)叶片 1)风机动叶片采用高强度铝合金材料钢模压力铸造或高强度钢板叶片; 2)叶片与筒身间的运转间隙,普通风机应不大于叶轮直径的1%;排烟风机由于机械膨胀系数与常温不同,其间隙应不大于2%; 3)叶片应靠键与键槽牢固地固定在驱动轴上。轴向应通过锥套式连接结构将叶片缩紧在驱动轴相应的位置。便于拆装维护。 (2)电机 1)电机机轴承采用优质轴承,累计运行时间不小于7.5x104h,第一次维护

偏航系统原理及维护 (2)

风力发电机组偏航系统原理及维护 UP77/82 风电机组偏航控制及维护

目录 1、偏航系统简介 2、偏航系统工作原理 3、偏航系统控制思想 4、偏航系统故障 5、偏航系统维护 偏航系统简介 偏航系统功能 使机舱轴线能够跟踪变化稳定的风向; 当机舱至塔底引出电缆到达设定的扭缆角度后自动解缆。风向标 风向标的接线包括四根线,分别是两根电 源线,两个信号(我们实际的) 线和两根加热线; 目前每台机组上有两个风向标; 风向标的N指向机尾; 偏航取一分钟平均风向。 偏航系统结构 4个偏航电机

偏航刹车片(10 个)偏航内齿 塔筒偏航大齿圈侧面轴承 偏航轴承 内摩擦的滑动轴承系统; 内齿圈设计。 偏航驱动电机: 数量:4个 对称布置,由电机驱动小齿轮带动整个 机舱沿偏航轴承转动,实现机舱的偏航; 内部有温度传感器,控制绕组温度 偏航电子刹车装置, 偏航齿轮箱:行星式减速齿轮箱 偏航小齿轮 偏航编码器 绝对值编码器,记录偏

航位置; 偏航轴承齿数与编码器码盘齿数之比; 左右限位开关,常开触点; 左右安全链限位开关,常闭触点; 偏航刹车片 数量:10个 液压系统偏航刹车控制; 偏航系统未工作时刹车片全部抱闸, 机舱不转动; 机舱对风偏航时,所有刹车片半松开, 设置足够的阻尼,保持机舱平稳偏航; 自动解缆时,偏航刹车片全松开。 偏航润滑装置 偏航轴承润滑150cc/周 偏航齿轮润滑50cc /周 用量3:1 润滑周期16分钟/72小时(偏航润滑油泵启动间隔时间:36H 偏航润滑油泵运行时间:960s ) 偏航系统工作原理 偏航系统原理 由四个偏航电机与偏航内齿轮咬合,偏航内齿轮与塔筒固定在一起,四个偏航电机带动机舱转动。

(完整版)泵与风机的分类及其工作原理

第一章泵与风机综述 第一节泵与风机的分类和型号编制 一、泵与风机的分类 泵与风机是利用外加能旦输送流体的流体机械。它们大量地应用于燃气及供热与通风专业。根据泵与风机的工作原理,通常可以将它们分类如下: (一)容积式 容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或排出流体。按其结构不同,又可再分为; 1.往复式 这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活塞泵(piston pump)等; 2.回转式 机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。 (二)叶片式 叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。通过叶轮的旋转对流体作功,从而使流体获得能量。 根据流体的流动情况,可将它们再分为下列数种: 1.离心式泵与风机; 2.轴流式泵与风机; 3.混流式泵与风机,这种风机是前两种的混合体。 4.贯流式风机。 (三)其它类型的泵与风机 如喷射泵(jet pump)、旋涡泵(scroll pump)、真空泵(vacuum pump)等。 本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、运行、调节和选用方法等知识。由于制冷专业常用泵是以不可压缩的流体为工作对象的。而风机的增压程度不高(通常只有9807Pa或1000mmH2O以下),所以本篇内容都按不可压缩流体进行论述。 二、泵与风机的型号编制 (一)、泵的型号编制 1、离心泵的基本型号及其代号 泵的型式型式代号泵的型式型式代号 单级单吸离心泵IS.B大型立式单级单吸离心泵沅江

轴流式风机原理及运行

轴流式风机原理及运行 一.轴流式风机的结构特点 轴流送风机为单级风机,转子由叶轮和叶片组成,带有一个整体的滚动轴承箱和一个液压叶片调节装置。主轴承和滚动轴承同置于一球铁箱体内,此箱体同心地安装在风机下半机壳中并用螺栓固定。在主轴的两端各装一只支承轴承,为承受轴向力。主轴承箱的油位由一油位指示器在风机壳体外示出。轴承的润滑和冷却借助于外置的供油装置,周围的空气通过机壳和轴承箱之间的空隙的自然通风,以增加了它的冷却。 叶轮为焊接结构,因为叶轮重量较轻,惯性矩也小。叶片和叶柄等组装件的离心力通过推力轴承传递至较小的承载环上,叶轮组装件在出厂前进行叶轮整套静、动平衡的校验。 风机运行时,通过叶片液压调节装置,可调节叶片的安装角并保持这一角度。叶片装在叶柄的外端,叶片的安装角可以通过装在叶柄内的调节杆和滑块进行调节,并使其保持在一定位置上。调节杆和滑块由调节盘推动,而调节盘由推盘和调节环所组成,并和叶片液压调节装置的液压缸相连接。 风机转子通过风机侧的半联轴器、电动机侧的半联轴器和中间轴与电机连接。 风机液压润滑供油装置由组合式的润滑供油装置和液压供油装置组成。此系统有2台油泵,并联安装在油箱上,当主油泵发生故障时,备用油泵即通过压力开关自动启动,2个油泵的电动机通过压力开关联锁。在不进行叶片调节时,油流经恒压调节阀而至溢流阀,借助该阀建立润滑压力,多余的润滑油经溢流阀回油箱。 风机的机壳是钢板焊接结构,风机机壳具有水平中分面,上半可以拆卸,便于叶轮的装拆和维修。叶轮装在主轴的轴端上,主轴承箱用螺钉同风机机壳下半相连接,并通过法兰的内孔保证对中,此法兰为一加厚的刚性环,它将力(由叶轮产生的径向力和轴向力)通过风机底脚可靠地传递至基础,在机壳出口部分为整流导叶环,固定式的整流导叶焊接在它的通道内。整流导叶环和机壳以垂直法兰用螺钉连接。 进气箱为钢板焊接结构,它装置在风机机壳的进气侧。在进气箱中的中间轴放置于中间轴罩内。电动机一侧的半联轴器用联轴器罩壳防护。带整流体的扩压器为钢板焊接结构,它布置在风机机壳的排气侧。为防止风机机壳的振动和噪声传递至进气箱和扩压器以至管道,因此进气箱和扩压器通过挠性连接(围带)同风机机壳相连接。 为了防止过热,在风机壳体内部围绕主轴承的四周,借助风机壳体下半部的空心支承使其同周围空气相通,形成风机的冷却通风。 主轴承箱的所有滚动轴承均装有轴承温度计,温度计的接线由空心导叶内腔引出。为了避免风机在喘振状态下工作,风机装有喘振报警装置。在运行工况超过喘振极限时,通过一个预先装在机壳上位于动叶片之前的皮托管和差压开关,利用声或光向控制台发出报警信号,要求运行人员及时处理,使风机返回到正常工况运行。 轴流风机如下图所示

轴流风机的使用说明

轴流风机的使用说明 轴流风机应有子午加速方法和“准三元”流动理论,采用直线外筒、锥型毂、扭曲翼形叶片当然结构形式。压力较同型号轴流风机高,风量较同型号离心风机大。本系列通风机设计颖,结构紧凑,体积小,重量轻,易安装,与老式的离心式风机相比可节电20%,转速小于2000r/min时,噪声低于75dB(A),风机联接管道和安装在空调箱内时,噪声小于70dB(A)。可代替2000pa以下的中。具有效率高、体积小、节能好,噪声低,安装方便等优点。低压离心风机,广泛用于宾馆、饭店、商场、写字楼、体育馆等民用建筑的通排风、管道加压送风及工矿企业的通风换气场所。其中双速风机可根据使用工况要求通过变速来调整所需风量、风压。 一、风机的结构特性 风机主要有叶轮、机壳、进口集流器、导流片、电动机等部件组成。叶轮采用有子午加速特点的扭曲平板焊接在轮毂上。经动平衡校验,超速试验,有良好的空气动力性能。机壳采用圆形,与消音功能的集风器联接成整体。出口装有导流片,具有良好的气流分布,压稳定。 二、风机的用途 杰仕力系列轴流通风机广泛用于隧道、地下车库、高级民用建筑、冶金、厂矿等场所的通风换气及消防高温排烟系列风机输送气体温度不得超过80℃,特殊环境可选用防暴型轴流风机,防腐型轴流风机。 三、风机性能的选择 风机的性能在性能表上查阅,表中列出的性能是最高效率范围内的性能,按流量分为五个特点,选用时按性能表为准,出厂的风机合格品

性能在额定流量下全压值不超过±5%。性能选用表是标准状态下的性能,无聊技术文件或订货要求的性能均按标准状态为准,标准状态大气压=101325Pa,t=20相对温度Ψ=50%空气状态,当实际使用条件下与上述不符合时按有关公式进行换算,风机安装方式可分为立式或卧式,如立式安装在订货中注明,如流量,压力安装尺寸等性能参数有特殊要求,公司将为您另行设计生产。 四、风机安装 1.安装前应认真检查风叶及机壳有否因运输损坏或变形,否则应待修复后方可安装; 2.检查连接螺栓是否松动,风机起动前,首先要检查风机管道内有无妨碍转动的物品; 3.检查电机绝缘性能是否良好,接通电源后查看有无磨擦碰撞及异常振动; 4.风机振动产生的原因很多,可从下述方面进行检查: a.)叶轮与风筒相磨擦,并发出异常的声响及振动; b.)支架底脚螺栓未紧固,亦会出现较大的振动; c.)叶轮与轴套的连接螺栓松动; d.))支架与电机连接螺栓松动导致叶轮不平衡,轴承损坏而造成激烈振动; 5.在常温下运转发现电机温升过高,则可能由下列原因造成: a.)电机轴承损坏,配合间隙小,不符合要求; b.)轴与轴随安装歪斜,两个轴承不同轴度; c.)电源电压过低

风力发电机偏航系统控制

题目:风力发电机偏航系统控制 风力发电机偏航系统控制 摘要 本文介绍了风力机的偏航控制机构、驱动机构的基础上,采用PLC作为主控单元,设计了风电机组的偏航控制系统。系统根据风向、风速传感器采集的数据,采取逻辑控制主动对风,实现了对风过程可控。论文给出了基于风向标、风速仪的偏航控制系统的软硬件设计结果。 关键词:

Wind turbine yaw control system Abstract In this paper, the wind turbine yaw control mechanism, drive mechanism, based on the use of single-chip PLC as the main control unit, designed for wind turbine yaw control system. Systems based on wind direction, wind speed data collected by sensors, logic control to take the initiative on the wind, to achieve controllability of the wind process. Papers are given based on the wind direction, wind speed sensor yaw control system hardware and software design. Key words:Wind turbine ;Yaw control system;

风机控制系统结构原理分解

风机控制系统结构

一、风力发电机组控制系统的概述 风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标: 1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。 2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。 3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。 4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。 主要完成下列自动控制功能: 1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。 2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。 3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。 4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围 ±15°。 5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。 6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。 7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

华锐风机偏航系统滑动衬垫更换方案

偏航系统滑动衬垫更换步骤工具: 千斤顶,顶升轴,侧面轴承支撑架,拆卸螺侧面轴承更换工装一套(100T活扳,记号型锁扣,撬棍,?栓一套),液压千斤顶,1.5t吊葫芦,钢丝绳,O55个,驱动方电动冲击扳手,50开口2套筒,笔,液压站,3MXT扳头,55就内六角,对中垫片若干。1套,4mm敲击扳手2个,小棘轮 更换步骤:前期准备工作:在将滑动衬垫用LOCTITE496黏贴在滑垫保持 装置和滑动衬垫压板上,1. LOCTITE496。滑垫保持装置上涂抹 下表面滑动衬垫的黏贴a 打磨并清理下表面滑动衬垫压板

将胶水涂成米字形 的滑垫装入将胶水涂抹到滑动衬垫压板上,涂成米字形,将直径为110mm 度,以保证胶水在滑垫和垫板均匀分布。垫板上,用手压紧滑垫左右旋转180 上表面滑动衬垫的黏贴b. 将滑垫安装槽清理干净

在滑垫安装槽内将胶水涂成“米”字形 的滑动衬垫装入安装槽,用力压紧,并左右旋转,以保证100mm将直径为胶水在滑垫和保持装置之间均匀分布。具体更换步骤: 更换前的准备工作:型锁扣将1.将机舱吊车旋臂梁支架旋转至机舱爬梯口上方,用钢丝绳和O固定机舱内小吊车旋臂支葫芦吊装上,葫芦吊挂钩应置于机舱爬梯口中心位置,架。如图所示: 形环定钢丝钢丝绳与葫芦相连

.机舱偏航,使得侧面轴承正下方错开塔筒吊物口和塔筒爬梯口。2)松开至能M303.将靠机舱爬梯口边的三个侧面轴承的预紧力调节螺栓(我们将靠近机舱爬梯边齿轮箱侧的侧手动旋转状态。同时将六个侧面轴承编号,2-6。面轴承标号为1,随后将其余侧面轴承逆时针依次编号为 3 4 5 2 1 6 .将侧面轴承调整工装的圆钢穿于两侧偏航电机下部的主机架圆孔中,将4详情如千斤顶应放置在靠近齿轮箱侧的偏航电机附近。千斤顶放于偏航齿圈上,下图所示:

送引风机及一次风机讲义

第九章送引风机及一次风机

第一节概述 ?轴流风机具有结构紧凑、体积小、重量轻、低负荷时效率高、风机容量大等优点。大容量锅炉采用轴流风机是目前发展的主要趋势。 ?轴流风机和离心风机一样都是在叶轮的作用下,使气流获得能量,所不同的是轴流风机的工作原理是利用旋转叶片的挤压推进力使气流获得能量,升高其压能和动能,而离心风机的工作原理是利用旋转时产生的离心力使气流获得能量。 ?轴流风机一般由整流罩、前导叶、叶轮、扩散筒和机壳等组成。转子由轮毂和轮毂上径向布置的叶片组成。使流过的气流提高压头,并尽可能降低损失,轴流风机的叶片,一般采用机翼型。

?轴流风机的气体是从轴向流入叶轮并沿轴向流出,气体在轴流式叶轮中,因不受离心力的作用,即离心力作用而升高的静压头为零。因此,它所产生的压头远低于离心式风机。轴流风机一般只适用于大流量、低压头的系统,属于高比转速范围。离心式风机比转速一般在15~90之间,轴流式风机比转速一般大于100。轴流风机应用最广范的是动叶可调式。 ?离心风机具有结构简单,运行可靠,效率较高,制造成本较低,噪音较小,抗腐蚀性较好等特点。随着锅炉单机容量的增长,离心风机的容量已经受到叶轮材料强度的限制。轴流风机使用日益广范。因为锅炉容量增大,烟、风流量增大,但所需要的压力没有增大,很明显从风机的效率角度看采用轴流风机要比离心风机有利。随着轴流风机制造技术的发展,目前新建大机组的六大风机均以采用轴流式风机为多。

?一、轴流风机与离心风机相比较主要特点?(1)轴流风机采用动叶或静叶可调的结构,其调节效率高,运行费用较离心风机低。 ?两种类型风机在设计负荷时的效率相差不大,轴流风机效率最高达90%,机翼形叶片离心风机效率92.8%。但是,当机组带低负荷时,动叶可调轴流风机的效率要比具有入口导向装置的离心风机高许多。

浅析风机偏航系统

浅析风机偏航系统 newmaker 随着风能公司不断的向前发展,达坂城风电场的扩建也进行到了第三期。其中包括BOUNS150KW、TACKE600KW、AN BONUS450KW、JACOBS500KW、国产化600KW等五种不同型号的风机。各类风机的偏航系统也都有一些不同地方和特点,现就对偏航系统作些探讨。 一.偏航的构成及原理: 偏航系统主要由偏航测量及偏航驱动部分,机械传动部分,扭缆保护装置三大部分组成,其各部分组成及工作原理如下: (一)、偏航测量及偏航驱动部分: 偏航测量及偏航驱动主要由风向标、偏航识别和偏航执行机构组成。 1.测量: 风机对风的测量主要是由风向标来完成。随着数字电路的发展,风向标的种类也有许多。风向标是一种光电感应传感器。有一种内部带有一个8位的格雷码盘,当风向标随风转动时,同时也带动格雷码盘转动,由此得到不同的格雷码盘,通过光电感应元件,变成一组8位数字信号传入单板机。格雷码盘将360°分成256个区,每个区为1.41°,固其测量精度为1.41°.另一种风向标在转动时,将同时带动两个传感器一起转动,风向标正向是一号传感器,为0°轴,二号传感器同一号传感器成90°夹角,为90°轴,这样就将形成一个虚拟的坐标,坐标里有4个象限,当风向标转动后,就会同风机现在的方向形成夹角,而风机现在的方向必定会落在风向标所带的坐标象限内,这样一来就会使风机偏航,偏航动作见表

2.偏航识别和执行机构 当风向标的信号被采集后,通过数据传输到工业单板机.工业单板机通过程序计算后进行判断,是否应偏航?当确定须偏航后,计算机发出偏航动作信号.信号经放大后先驱动顺偏或逆偏继电器,再由继电器驱动接触器吸合,使偏航电机带电运行来完成顺时针或逆时针转动对风.偏航正、反向驱动电路是互为闭锁回路。 (二)机械传动部分 传动部分主要由偏航电机、偏航减速机构、偏航小齿轮、偏航齿圈、偏航刹车组成。 1.偏航电机 各类风机都采胩三相异步电动机,额定功率BONUS150KW风机为0.55KW,TACKE 600KW 风机为2.2KW,AN BONUS450KW风机为0.55KW(双电机),JACOBS500KW风机为0.55KW(双电机),国产化600KW风机为0.55KW(双电机),都带有电磁闸.双电机可增加齿面的接触面积,增大啮合强度,转动更平稳. 2.偏航减速机构 减速器一般都由二通讯组成.第一级都是螺旋齿轮减速器,第二级为行里齿轮减速器.TACKE 风机为使偏航转动平稳,还单独安装了一个减速器. 3.偏航小齿轮和偏航齿盘 小齿轮由偏航电机经减速器减速后驱动,带动机舱在偏航齿盘上转动,偏航齿盘固定在塔架上是不动的,这样就可使机舱能正确对风叶轮能转动对风.

偏航系统原理及技术特点的分析

偏航系统原理及技术特点的分析 一.偏航的构成及原理: 偏航系统主要由偏航测量及偏航驱动部分,机械传动部分,扭缆保护装置三大部分组成,其各部分组成及工作原理如下: (一)、偏航测量及偏航驱动部分: 偏航测量及偏航驱动主要由风向标、偏航识别和偏航执行机构组成。 1.测量: 风机对风的测量主要是由风向标来完成。随着数字电路的发展,风向标的种类也有许多。风向标是一种光电感应传感器。有一种内部带有一个8位的格雷码盘,当风向标随风转动时,同时也带动格雷码盘转动,由此得到不同的格雷码盘,通过光电感应元件,变成一组8位数字信号传入单板机。格雷码盘将360°分成256个区,每个区为1.41°,固其测量精度为1.41°.另一种风向标在转动时,将同时带动两个传感器一起转动,风向标正向是一号传感器,为0°轴,二号传感器同一号传感器成90°夹角,为90°轴,这样就将形成一个虚拟的坐标,坐标里有4个象限,当风向标转动后,就会同风机现在的方向形成夹角,而风机现在的方向必定会落在风向标所带的坐标象限内,这样一来就会使风机偏航,偏航动作见表 2.偏航识别和执行机构 当风向标的信号被采集后,通过数据传输到工业单板机.工业单板机通过程序计算后进行判断,是否应偏航?当确定须偏航后,计算机发出偏航动作信号.信号经放大后先驱动顺偏或逆偏继电器,再由继电器驱动接触器吸合,使偏航电机带电运行来完成顺时针或逆时针转动对风.偏航正、反向驱动电路是互为闭锁回路。

(二)机械传动部分 传动部分主要由偏航电机、偏航减速机构、偏航小齿轮、偏航齿圈、偏航刹车组成。 1.偏航电机 各类风机都采胩三相异步电动机,额定功率BONUS150KW风机为0.55KW,TACKE600KW风机为2.2KW,ANBONUS450KW风机为0.55KW(双电机), JACOBS500KW风机为0.55KW(双电机),国产化600KW风机为0.55KW(双电机),都带有电磁闸.双电机可增加齿面的接触面积,增大啮合强度,转动更平稳. 2.偏航减速机构 减速器一般都由二通讯组成.第一级都是螺旋齿轮减速器,第二级为行里齿轮减速器.TACKE风机为使偏航转动平稳,还单独安装了一个减速器. 3.偏航小齿轮和偏航齿盘 小齿轮由偏航电机经减速器减速后驱动,带动机舱在偏航齿盘上转动,偏航齿盘固定在塔架上是不动的,这样就可使机舱能正确对风叶轮能转动对风. 4.偏航刹车及减振 除了150KW风机只有电磁闸以外,其它的风机还都带有液压刹车.在液压刹车里,TACKE600KW、JACOBS500KW及国产化600KW风机采用盘式刹车, ANBONUS450KW风机采用撑杆式刹车。并且JACBOS500KW和国产化600KW风机在偏航时,液压刹车不带有一定的余压,使转动平稳,减小叶轮因偏航引起的振动,保护偏航轴承,150KW风机还装有五个滑爪,滑爪由上滑靴构成,上滑靴为一个尼龙块,下滑靴中有一长方形的槽,槽内有二组碟簧上放一个长方形的铜块,偏航齿盘夹在上、下滑靴之间,通过螺栓可以调节偏航盘与滑靴之间的间隙,依靠滑块与偏航盘之间的磨擦力减小由偏航引起的振动。 (三)扭缆保护装置 扭缆保护一般由凸轮控制器(或偏航位置传感器)和扭缆开关组成 凸轮控制器由小齿轮与偏航盘相啮合,在偏航动作的同时也会带动凸轮控制器内部的齿轮转动,当转动一定圈后会触动机械开关动作。计算机接收到后就进行判断,是否需要解缆。一般凸轮控制器有三个开关顺偏位置开关、中间位置开关、逆偏位置开关。 TACKE600KW风机是靠偏航位置传感器来进行扭缆测量的。这个装置由两个距半个齿间隔的记数传感器组成,当偏航动作后,由这两个记数据传感器记录偏航齿圈上的齿数,由计算机进行数据运算来识别偏航的圈数,转过3圈后,进行无条件解缆。电缆转

锅炉结构 及工作原理

锅炉结构及工作原理 锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。

汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,

轴流风机风机的结构特点及运行

轴流风机的结构特点及运行 一. 风机概述 风机是一种把机械能转变为流体势能和动能的动力设备。在锅炉上的应用主要是送风机、引风机和一次风机等,它们担负着连续不断地共给燃烧所需要的空气,并把燃烧生成的烟气及飞灰排出炉外的任务。随着锅炉单机容量的增大,为保证机组安全可靠和经济合理的运行,对风机的结构、性能和运行调节也提出了更高更新的要求。离心风机具有结构简单、运行可靠、制造成本较低,效率较高、噪声小、抗腐蚀性能较好的特点,以往锅炉的风机普遍采用离心式风机。现代离心风机普遍采用空心机翼型后弯叶片,其效率可高达85%~92%。但是随着锅炉单机容量的增大,离心风机的容量已经受到叶轮材料强度的限制,不可能使风机的容量随锅炉容量大幅度而按相应比例增大。离心风机过大的尺寸,会给制造、运行等方面带来一定的困难。 轴流风机与离心风机比较有以下主要的特点: 1)轴流风机调节效率高且可一直在高效率区域内工作,其运行费用较离心风机低。轴流风机可以制造成动叶或静叶可调,效率最高可达90%,而采用机翼型叶片的离心式风机效率可达92.8%。虽然在设计负荷时离心风机的效率稍高一点。但当低负荷时,相应风机负荷也减少,则动叶可调轴流风机的效率要比具有入口导向装置调节的离心风机要高许多。当机组负荷为100%时,轴流风机与离心风机的效率分别为86%与84%,当机组负荷降至54%~50%时,轴流风机效率将比离心风机高2.53~2.81倍。 2)轴流风机对风道系统风量变化的适应性优于离心风机。目前对风道系统的阻力计算还不能做到很精确,尤其是锅炉烟道侧运行后的实际阻力与计算值误差较大;在实际运行中,如果煤种变化也会引起所需的风机风量和压头的变化。然而,对于离心风机来说,在设计时要选择合适的风机来适应上述各种要求是困难的。为考虑上述的变化情况,选择风机时其裕量要适当采取大些,则会造成在正常负荷运行时风机的效率会有明显的下降。如果风机的裕量选得偏小,一旦情况变化后,可能会使机组达不到额定出力。而轴流风机采用动叶调节,关小和增大动叶的角度来适应风量、风压的变化,而对风机的效率影响却较小。 3)轴流风机重量轻,低的飞轮效应值等方面比离心风机好。由于轴流风机比离心风机的重量轻,所以支撑风机和电动机的结构基础也较轻,还可以节约基础材料。轴流风机结构紧凑、外形尺寸小,占据空间亦小。如果以相同性能作作对比基础,则轴流风机所占空间尺寸比离心风机小30%左右。 轴流风机有低的飞轮效应值(kg.m2),这是由于轴流风机允许采用较高的转速和较高的流量系数。所以在相同的风量、风压参数下轴流风机的转子重量较轻,即飞轮效应较小,使得轴流风机的启动力矩大大地小于离心风机的启动力矩。一般轴流式送风机的启动力矩只有离心式送风机启动力矩的14.2%~27.8%,因而可明显地减少电动机功率裕量对电动机启动特性的要求,降低电动机的投资。而离心风机由于受到材料强度的限制,叶轮的圆周速度也受到限制。而转速低,使离心风机的转子大而重,飞轮效应显著增大,会使风机的启动带来困难。电动机功率要比正常运行条件下所需的功率大得多,这样在正常运转时,电动机又经常在欠载运转,增加电动机的造价,降低电机的效率。 4)轴流风机的转子结构要比离心风机转子复杂,旋转部件多,制造精度要求高,叶片材料的质量要求也高。再加上轴流风机本身特性,运行中可能要出现喘振现象。所以轴流风机运行可靠性比离心风机稍差一些。但是动叶可调的轴流风机由于从国外引进技术,从设计、结构、材料和制造工艺上加以改进提高,使目前轴流风机的运行可靠性可与离心风机相媲美。 5)轴流风机如与离心风机的性能相同的话,则轴流风机的噪声强度比离心风机高,因为轴流风机的叶片数往往比离心风机多2倍以上,转速也比离心风机高,因此轴流风机的噪

风机的工作原理

风机的工作原理 轴流式风机,就是与风叶的轴同方向的气流(即风的流向和轴平行),如电风扇,空调外机风扇就是轴流方式运行风机。 轴流式风机又叫局部通风机,是工矿企业常用的一种风机,安不同于一般的风机它的电机和风叶都在一个圆筒里,外形就是一个筒形,用于局部通风,安装方便,通风换气效果明显,安全,可以接风筒把风送到指定的区域. 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机[2]?,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。 风机应用范围: 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。 风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机历史 风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心风机基本相同。1862年,英国的圭贝尔发明离心风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心风机,结构已比较完善了。 1892年法国研制成横流风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心风机,并为各国所广泛采用;19世纪,轴流风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。1935年,德国首先采用轴流等压风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流风机;旋轴流风机、子午加速轴流风机、斜流风机和横流风机也都获得了发展。 风机分类 1.风机按使用材质分类可以分好几种,如铁壳风机(普通风机)、玻璃钢风机、塑料风机、铝风机、不锈钢风机等等 2.风机分类可以按气体流动的方向,分为离心式、轴流式、斜流式(混流式)和横流式等类型。 3.风机根据气流进入叶轮后的流动方向分为:轴流式风机、离心式风机和斜流(混流)式风机。 4.风机按用途分为压入式局部风机(以下简称压入式风机)和隔爆电动机置于流道外或在流道内,隔爆电动机置于防爆密封腔的抽出式局部风机(以下简称抽出式风机)。 5.风机按照加压的形式也可以分单级、双级或者多级加压风机。

风力发电机偏航系统控制

摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。风力发电作为一种可持续发展的新能源,不仅可以节约常规能源,而且减少环境污染,具有较好的经济效益和社会效益,越来越受到各国的重视。 由于风能具有能量密度低、随机性和不稳定性等特点,风力发电机组是复杂多变量非线性不确定系统,因此,控制技术是机组安全高效运行的关键。偏航控制系统成为水平轴风力发电机组控制系统的重要组成部分。风力发电机组的偏航控制系统,主要分为两大类:被动迎风偏航系统和主动迎风系统。前者多用于小型的独立风力发电系统,由尾舵控制,风向改变时,被动对风。后者则多用大型并网型风力发电系统,由位于下风向的风向标发出的信号进行主动对风控制。本文设计是大型风力发电机组根据风速仪、风向标等传感器数据,对风、制动、开闸并确定起动,达到同步转速一段时间后,进行并网操作,开始发电。 本文介绍了风力机的偏航控制机构、驱动机构的基础上,采用PLC作为主控单元,设计了风电机组的偏航控制系统。系统根据风向、风速传感器采集的数据,采取逻辑控制主动对风,实现了对风过程可控。论文给出了基于风向标、风速仪的偏航控制系统的软硬件设计结果。 关键词:风力发电机;风向标;偏航控制系统;驱动机构

目录 第1章绪论 (2) 1.1 课题的背景和意义 (2) 1.2 国内风力发电的发展 (3) 第2章风力发电机组系统组成及功能简介 (5) 2.1 风力机桨叶系统 (5) 2.2 风力机齿轮箱系统 (6) 2.3 发电机系统 (7) 2.4 偏航系统 (8) 2.6 刹车系统 (8) 2.8 控制系统 (8) 第3章偏航控制系统功能和原理 (10) 3.1 偏航控制机构 (10) 3.1.1 风向传感器 (10) 3.1.2 偏航控制器 (12) 3.1.3 解缆传感器 (12) 3.2 偏航驱动机构 (13) 3.2.2 偏航驱动装置 (15) 3.2.3 偏航制动器 (16) 第4章偏航控制系统设计及结果分析 (18) 4.1 偏航系统控制过程分析 (18) 4.1.1 自动偏航 (18) 4.1.2 90度侧风控制 (19) 4.1.3 人工偏航控制 (20) 4.1.4 自动解缆 (20) 4.1.5 阻尼刹车 (21) 4.2 偏航控制系统总体设计结构与思想 (22) 4.3 偏航控制系统设计各组成器件简介、选型及原理 (22) 总结与展望 (23) 参考文献 (24) 致谢 (24)

风机叶片原理和结构

风机叶片得原理、结构与运行维护 潘东浩 第一章风机叶片报涉及得原理 第一节风力机获得得能量 一.气流得动能 E=mv2=ρSv3 式中m—--———气体得质量 S-—-—--—风轮得扫风面积,单位为m2 v--—---—气体得速度,单位就是m/s ρ------空气密度,单位就是kg/m3 E—-———-—-—-气体得动能,单位就是W 二、风力机实际获得得轴功率 P=ρSv3C p 式中P--—----—风力机实际获得得轴功率,单位为W; ρ-———-—空气密度,单位为kg/m3; S————-—--风轮得扫风面积,单位为m2; v------——上游风速,单位为m/s、 Cp -—----—-—风能利用系数 三。风机从风能中获得得能量就是有限得,风机得理论最大效率 η≈0。593 即为贝兹(Betz)理论得极限值。 第二节叶片得受力分析 一。作用在桨叶上得气动力 上图就是风轮叶片剖面叶素不考虑诱导 速度情况下得受力分析。在叶片局部剖面 上,W就是来流速度V与局部线速度U得矢量 与。速度W在叶片局部剖面上产生升力dL 与阻力dD,通过把dL与dD分解到平行与垂直风轮旋转平面上,即为风轮得轴向推力dFn与旋转切向力dFt。轴向推力作用在风力发电机组塔架上,旋转切向力产生有用得旋转力矩,驱动风轮转动。 上图中得几何关系式如下: Φ=θ+α

dFn=dDsinΦ+dLcosΦ dFt=dLsinΦ-dDcosΦ dM=rdFt=r(dLsinΦ-dDcosΦ) 其中,Φ为相对速度W与局部线速度U(旋转平面)得夹角,称为倾斜角; θ为弦线与局部线速度U(旋转平面)得夹角,称为安装角或节距角; α为弦线与相对速度W得夹角,称为攻角。 二。桨叶角度得调整(安装角)对功率得影响。(定桨距) 改变桨叶节距角得设定会影响额定功率得输出,根据定桨距风力机得特点,应当尽量提高低风速时得功率系数与考虑高风速时得失速性能、定桨距风力发电机组在额定风速以下运行时,在低风速区,不同得节距角所对应得功率曲线几乎就是重合得。但在高风速区,节距角得变化,对其最大输出功率(额定功率点)得影响就是十分明显得。事实上,调整桨叶得节距角,只就是改变了桨叶对气流得失速点。根据实验结果,节距角越小,气流对桨叶得失速点越高,其最大输出功率也越高。这就就是定桨距风力机可以在不同得空气密度下调整桨叶安装角得根据、 不同安装角得功率曲线如下图所示: 第三节 叶片得基本概念 1、叶片长度:叶片径向方向上得最大长度,如图1所示。 图1 叶片长度 2、叶片面积

相关文档
最新文档