初中数学公开课课件《二次根式》
合集下载
公开课课件二次根式

2 当x0且x1,1- x 有意义 4由题意可知: x-5 0 解得x5且x6
x6
当x 5且 6x时, x-+5x-6 0有意义
13
尝试与交流
22=4,( 即4)2= 4
32=9,( 即9)2= 9
同样地(,2)2= 2 ( 5)2= 5 你还能给出类似的例子吗?试试看 你有什么发现
当a0时(,a)2=a .
在实数范围内,负数没有平方根
11
例题讲解
例1 x为何值时, 下列各式在实数范围内有意义。
(1) 13x (2) 1x 3x (3) (x5)2
解: (1)由1-3x≥0得x≤
1
1
3
当x 3 时, 1-3x有意义
1+x 0
2 由题意可知:
解不等式组得到: -1x3
3-x 0
当 -x13时, 1+-x3-有 x 意义
斜边长为____a_2___2__5_0_0__米。
6
S
圆形的下球体在平面图上的面积为S,
S 则半径为____________.
7
b-3
如图示的值表示正方形的面积, 则
正方形的边长是 b 3
s
a2 2500
b3
表示一些正数的算术平方根.
一般地,式子a (a0) 叫做二次根式,
a称为是被开方数
3由于 x+520, 当x取一切实数 x+时 52有意义
12
挑战求自x为我何值时, 下列各式在实数范围内有意义。
3 1 2x-1
2
2
2 1-x
3 1-
x
4 x-5 + x-6 0
解:1由2x-1>0得x>12当x> 12
北师大版八年级数学上册《二次根式》第1课时示范公开课教学课件

最简二次根式:
(a≥0,b≥0)
(a≥0,b>0)
一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.
教科书第43页习题2.9第1、2 、3题
解:
(1)(4)(6)均是二次根式,其中x2+1属于“非负数+正数”的形式一定大于零.(3)(5)(7)均不是二次根式.
是否含二次根号
被开方数是不是非负数
二次根式
不是二次根式
是
是
否
否
分析:
2. (1) 使二次根式 在实数范围内有意义的 m的取值范围是__________.
中,根号内是整数,且不含有能开得尽方的因数,分母中又不含根号,所以是最简二次根式.
将二次根式化成最简二次根式的方法:
小数 分数
A. B. C. D.
图①
图②
问题1 上面问题中,得到的结果分别是 , , , 这些 式子分别表示什么意义?
问题2 非负数b,m+n ,t2-2的算术平方根怎么表示?
, , .
问题3 什么样的数才有算术平方根?
只有非负数才有算术平方根.
1.选择.
2.填空.
1<a≤4
-6
6
3. 化简(1)
解:(1)
(2)
(3)
(2)
(3)
二次根式概念:
二次根式
性质:
一般地,式子 叫做二次根式.a是被开方数.
7 二次根式
第1课时
什么叫做平方根?
一般地,如果一个数x的平方等于a,即 x2=a,那么这个数x就叫做a的平方根.
什么叫做算术平方根?
正数和0有算术平方根,负数没有平方不是,因为被开方数是小数(即含有分母).
(a≥0,b≥0)
(a≥0,b>0)
一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.
教科书第43页习题2.9第1、2 、3题
解:
(1)(4)(6)均是二次根式,其中x2+1属于“非负数+正数”的形式一定大于零.(3)(5)(7)均不是二次根式.
是否含二次根号
被开方数是不是非负数
二次根式
不是二次根式
是
是
否
否
分析:
2. (1) 使二次根式 在实数范围内有意义的 m的取值范围是__________.
中,根号内是整数,且不含有能开得尽方的因数,分母中又不含根号,所以是最简二次根式.
将二次根式化成最简二次根式的方法:
小数 分数
A. B. C. D.
图①
图②
问题1 上面问题中,得到的结果分别是 , , , 这些 式子分别表示什么意义?
问题2 非负数b,m+n ,t2-2的算术平方根怎么表示?
, , .
问题3 什么样的数才有算术平方根?
只有非负数才有算术平方根.
1.选择.
2.填空.
1<a≤4
-6
6
3. 化简(1)
解:(1)
(2)
(3)
(2)
(3)
二次根式概念:
二次根式
性质:
一般地,式子 叫做二次根式.a是被开方数.
7 二次根式
第1课时
什么叫做平方根?
一般地,如果一个数x的平方等于a,即 x2=a,那么这个数x就叫做a的平方根.
什么叫做算术平方根?
正数和0有算术平方根,负数没有平方不是,因为被开方数是小数(即含有分母).
人教九年级数学上册《二次根式》课件(共14张PPT)

谢谢观赏
You made my day!
我们,还在路上……
▪1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 ▪2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 ▪3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
其中a叫做被开方式。
不要忽略
二次根式
a (a ≥ 0 )表 示 非 负 数 a 的 算 术 平 方 根 ,
形 如 a (a ≥ 0 )的 式 子 叫 做 二 次 根 式 。
它必须具备如下特点: 1、 根 指 数 为 2; 2、 被 开 方 数 必 须 是 非 负 数 。
想 一 想 : 10 、 -5 、 3 8 5 3 、 (-2)2 a (a< 0﹚ 、 a 2+ 0 . 1 、 - a ( a < 0 ﹚ 是 不 是 二 次 根 式 ?
定义:
式子 a a0 叫做二次根式,其中
a叫做被开方式。
注意 在实数范围内,a< 0时, a 没有
意义,只有当 a0 时, a 有意义。
例1 : 判断,下列各式中那些是二次根式?
a 10, 00..0044,, a a2 , 2 ,
5,
aa , , 3 8 .
定义:式子 a(a 0) 叫做二次根式.
( 2) 被 开 方 数 必 须 是 非 负 数 。
You made my day!
我们,还在路上……
▪1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 ▪2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 ▪3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
其中a叫做被开方式。
不要忽略
二次根式
a (a ≥ 0 )表 示 非 负 数 a 的 算 术 平 方 根 ,
形 如 a (a ≥ 0 )的 式 子 叫 做 二 次 根 式 。
它必须具备如下特点: 1、 根 指 数 为 2; 2、 被 开 方 数 必 须 是 非 负 数 。
想 一 想 : 10 、 -5 、 3 8 5 3 、 (-2)2 a (a< 0﹚ 、 a 2+ 0 . 1 、 - a ( a < 0 ﹚ 是 不 是 二 次 根 式 ?
定义:
式子 a a0 叫做二次根式,其中
a叫做被开方式。
注意 在实数范围内,a< 0时, a 没有
意义,只有当 a0 时, a 有意义。
例1 : 判断,下列各式中那些是二次根式?
a 10, 00..0044,, a a2 , 2 ,
5,
aa , , 3 8 .
定义:式子 a(a 0) 叫做二次根式.
( 2) 被 开 方 数 必 须 是 非 负 数 。
《二次根式课件》公开课课件

二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法
人教版八年级下册数学《二次根式的概念》二次根式PPT教学课件

巩固练习
3. (1) 已知 =0,求x,y 的值.
因为 ≥0, ≥0,且其和为0,所以x+1=0,x+y-2=0,解得x=-1,y=3.所以x,y 的值分别为-1,3.
总结:a 2, ≥0(a≥0).可利用“若几个非负数之和为零,则这几个非负数同时为零”解决问题.
+
+5,求
的值
+
=0,求a2019+b2104的值.
1.已知y=
2.若
2
2.若 ,则x的取值范围是( ) A.x>1 B.x≥1 C.x<1 D.x≤1
3.在函数y= 中,自变量x的取值范围是( ) A.x≥﹣2且x≠0 B.x≤2且x≠0 C.x≠0 D.x≤﹣2
(x≥0,y≥0).
不是二次根式的有: .
、
、
、
(x>0)、
、
、
(x≥0,y≥0).
、-
2. a可以是数,也可以是式.
3. 形式上含有二次根号
4. a≥0, ≥0
5.既可表示开方运算,也可表示运算的结果.
3、被开方数 a >0,且 。(双重非负性)
探究点一、二次根式的概念问题1.下列式子,哪些是二次根式,哪些不是二次根式:
、
、
、
(x>0)、
、
、-
、
、
解:二次根式有:
提出问题,根据问题给出概念,应用概念解决实际问题.
1
2
首页
2.什么是一个数的算术平方根?如何表示?
正数正的平方根叫做它的算术平方根.
1.我们之前学过哪个知识点与今天的知识有关?
一般地,若一个数的平方等于a,则这个数就叫做a的平方根.
人教版八年级数学下册第十六章《 二次根式的概念》公开课课件

第十六章 二次根式 16.1 二次根式
第1课时 二次根式的概念
知识管理
知识管理
1.二次根式 定 义:一般地,我们把形如____a___(a≥0)的式子叫做二次
根式,符号“ ”称为__二___次__根__号____.
注 意:二次根式应满足以下两个条件:
(1)形式上必须是“ a”的形式;
(2)被开方数a必须是__非__负____数.
2022/5/42022/5/4 • 16、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年5月2022/5/42022/5/42022/5/45/4/2022 17、一个人所受的教育超过了自己的智力,这样的人才有学问。
You made my day!
数学
人教版八年级下册
【点悟】 (1)二次根式的被开方数大于或等于零;(2)如果含有 分式时,分式的分母不能等于零;(3)如果含有零指数幂,负整数 指数幂时,它们的底数不能等于零.
类型之三 二次根式在实际生活中的应用 如图16-1-1所示的Rt△ABC中,∠B=90°,点P从
点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点 B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的 面积为35平方厘米?
(2) -(x-3)2;
(4)y=
x+2 3x .
【解析】 利用二次根式有意义的条件,可把每一个问题转化 为解相应的不等式或不等式组.
解:(1)由题意,得 5-2x≥0,解得 x≤52,
所以当 x≤52时, 5-2x有意义; (2)由题意,得-(x-3)2≥0,即(x-3)2≤0,解得 x=3, 所以当 x=3 时, -(x-3)2有意义; (3)由题意,得8x-+x8≥≥00,,解得-8≤x≤8, 所以当-8≤x≤8 时, x+8+ 8-x有意义; (4)由题意,得3x+ x≠20≥,0,解得 x≥-2 且 x≠0, 所以当 x≥-2 且 x≠0 时,y= x3+x 2有意义.
第1课时 二次根式的概念
知识管理
知识管理
1.二次根式 定 义:一般地,我们把形如____a___(a≥0)的式子叫做二次
根式,符号“ ”称为__二___次__根__号____.
注 意:二次根式应满足以下两个条件:
(1)形式上必须是“ a”的形式;
(2)被开方数a必须是__非__负____数.
2022/5/42022/5/4 • 16、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年5月2022/5/42022/5/42022/5/45/4/2022 17、一个人所受的教育超过了自己的智力,这样的人才有学问。
You made my day!
数学
人教版八年级下册
【点悟】 (1)二次根式的被开方数大于或等于零;(2)如果含有 分式时,分式的分母不能等于零;(3)如果含有零指数幂,负整数 指数幂时,它们的底数不能等于零.
类型之三 二次根式在实际生活中的应用 如图16-1-1所示的Rt△ABC中,∠B=90°,点P从
点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点 B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的 面积为35平方厘米?
(2) -(x-3)2;
(4)y=
x+2 3x .
【解析】 利用二次根式有意义的条件,可把每一个问题转化 为解相应的不等式或不等式组.
解:(1)由题意,得 5-2x≥0,解得 x≤52,
所以当 x≤52时, 5-2x有意义; (2)由题意,得-(x-3)2≥0,即(x-3)2≤0,解得 x=3, 所以当 x=3 时, -(x-3)2有意义; (3)由题意,得8x-+x8≥≥00,,解得-8≤x≤8, 所以当-8≤x≤8 时, x+8+ 8-x有意义; (4)由题意,得3x+ x≠20≥,0,解得 x≥-2 且 x≠0, 所以当 x≥-2 且 x≠0 时,y= x3+x 2有意义.
二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如