离散数学代数结构
离散数学代数结构

因此当x 1/2时,x/(1+2x)是x的逆元,1/2无逆元.
1
群的性质:消去律
设G = {a1, a2, … , an}是n阶群,令aiG = {ai aj | j=1,2,…,n} 证明 aiG = G. 证 由群中运算的封闭性有 aiGG. 假设aiGG,即 |aiG| < n. 必有aj , ak∈G使得 ai aj = ai ak (j ≠ k) 由消去律得 aj = ak , 与 |G| = n矛盾.
4
子群判定定理3
设G为群,H是G的非空有穷子集,则H是G的子群当且仅当
a,b∈H有ab∈H. 证 必要性显然. 为证充分性,只需证明 a∈H有a1∈H. 任取a∈H, 若a = e, 则a1 = e∈H. 若a≠e,令S={a,a2,…},则SH. 由于H是有穷集,必有ai = aj(i<j). 根据G中的消去律得 aji = e,由a ≠ e可知 ji>1,由此得 a ji1a = e 和 a a ji1 = e 从而证明了a1 = a ji1∈H.
图2
14
6
陪集的基本性质
设H是群G的子群,则a,b∈G有 a∈Hb Ha=Hb 证 充分性. 若Ha=Hb,由ea∈Hb 可知必有 a∈Hb. 必要性. 由 a∈Hb 可知存在 h∈H 使得 a =hb,即b =h1a 任取 h1a∈Ha,则有 h1a = h1(hb) = (h1h)b∈Hb 从而得到 Ha Hb. 反之,任取h1b∈Hb,则有 h1b = h1(h1a) = (h1h1)a∈Ha 从而得到Hb Ha. 综合上述,Ha=Hb得证.
3
子群判定定理2
G为群,H是G的非空子集. H是G的子群当且仅当a,b∈H 有ab1∈H. 证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,由上步知b1∈H, 从而a(b1) 1∈H,即ab∈H. 综合上述,可知H是G的子群.
离散数学中的代数结构和置换群

离散数学是数学中的一个重要分支,它研究离散的、非连续的数学对象和结构。
在离散数学中,代数结构是其中一个重要的概念,而置换群是代数结构的一个重要例子。
代数结构是研究对象间关系的一种数学工具。
它包括集合,运算和运算性质。
集合是代数结构的基础,是一个由元素组成的不重复的集合。
运算指的是将集合中两个元素映射到集合中的另一个元素的操作,常见的运算有加法、乘法等。
运算性质是指运算在代数结构中具有的性质,如结合律、交换律、单位元等。
在代数结构中,置换群是一种重要的结构。
置换是一种改变事物次序的方法,它可以是将事物重新排列,也可以是将某个事物替换为另一个事物。
置换群是一组置换构成的集合,并且具有封闭性,结合律和单位元等性质。
置换群可以描述物体的旋转、对称和变换等操作,也可以用于密码学和密码破解等领域。
置换群的运算是指将两个置换进行合成,可以通过将第一个置换的作用结果作为第二个置换的作用对象来实现。
例如,设置换π1表示将物体的位置1和位置2进行交换,置换π2表示将物体的位置2和位置3进行交换,那么置换π1和置换π2的合成操作即为将物体的位置1和位置3进行交换。
正如前所述,置换群具有封闭性、结合律和单位元等性质。
封闭性指的是任意两个置换的合成结果仍然是一个置换。
结合律是指对于置换群中的任意三个置换a、b和c,有(a * b) * c = a * (b * c),即合成的顺序不影响结果。
单位元是指存在一个特殊的置换,它与任意置换进行合成后结果仍然是原置换。
在置换群中,还有一个重要的概念是逆元。
对于每个置换a,都存在一个逆置换a',使得a * a' = a' * a = e,其中e是置换群的单位元。
逆元表示将一个置换的操作逆向执行,可以将置换还原为原来的状态。
置换群不仅在离散数学中有重要应用,还在计算机科学、物理学和化学等领域中得到广泛应用。
在计算机科学中,置换群可以用于密码学中的置换密码,用于保护数据的安全性。
离散数学形考任务3代数结构部分概念及性质

离散数学形考任务3代数结构部分概念及性质一、概念介绍代数结构是离散数学中的一个重要概念。
它描述了在特定集合上定义的运算规则和性质。
常见的代数结构主要包括:1. 群(Group):群是一种具有封闭性、结合律、单位元和逆元的代数结构。
它是一种基本的抽象代数结构,并具有丰富的性质和应用。
2. 环(Ring):环是一种具有加法和乘法两种运算的代数结构。
它具有封闭性、结合律、单位元、交换律和分配律等性质。
3. 域(Field):域是一种具有加法、乘法、减法和除法四种运算的代数结构。
它是一种高级的代数结构,并满足多种性质,如交换性、维数等。
二、性质探讨不同的代数结构具有不同的性质,下面我们分别探讨一下群、环和域的性质:1. 群的性质:- 封闭性:对于群G中的任意元素a和b,它们的运算结果ab 也属于G。
- 结合律:对于群G中的任意元素a、b和c,(ab)c = a(bc),即运算顺序不影响结果。
- 单位元:群G中存在一个元素e,使得对于任意元素a,ae = ea = a。
- 逆元:对于群G中的任意元素a,存在一个元素b,使得ab = ba = e。
2. 环的性质:- 封闭性:对于环R中的任意元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于R。
- 结合律:对于环R中的任意元素a、b和c,(a+b)+c = a+(b+c)和(ab)c = a(bc),即运算顺序不影响结果。
- 单位元:环R中存在一个元素0,使得对于任意元素a,a+0 = 0+a = a。
- 交换律:对于环R中的任意元素a和b,a+b = b+a和ab = ba。
- 分配律:对于环R中的任意元素a、b和c,a(b+c) = ab+ac和(a+b)c = ac+bc。
3. 域的性质:- 封闭性:对于域F中的任意非零元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于F。
- 结合律、单位元和逆元:与群和环的性质类似,域也具有结合律、单位元和逆元的性质。
离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。
离散数学-近世代数-代数结构

例:代数系统(N,+,×)。其中+,×分别代表通常数的加法和乘法。
添加标题
是否满足交换律?
添加标题
单位元( 幺元)
一个代数系统(S,*), 若存在一个元素eU,使得对 xS,有:e * x =x * e = x,则称 e 为对于运算“ * ”的单位元,也称幺元 。 注意: 单位元是跟运算有关系的,不同的运算可能单位元是不一样的。
解: 作双射 f:A1A2,f(1)=b, f(2)=d, f(3)=c, f(4)=a
a
b
c
d
a
b
b
b
d
b
a
a
d
b
c
c
b
c
a
d
a
a
c
d
*
1
2
3
4
1
4
1
2
4
2
4
2
3
4
3
1
4
3
3
4
1
2
1
1
设代数系统V1=(A1,*),V2=(A2,º), 其中A1={1,2,3,4}, A2={a,b,c,d}, * 和 º 的运算分别如下表,V1 和 V2 是否同构?
等幂律
设 * 是定义在集合A上的一个二元运算,如果对于任意的xA,都有x * x = x,则称 * 运算是等幂的。 例: S={1,2,4},在集合 p(S) 定义两个二元运算,∩,∪,分别表示集合的“并”运算和集合的“交”运算,∩,∪是等幂的? 解:对于任意的A p(S) ,有A∩A=A;A∪A=A 因此运算∩,∪都满足等幂律。
性质、定理
定理 一个代数系统,其零元若存在,则唯一。 定理 一个代数系统(S,),若集合 A 中元素的个数大于1,且该代数系统存在幺元 e 和零元θ,则θe。 证明:用反证法,设θ=e,则对于任意的xA,必有 x = ex = θx =θ= e, 即对于A中所有元素都是相同的,这与A中含有多个元素相矛盾。
离散数学导论第十章代数结构通论-

第十章 代数结构通论
2. 同态、同构及同余
1. 同态与同构
➢ 定义10.9
设< S,Δ, >及< S’,Δ’, ’ >均为代数结构,称函
数 h: S→S’为(代数结构S到S’的)同态映射,或同态
(homomorphism),如果对S中任何元素a,b,
h(Δa)= Δ’(h(a))
(10-3)
h(a b)= h(a) ’ h(b)
第十章 代数结构通论
第十章 代数结构通论
1. 代数结构 2. 同态、同构及同余
Δ10.3 商代数与积代数
第十章 代数结构通论
1. 代数结构
1. 代数结构的意义
2.
代数结构的特殊元素
3.
子代数结构
第十章 代数结构通论
2. 同态、同构及同余
1. 同态与同构
2.
同余关系
第十章 代数结构通论
Δ 10.3商代数与积代数
√ 定理10.2
任何含有关于 运算么元的代数结构 <S, >,其所含么元是唯一的。
第十章 代数结构通论
10.1 代数结构
10.1.2 代数结构的特殊元素
➢定义10.4
元素O称为代数结构<S, >( 关于 运 算) 的零元(zero),如果0 S且对任意x S有
x 0= O x= O 元素0r S (0l S)称为左零元(右零元).如 果Or(Ol)满足: 对一切x S,
第十章 代数结构通论
2. 同态、同构及同余
1. 同态与同构
√ 定理10.9
设h是代数结构< S, 1, 2 > 到 < S’, 1’, 2’>的同态, 态象为< h(S), 1’, 2’>(这里 1, 2, 1’, 2’ 均为二元 那么 (1)当运算 1( 2)满足结合律、交换律时,同态象中运算
《离散数学》第六章代数结构

返回本章首页
5 2020/2/14
第四节 子群
与集合的子集、向量空间的子空间一样. 群也有子群的概念.子群作为群的一部分. 它的结构对群的结构有重要影响.
主要概念有:平凡 元素的周期.
讨论了一个群的非空子集构成子群的条 件;在某个元素生成的子群的基础上定义 循环群,把循环群的结构研究清楚了.
返回本章首页
2 2020/2/14
第二节 置换(1)
群论的研究始于置换群.置换群在群论里 有重要的地位.例如,五次以上方程不能 用根号求解的问题的证明就用到置换群. 置换概念本身在计算机科学中也起作重 要作用.同时置换群的记法简单,运算方 便.
本节的概念有:置换、循环置换、不相交 置换、对换、奇置换、偶置换等;
返回首页
1 2020/2/14
第一节 代数结构概述
我们在前面已经研究过集合,那时没有 过多地考虑一个集合内部元素之间的联 系.现在我们要在一个集合的内部引入运 算,并研究其运算规律,主要内容为:
1.代数系统的定义,然后用例子说明代数 系统的丰富性;
2.代数系统的运算的常用记法和运算表 的概念.
第六章 代数结构
代数结构的主要研究对象是各种各样的代数系 统,即具有一些元运算的集合,本章介绍的群就 是具有一个二元运算的代数系统.
本章以群为例讨论代数结构,它的思想和方 法已经渗透到现代科学的许多分支、它的结果 已应用到计算机的不少方面,因此计算机科学 工作者应初步掌握其基本的理论和方法. 读者通过对群的学习应初步掌握对代数系统研 究的一般方法,从简单到复杂、从具体到一般, 从而发现代数系统的一般规律.本章的内容较为 抽象、难学.可根据具体情况删减一些内容.
返回本章首页
3 2020/2/14
离散数学中代数系统知识点梳理

离散数学中代数系统知识点梳理离散数学作为一门数学学科,研究的是离散化的对象和结构。
代数系统作为离散数学的一个重要分支,是对数学对象的代数性质进行研究的一种形式化工具。
在离散数学中,代数系统的概念和相关知识点是非常重要的。
一、代数系统的基本概念代数系统是指由集合和一组运算构成的数学结构。
其中,集合是代数系统中最基本的概念,可以是有限集或无限集;运算是指对集合中的元素进行操作并得到新的元素。
代数系统主要包括代数结构、代数运算和代数性质三个方面。
1. 代数结构:代数结构由集合和一组运算构成,可以包括加法、减法、乘法、除法等。
常见的代数结构有群、环、域等。
2. 代数运算:代数运算是指对集合中的元素进行操作,可以是二元运算也可以是多元运算。
常见的代数运算有加法、乘法、幂运算等。
3. 代数性质:代数系统具有一些特定的性质,如封闭性、结合律、交换律、单位元素、逆元素等。
二、代数系统的分类根据代数运算的性质,代数系统可以分为群、环、域和向量空间等不同类型。
1. 群:群是一种代数系统,具有封闭性、结合律、单位元素和逆元素等性质。
群分为有限群和无限群,可以是交换群或非交换群。
2. 环:环是一种代数系统,具有封闭性、结合律、交换律和单位元素等性质。
环分为有限环和无限环,可以是可除环或非可除环。
3. 域:域是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
域是一种完备的代数系统,可以进行加、减、乘、除运算。
4. 向量空间:向量空间是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
向量空间是一种具有线性结构的代数系统。
三、代数系统的应用代数系统作为离散数学的一个重要分支,在计算机科学、密码学、通信工程等领域有着广泛的应用。
1. 计算机科学:代数系统在计算机科学中起到重要的作用,比如在数据库设计、编译原理、算法设计等方面都有应用。
代数系统可以描述和分析计算机系统的运行和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x, y∈R, x ∗ y = x. 那么 3∗4 = 3, 0.5∗(3) = 0.5
6
运算表
运算表:表示有穷集上的一元和二元运算
aa11 aa22 …… aann
aa11 aa11aa11 aa11aa22 …… aa11aann
aa22 aa22aa11 aa22aa22 …… aa22aann
..
……
..
……
..
……
aann aannaa11 aannaa22 …… aannaann
二元运算的运算表
aai i aa11 aa11 aa22 aa22 .. .. .. .. .. .. aann aann
一元运算的运算表
7
2
9.1 二元运算及其性质
定义9.1 设S为集合,函数f:SSS 称为S上的二元运算,简 称为二元运算.
S中任何两个元素都可以进行运算,且运算的结果惟一. S中任何两个元素的运算结果都属于S,即S对该运算封闭.
例1 (1) 自然数集合N上的加法和乘法是N上的二元运算,但 减法和除法不是. (2) 整数集合Z上的加法、减法和乘法都是Z上的二元运算, 而除法不是. (3) 非零实数集R*上的乘法和除法都是R*上的二元运算,而 加法和减法不是.
z◦(x∗y)=(z◦x)∗(z◦y), 则称◦运算对∗运算满足分配律. (2) 若和∗都可交换,且对任意x,y∈S有 x◦(x∗y)=x,x∗(x◦y)=x,
则称◦和∗运算满足吸收律.
9
实例
Z, Q, R分别为整数、有理数、实数集;Mn(R)为n阶实 矩阵集合, n2;P(B)为幂集;AA为从A到A的函数集,|A|2
第三部分 代数结构
主要内容 代数系统----二元运算及其性质、代数系统和子代数 半群与群----半群、独异点、群 环与域-----环、整环、域 格与布尔代数----格、布尔代数
1
第九章 代数系统
主要内容 二元运算及其性质 一元和二元运算定义及其实例 二元运算的性质 代数系统 代数系统定义及其实例 子代数 积代数 代数系统的同态与同构
则称 l (或 r)是S 中关于◦运算的左(或右)零元. 若 ∈S 关于◦运算既是左零元又是右零元,则称为S上关
于运算◦的零元.
12
可逆元素和逆元
(3) 设◦为S上的二元运算, 令e为S中关于运算的单位元.
集合 Z,Q,R
Mn(R) P(B)
运算
分配律
吸收律
普通加法+与乘法 对+可分配
无
+对不分配
矩阵加法+与乘法 对+可分配
无
+对不分配
并与交
对可分配
有
对可分配
交与对称差 对可分配 无
11
特异元素:单位元、零元
定义9.5 设◦为S上的二元运算, (1) 如果存在el (或er)S,使得对任意 x∈S 都有
(6) SS为S上的所有函数的集合,则合成运算为SS上二元运算.
4
一元运算的定义与实例
定义9.2 设S为集合,函数 f:S→S 称为S上的一元运算,简 称一元运算. 例2 (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上 的一元运算 (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算 (3) 求共轭复数是复数集合C上的一元运算 (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的
集合
运算
交换律 结合律 幂等律
Z,Q,R 普通加法+
有
有
无
普通乘法
有
有
无
Mn(R) 矩阵加法+
有
有
无
矩阵乘法
无
有
无
P(B)
并
有
有
有
交
有
有
有
相对补
无
无
无
对称差
有
有
无
AA
函数复合
无
有
无
10
实例
Z, Q, R分别为整数、有理数、实数集;Mn(R)为n阶实 矩阵集合, n2;P(B)为幂集;AA为从A到A的函数集,|A|2
一元运算. (5) 设S为集合,令A为S上所有双射函数的集合,ASS,求一
个双射函数的反函数为A上的一元运算. (6) 在n(n≥2)阶实矩阵的集合Mn(R)上,求转置矩阵是Mn(R)上
的一元运算.
5
二元与一元运算的表示
1.算符 可以用◦, ∗, ·, , , 等符号表示二元或一元运算,称为算符. 对二元运算◦,如果 x 与 y 运算得到 z,记做 x◦y = z 对一元运算, x的运算结果记作x.
运算表的实例
例3 设 S=P({a,b}),S上的和 ∼运算的运算表如下
{a} {a}{b} {b{}a,b{}a,b} x x ∼x ∼x {a} {a}{b} {b}{a,b{}a,b} {a,b{}a,b} {a} {a} {a} {a} {a.b{}a.b{}b} {b} {a} {a} {a} {a} {b} {b} {b} {b{}a,b{}a,b} {a} {a} {b} {b} {b} {b} {a,b{}a,b}{a,b{}a,{bb}} {b}{a} {a} {a,b{}a,b}
el◦x = x (或 x◦er = x), 则称el (或er)是S中关于◦运算的左(或右)单位元. 若e∈S关于◦运算既是左单位元又是右单位元,则称e为S上 关于◦运算的单位元. 单位元也叫做幺元.
(2) 如果存在 l (或 r)∈S,使得对任意 x∈S 都有 l ◦x = l (或 x◦ r = r),
8
二元运算的性质
定义9.3 设◦为S上的二元运算, (1) 若对任意x,y∈S 有 x◦y=y◦x, 则称运算在S上满足交换律. (2) 若对任意x,y,z∈S有 (x◦y)◦z=x◦(y◦z), 则称运算在S上满足结
合律. (3) 若对任意x∈S 有 x◦x=x, 则称运算在S上满足幂等律.
定义9.4 设◦和∗为S上两个不同的二元运算, (1) 若对任意x,y,z∈S有 (x∗y)◦z=(x◦z)∗(y◦z),
3
实例
(4) 设Mn(R)表示所有n 阶(n≥2)实矩阵的集合,即
M n ( R)
a11 a21 an1
a12 a22
an2
a1n
a2
n
ann
aij R, i, j 1,2,...,n
则矩阵加法和乘法都是Mn(R)上的二元运算. (5) S为任意集合,则∪、∩、-、 为P(S)上二元运算.