行列式测试题(高等代数)
行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题1.由定义计算行列式nn 0000000100200100-= ( ). (A )!n (B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x x x x f 21123232101)(=中,3x 的系数是( ).(A )1 (B )-1 (C )2 (D )33.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8.三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.一、填空题1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则2.方程229132513232213211x x --=0的根为___________ .二、计算题1.8171160451530169144312----- 2.dc b a10011001101---3.abbba b bbaD n=4.111113213211211211211nn n n n a a a a x a a a a xa a a a x a a a a x D---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n。
(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。
(A) 0 (B )1- (C) 1 (D) 25。
=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。
高等代数行列式

a2
a 1
2
a 2
2
a 3
2
(5)计算 D
b2 c2 d2
b 1 b 2 b 3 2 2 2 c 1 c 2 c 3 2 2 2 d 1 d 2 d 3
2 2 2
解:将行列式D看作 a 的多项式,按第一列展开可 知D是关于 a 的至多二次多项式。
an
0
0
(1)
2 n 1
bn
0
a b c d
1 1
0
cn 1 0
d n 1 0
0 dn
c
c
n
n 1
d
0
n 1
0
都按最后一行展开
由此得递推公式:
an d n D2 n2 bn cn D2 n2
D2n (an dn bncn )D2n2
即 而 得
D2 n (ai di bi ci ) D2
假设对于 (n 1) 阶行列式命题成立,即
Dn1 xn1 a1xn2
an2 x an1 ,
则Dn按第1列展开 :
Dn xDn 1 an (1) n 1 1 0 x 1 1 1 0 0 x 0 0 1
xDn1 an 右边
所以,对于 n 阶行列式命题成立.
n ( n 1) 2
n 1i j 1
n ( n 1) 2
[(a i 1) (a j 1)]
[(i j)] (1)
n ( n 1) 2
(1)
n 1i j 1
(1)
n ( n 1) 1 2
n 1i j 1
行列式测试题(高等代数)

《高等代数》行列式(单元测试)学院: 班级: 姓名: 学号: 教师:一、填空题(每小题 3 分,共18 分)1.填上适当的数字,使72__43__1为奇排列.2.设.212222111211d a a a a a a a a a nnn n n n =则._____122122211121=n n nnn n a a a a a a a a a3.设123,,x x x 是方程30x px q ++=的三个根,则行列式123231321x x x x x x x x x 的值是-____________.4.行列式11111111---x 的展开式中,x 的系数是_____.5.设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M6. 行列式12340000000000a a a a 的所有代数余子式之和为__________________________.二、判断说理(每小题5 分,共15 分)1.排列 j i 与排列 i j 排列的反序数相差1. ( )2.D=0, 则互换D 的任意两行或两列,D 的值仍为零.. ( )3.ij ij A a D ,33⨯=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( )三、计算题(共47分)1(16分)、xa a a a xaa a a xa a a a x D------=2、(16分)ba ab ba b a abb a ab b a D +++++=100000100010003.(15分) nn n n nn x a a a a a a a x a a a a a a a x a D +++=221222212121121四、证明题(20分)1、证明:1111100000000434241333231232221131211a a a a a a a a a a a a2.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a。
高等代数《行列式》部分习题及解答

高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。
高中数学行列式试题及解析

高中数学行列式试题2 .下列以行列式表达的结果中,与 sin (a- 3)相等的是(316|3 .三阶行列式3 5 7中,元素9的代数余子式的值为4 g 2I6.定义行列式运算:f (x )的图象,只需将 y=2cos2x 的图象(2兀A.向左平移上“个单位, 2兀IC.向右平移己一个单位'J七口百e -sine .口 A =()sino cosA . cos2 0B. sin2 04.定义行列式运算次]a 2a4=a t a 4-a 2a 3,将函数 f (x) = V3式回 1 CDEx|的图象向左平移A. 38B. - 38C. 360D. - 360n(n>0)个单位,所得图象关于 y 轴对称,则n 的最小值为(7VC.2KD.5.行列式 元素7的代数余子式的值为()A. - 15B. - 3C. 3D. 12若复数z 满足 =l+2i ,则z 等于(-i iA. 1 + iB. 1 - iC. 3+iD. 3- i)B.向左平移三个单位 D,向右平移胃个单位*L JC. 1D. - 1.选择题(共12小题)1.定义:= a1a 4-a 2a 3,函数 f (x)则要得到函数9.设直线l i 与12的方程分别为 a i x+b i y+c i = 0与a 2x+b 2y+c 2= 0,则“"l1 // l2” 的(-bI③ a 1b 2c 3+a 2b 3c 1+a 3b 1c 2 — a 1b 3c2 — a 2b 1c 3 — a 3b 2c 1 ;c3al a 2 a311.展开式为ad - bc 的行列式是(A. {x|x< - 2 或 x>1} C. {x|-2<x< 1}二.填空题(共23小题)14.已知 1147 "11488.定义运算 =ad-bci -1 =2的复数2为()A. 1 - 2iB. - 1 - iC. — 1 + iD. 1 - iA.a. bB.C.a .D.12.若规定a. b =ad - bc 则不等式 n-2-2 x13.若<:osu2eos JC 1=0,则锐角x = =0”是A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.下列四个算式: alc2 c 3b3c3 b] b 2C1 c2a2 a3其中运算结果与行列式A. 1个 1 bl♦ b口B, 2个 c2 的运算结果相同的算式有(C. 3个D, 4个B. {x|- 2<x<1} D.15.已知行列式中的元素an+j (j = 1, 2, 3,…,9) 是等比数列{a n }的第n+j 项,则此行列式的值是 16.若行列式 17.把 2 sr 5 8 1 4 3 7x9 18.若行列式中(xw 1),元素1的代数余子式大于 0,则x 满足的条件是 3t 2 y2 sin( H 2 TT cns(~37T 表示成一个三阶行列式是 的第1行第2列的元素1的代数余子式-1,则实数 x 的取值集合为 19.行列式sim 3 5 的最大值为 20.行列式 行列式 22. 行列式23.24. 25. 26. 4 2k -3 5 4 -1 1 «: 的元素-3的代数余子式的值为10,则十(k. B )的模为 1 4 -1 2 7 1 -1x5 中x 的系数是 2019 7T 三阶行列式 若行列式 49 sin 日 <DS 日.7T 7T sirry^ cos^ 1 -3 0 4 0-2 -12 3三阶行列式 若行列式 的元素冗的代数余子式的值等于 中,元素1的代数余子式的值为 =0,则m 的值是中,元素4的代数余子式的值为-2-1 a 3 0 1的展开式的绝对值小于6的解集为(-1,2),则实数a 等27.函数f ㈤二cosz sinx sinx cosx的最小正周期T=28.已知矩阵A = -2y 0 -y 11-2x;r3 -3N 1,且 A+B=C,贝U x+y 的值为 COSK sinx29.方程 的增广矩阵是30.方程组二^xC (3, 4)实数解x 为31.若行列式2 4 = 0,则x=1 232.对于下列四个命题①若向量显,b,满足彳则a与b的夹角为钝角;②已知集合A=正四棱柱,8 =长方体,则AAB=B;③ 在直角坐标平面内,点M (|a|, |a - 3|)与N (cosa, sin a)在直线x+y-2=0的异侧;④对2X2数表定义平方运算如下:卜°)2工叫.卜1Cab+bd],则〔cd 【cdj〔cd/ ^ac+cdbc+d2J [1。
高等代数行列式单元测验答案

3 12
1 4 16 9
1 8 64 27
0013
3、 0
0
2
4 (1)(12)(34) 1
31
1 4
1126
2 43 1
3178
ab000
ab00 b000
0ab00
4、 D 0
0
a
b
0 按第一列展开
0
a
a
b
0a +b
b
0
ห้องสมุดไป่ตู้
0 a5 b5
00ab 0ab0
000ab
《 高等代数—行列式 》单元考试答案
(A)卷
2017-2018 学年第 1 学期
班级:
姓名:
学号:
…………………………………装……………………………订…………………………线………….………………………………
适用专业
2017 级数学
考核性质 考试
闭卷
命题教师
题号
一
二
三
四
五
得分
评阅人
复核人
一、计算题(30 分)
1 0 0 0
a1 a2 x an2 xn3 an1xn2 xn1
0 1 0 0
a2 x an2 xn4 an1xn2 xn2
0 0 0 0 0 0 0 1
an2 an1x x2 x an1
Dn
=
0
0 =
0 0 0 2 0
0 0 0 2 0
0 0 0 4 2
0 0 0 0 2
3 2 22 2n1 1 2 22 2n2 1 2 22 2n3 1 2 1
高代行列式测试题

高等代数《行列式》测 验一 填空题(2'612'⨯=)1. 六阶行列式的展开式共有( )项. (A )120 (B )60 (C) 720 (D) 2402. 排列12345a a a a a 的逆序数为a ,则排列54321a a a a a 的逆序数为( ). (A) a - (B) 10a - (C) 10a - (D) 2a -或a +23. 0001002003004000=( ).(A) 24 (B) -24 (C) 0 (D) 124. 已知1112131111121213212223212122222331323331313232334142434141424243,,a a a b a a b a a a a b a a b a m n a a a b a a b a a a a b a a b a == 则行列式1112131112212223212231323331324142434142a a ab b a a a b b a a a b b a a a b b ++=++( ).(A) m n + (B) n m - (C) m n - (D) ()m n -+5. 已知231421,111D =- ij A 为D 的元素ij a 的代数余子式,则( ). (A) 1112130A A A ++= (B) 1121310A A A ++= (C) (A),(B)都成立 (D) (A),(B)都不成立6. 0001000020010n n =-( ).(A) 1(1)!n n +- (B) (1)2(1)!n n n --(C) (1)2(1)!n n n +- (D)!n二 填空题(2'816'⨯=)1. 2011阶反对称行列式的值为 .2. 13234425k l a a a a a 为五阶行列式ij D a =中带负号的项,则k = ,l = .3. 排列(1)321n n -的逆序数为 , 13(21)24(2)n n -的逆序数为 .4. 线性方程组 1212040x x x x λλ+=⎧⎨+=⎩有唯一解,则λ满足 .5. 若n 阶行列式D 中等于0的元素个数大于2n n -,则D = .6.211203101311112x x ----的展开式中2x 的系数为 .7.1111123414916182764= .8. 已知四阶行列式D 的第3行元素为3,3,1,1--, 其对应的余子式的值为1,2,5,4, 则行列式D = .三计算题(8'756'⨯=)1. 01000020000100nn-2.000000000000nx yx yx yDx yy x=3.121111100100100naaa4.12111111naaa5.12112122121111nnnn na a aa b a aa ab aa a a b+++6.1221 00010010000001nn x ax ax ax ax a-----+7.123123123123,nnnnx a a a aa x a a aa a x a aa a a x a++++(用3种方法求解)四.应用题(8'216'⨯=)1 一城市局部交通流如下图所示(单位:辆/小时)(1)建立12345,,,,x x x x x 所满足的线性方程组; (2)要同时控制2200x ≤与350x ≤可行吗?2. ,,A B C 3家公司相互拥有的股份及单独营业的净收入如下表所示,设,,A B C 的联合收入为,,.x y z(1)建立 ,,x y z 所满足的线性方程组; (2) 求3家公司的实际收入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等代数》行列式(单元测试)
学院: 班级: 姓名: 学号: 教师:
一、填空题(每小题 3 分,共18 分)
1.填上适当的数字,使72__43__1为奇排列.
2.设
.21
22221
11211
d a a a a a a a a a nn
n n n n =
则
._____1
2
21
22
211
121=n n nn
n n a a a a a a a a a
3.设123,,x x x 是方程3
0x px q ++=的三个根,则行列式1
23
2
313
2
1
x x x x x x x x x 的值是-____________.
4.行列式1
1
1
11
1
11
---x 的展开式中,x 的系数是_____.
5.设ij ij A M ,分别是行列式D 中元素ij a 的余子式,代数余子式,则._____1,1,=+++i i i i A M
6. 行列式
1
234
000
000
0000
a a a a 的所有代数余子式之和为__________________________.
二、判断说理(每小题5 分,共15 分)
1.排列 j i 与排列 i j 排列的反序数相差1. ( )
2.D=0, 则互换D 的任意两行或两列,D 的值仍为零.. ( )
3.ij ij A a D ,3
3⨯=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( )
三、计算题(共47分)
1(16分)、x
a a a a x
a
a a a x
a a a a x D
------=
2、(16分)b
a a
b b
a b a ab
b a ab b a D +++++=
1
0000
01
0001
000
3.(15分) n
n n n n
n x a a a a a a a x a a a a a a a x a D +++=
2
2
1
2222121211
21
四、证明题(20分)
1、证明:1
11
1
1
00000000434241333231
232221
131211
a a a a a a a a a a a a
2.证明:0)3()2()1()3()2()1()3()2()1()3()2()1(2
2
2
2
2
222
2
222
2222
=++++++++++++d d d d c c c c
b b b b a a a a。