减肥模型中使用的建模方法

合集下载

《数学建模减肥计划》课件

《数学建模减肥计划》课件

有氧运动
适度增加有氧运动,如跑步、游泳等,
力量训练
2
促进脂肪燃烧。
进行力量训练,增加肌肉质量,提高基
础代谢率。
3
休息与恢复
合理安排运动和休息时间,保持身体的 平ห้องสมุดไป่ตู้和健康。
运动计划的制定基本原则
1 目标明确
设定明确的减肥目标和运 动计划,明白自己想要达 成的结果。
2 个性化定制
根据自身情况制定适合自 己的运动计划,确保可行 性。
2 心率监测工具
使用心率表、心率监测器 等工具监测运动过程中的 心率变化。
3 心率控制训练
通过控制运动时的心率, 达到想要的减肥或锻炼效 果。
体重变化预测模型的建立
1
数据收集与整理
收集身体测量数据并整理成合适的格式。
模型选择与优化
2
选择适合的数学模型,并通过数据优化
来提高模型的准确性。
3
预测与分析
利用建立好的模型进行体重变化的预测, 并分析其对减肥计划的指导意义。
减肥期间的进食策略
均衡饮食
合理搭配主食、蛋白质和蔬果, 保证身体所需的营养摄入。
《数学建模减肥计划》 PPT课件
数学建模减肥计划是一种科学又有效的减肥方法。通过运用数学模型和计算 机软件,帮助人们制定个性化的减肥计划,达到健康减重的目标。
减肥的重要性及影响
1 保持健康
减肥可降低患各种健康问题的风险,如心脏病、糖尿病等。
2 提升自信
减肥有助于改善形象和提升自信心,提高生活质量。
3 循序渐进
从小目标开始,逐步增加 运动强度和时间。
运动强度与时间的适应性分析
初级阶段
运动强度适中,时间较短,以 减肥为主。

数学建模——减肥计划(修改版)

数学建模——减肥计划(修改版)


C=(β+αγt)ω/α
• 若不运动β1= αγt=0,得c=15000kcal;
• 若运动,则c=16800kcal
减肥建议
• 节食加运动能有效减肥,节食时间周期长 ,在第一阶段就运动减肥会更快达到预期 目标。
• 通过改变β’,缩短减肥的时间,改变运动的 方式和时间是不错的减肥方式。
减肥计划:
• 在节食加运动的情况下,分为三阶段 • 第一阶段:每周减肥1Kg,每周吸收热量逐
渐减少,直至达到安全下限(10000Kcal) • 第二阶段:每周吸收热量保持下限,持续
运动,体重减至75Kg,减肥成功 • 第三阶段:保持减肥成果
• 基本模型: • K: 表示第几周; • ω(k):表示第k周的体重; • C(k):表示第k周吸收的热量; • α:表示热量转换系数[α =1/8000(kg/kcal)]; • β:表示代谢消耗系数(因人而异)
• 问题分析:
• 1 通常,人体重的变化是由于体内的能量守恒遭到 破坏。人通过饮食吸收热量并转化为脂肪等,导致 体重增加;又由于代谢和运动消耗热量,引起体重 减少。
• 2 做适当的假设就可以得到体重变化的关系。
3 减肥应不伤身体,这可以用吸收热量不要过少,
减少体重不要过快来表达
• 模型假设:
1. 体重增加正比于吸收的热量,平均每 8000kcal增加1kg(1kcal=4.2kj);
2. 正常代谢引起的体重减少正比于体重,每 周每公斤体重消耗热量一般在 200kcal~320kcal,且因人而异;
3. 运动引起的体重减少正比于体重,且与运 动形式有关;
4. 为了安全与健康,每周体重减少不宜超过 1.5kg,每周吸收热量不少于10000kcal

数学建模之减肥计划-4

数学建模之减肥计划-4

姓名身高(m ) 体重(kg) BIM 每天吸收热量(体重保持不变) 目标体重(kg) 张三 1.7 63.5 22 1300 50一、以张三为例:1)在不运动的情况下安排一个两阶段计划。

第一阶段:每天减肥0.1429千克,每天吸收热量逐渐减少,直至达到下限(1429千卡);第二阶段:每天吸收热量保持下限,减肥达到目标。

2)若要加快进程,第二阶段增加运动。

3)给出达到目标后维持体重的方案。

减肥计划的制定1)首先应确定某甲的代谢系数β。

根据他每天吸收c=1300kcal 热量,体重ω=63.5kg 不变,由(1)式得βωαωω-c += ,相当于每天每公斤体重消耗热量1300/63.5=20.47kcal 。

从假设2可以知道,某甲属于代谢消耗相当弱的人。

第一阶段要求体重每天减少b=0.1429kg ,吸收热量减至下限,1429min kcal c =即bk k b k k -==+-)0()(,)1()(ωωωω由基本模型(1)式可得)1()0(])([1)1(k b w b k w k c βααββα+-=-=+将b ,,βα的数值带入,并考虑下限m in c ,有c (k+1)=1713.8-4.081k 1429≥得70≤k 即第一阶段共70天第二阶段要求每天吸收热量保持下限m in c ,由基本模型(1)式可得min )()1()1(ac k k +-=+ωβω (3)为了得到体重减至75kg 所需的天数,将(3)式递推可得])1()1(1[)()1()(1--++-++-=+n m n C k w n k w ββαββαβαβm m n C C k w +--=])([)1( (4) 已知90)(=k ω,要求,)(75n k =+ω再以min c ,,βα的数值代入,(4)式给出得到n=131,即每天吸收热量保持下限1429kcal ,再有131天体重减至75kg 。

为了加快进程,第二阶段增加运动。

数学建模减肥模型例题

数学建模减肥模型例题

数学建模减肥模型例题
以下是一个数学建模的减肥模型例题:
假设一个人想通过控制饮食和运动来减肥,他每天所摄入的总卡路里数(包括食物和饮料)为C,他每天通过进行运动所消耗的总卡路里数为E。

为了减肥,他希望每天的摄入卡路里数小于消耗卡路里数。

假设他的基础代谢率为B,即他在休息状态下所消耗的卡路里数。

他希望通过减少每天摄入的卡路里数和增加运动量来控制减肥速度。

现在我们假设他的减肥速度为V(单位:千克/周),并且他的目标减肥时间为T(单位:周)。

我们需要建立一个模型来计算他每天应该摄入的卡路里数C和他每天需要进行的运动量E。

解决方案:
首先,我们需要根据减肥速度V和目标减肥时间T来计算他的目标减肥总量M(单位:千克)。

M = V * T。

然后,我们可以根据他的基础代谢率B和目标减肥总量M来计算他在目标减肥时间内所需的总卡路里数D。

D = M * 7700(每千克脂肪相当于7700卡路里) + B * T。

接下来,我们可以根据目标减肥总量M和目标减肥时间T来计算每天需要摄入的卡路里数C。

C = D / T。

最后,我们可以计算每天需要进行的运动量E。

E = C - B。

通过这个模型,该人可以根据自己的减肥速度和目标减肥时间来计算每天需要摄入的卡路里数和进行的运动量,从而实现减肥目标。

但需要注意的是,这只是一个简化的模型,实际减肥效果受到多种因素的影响,还需综合考虑其他因素来制定全面的减肥计划。

两个新的减肥差分方程模型和解法

两个新的减肥差分方程模型和解法

两个新的减肥差分方程模型和解法一、引言减肥是现代社会中一个普遍的健康问题。

随着人们对健康的重视程度提升,减肥已成为许多人追求的目标。

对于减肥来说,除了饮食和运动外,数学模型在帮助人们理解和解决减肥问题方面也起到了重要的作用。

本文将介绍两个新的减肥差分方程模型和相应的解法。

二、模型1:体重变化模型2.1 模型描述我们首先考虑一个体重变化的模型。

假设一个人的体重在时间t时刻的变化率与摄入的能量和消耗的能量之间相关。

设W(t)表示时间t时刻的体重,n(t)表示摄入的能量,m(t)表示消耗的能量。

则该模型可以表示为:dW(t)=n(t)−m(t)dt2.2 解法为了求解上述差分方程,我们可以使用离散化的方法来近似求解。

假设时间变化的步长为Δt,则差分方程可以改写为:W(t+Δt)−W(t)=n(t)−m(t)Δt进一步整理得到:W(t+Δt)=Δt⋅(n(t)−m(t))+W(t)因此,我们可以通过迭代的方式逐步计算出体重在不同时刻的值。

三、模型2:脂肪堆积模型3.1 模型描述在对减肥问题进行更深入的分析时,我们希望能够考虑到脂肪的堆积过程。

假设一个人的脂肪堆积速率与摄入的脂肪量和消耗的脂肪量之间相关。

设F(t)表示时间t时刻的脂肪堆积,p(t)表示摄入的脂肪量,q(t)表示消耗的脂肪量。

则该模型可以表示为:dF(t)=p(t)−q(t)dt3.2 解法我们可以使用与前一个模型类似的方法来求解上述差分方程。

假设时间变化的步长为Δt,则差分方程可以改写为:F(t+Δt)−F(t)=p(t)−q(t)Δt进一步整理得到:F(t+Δt)=Δt⋅(p(t)−q(t))+F(t)通过迭代的方式,我们可以逐步计算出脂肪堆积在不同时刻的值。

四、应用实例:健身计划优化4.1 问题描述假设现在有一个减肥者,他希望在一段时间内减掉10公斤的体重。

他每天的饮食和运动有一定的规律,摄入的能量和消耗的能量也是一定的。

他想知道在给定的条件下,通过调整饮食和运动的方式来达到减肥目标。

数学建模减肥计划

数学建模减肥计划

减肥计划——节食与运动摘要:肥胖已成为公众日益关注的卫生健康问题。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

但是实际情况确是违禁广告屡禁不止。

之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。

数学模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。

关键词:减肥饮食合理运动一、问题重述联合国世界卫生组织颁布的体重指数(简记BMI)定义为体重(单位:kg)除以身高(单位:m)的平方,规定BMI在18.5至25为正常,大于25为超重,超过30则为肥胖。

据悉,我国有关机构对东方人的特点,拟将上述规定中的25改为24,30改为29。

在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。

可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。

许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。

肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。

肥胖也是身体健康的晴雨表,反映着体内多方面的变化。

很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。

各种假药或对身体有害的药品和治疗方法、夸大疗效的虚假广告等等就应运而生了,对老百姓造成了不应有的伤害。

情况的严重使得国家广电总局、新闻出版总署等不得不发出通知,命令所有电视台自2006年8月1日起停止播出丰胸、减肥等产品的电视购物节目。

但是实际情况确是违禁广告屡禁不止。

数学建模减肥模型


w w c ( t )w
c ( t ) w /
(8)
• 若不运动,容易算出c=15000kcal;若运动(内容同上), 则c=16800kcal。 • 评注 人体体重的变化是有规律可循的,减肥也 应该科学化、定量化。这个模型虽然只考虑了一个非 常简单的情况,但是它对专门从事减肥这项活动(甚 至作为一项事业)的人来说也不无参考价值。 • 体重的变化与每个人特殊的生理条件有关,特别 是代谢系数 ,不仅因人而异,而且即使同一个人在 不同环境下也会有所改变。从上面的计算中我们看到, 当 由 0.025增加到0.028时(变化约12%),减肥所 需时间就从19周减少到14周(变化约25%),所以应 用这个模型是要对 作仔细的 核对。

• •

• •
通常,制订减肥计划以周为时间单位比较方便, 所以这里用离散时间模型——差分方程模型来讨论。 模型假设 根据上述分析,参考有关生理数据, 作出以下简化假设: 1。体重增加正比于吸收的热量,平均每8000kcal 增加体重1kg(kcal为非国际单位制单位1kcal=4.2kJ); 2。正常代谢引起的体重减少正比于体重,每周每 公斤体重消耗热量一般在200kcal至300kcal之间,且因 人而异,这相当于体重70kg的人每天消耗2000kcal至 3200kcal; 3。运动引起的体重减少正比于比重,且与运动形 式有关; 4。为了安全与健康,每周体重减少不宜超过1.5kg, 每周吸收热量不要少于10000kcal。
c / w 20000/ 8000/ 100 0.025
• 相当于每周每公斤体重消耗热量200kcal。从假设2可以 知道,某甲属于代谢相当弱的人。他又吃得那么多, 难怪如此之胖。 • 第一阶段要求体重每周减少b=1kg,吸收热量减 至下限 cmin 10000 kcal , 即

数学建模之减肥问题的数学模型.

东北大学秦皇岛分校数学模型课程设计报告减肥问题的数学建模学院数学与统计学院专业信息与计算科学学号5133117姓名楚文玉指导教师张尚国刘超成绩教师评语:指导教师签字:2016年01月09日摘要肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥.本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程.本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式[()()][()()]t t t D A B R t t ωωω+∆-=-+∆再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式()(1)dt dt at e e dωω--=+- 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议.关键字: 微分方程模型 能量守恒 能量转换系数1 问题重述1.1 课题的背景随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析.根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需不足,这种减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标.另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为10<R R <,当能量的摄取量高于体重0ω时,这是体重不会从0ω减少,所以可以看到单一的措施达不到减肥效果. 1.2 具体的问题和相关数据现有五个人,身高、体重和BMI 指数分别如下表1.1所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去:表1.1 身高,体重和BMI 指数表人数编号 1 2 3 4 5 身高 1.7 1.68 1.64 1.72 1.71 体重 100 112 113 114 124 BMI 34.6 33.5 35.2 34.8 35.6 理想目标 75 80 80 85 90 每天摄 入能量 28572543273426892776题目具体要求如下:(1)在基本不运动的情况下安排计划,每天吸收的热量保持下限,减肥达到目标; (2)若是加快进程,增加运动,重新安排计划,经过查找资料得到以下各项运动每小时每kg 体重的消耗的热量如下表1.2所示:表1.2 每小时每kg 体重的热量消耗运动 跑步 跳舞 乒乓 自行车 (中速) 游泳(50m/min )热量消耗7.03.04.42.5 7.9(3)给出达到目标后维持体重的方案.2 模型假设与符号说明2.1 问题分析本问题要建立减肥的数学模型,减肥是一个比较长期和不定的过程,因此要用数学的方法对减肥这一问题建模,就需要选定一个测量肥胖的标准量. 因为人体的脂肪是能量的主要贮存和提供的方式,而且也是减肥的主要目标. 因此,我们以人体脂肪的重量作为体重的标志. 已知脂肪的能量转换率为100﹪,每千克脂肪可以转换为8000kcal,称D为脂肪的能量转换系数.肥胖主要是体现在人的身体上,减肥其实就是将人的体重降下来,所以归根到底,研究减肥就是要研究体重的变化,因此在减肥过程中我们要对人的体重进行持续的检测,忽略个体间的差异(年龄、性别、健康状况等)对减肥的影响,可以将人体的体重ω.看成是时间t的函数()t在减肥的过程中,无论是由于进食摄取能量导致体重的增加,还是由于体力活动消耗能量致使体重的减少,异或还有其他一些不可预知的因素,这都是一个渐变的过程,ω是连续光滑的.所以我们认为能量的摄取和消耗都是随时发生的,而不同所以认定()t的活动对能量的消耗是不同的. 所以我们在建模的过程中需要设定一个参数用来表示某种活动消耗的人体能量. 记r为某一种活动每小时所消耗的能量,记b为1kg体重每小时所消耗的能量.2.2 模型假设1.假设以人体脂肪的重量作为体重的标志.ω是连续而且充分光滑的.2.假设体重随时间的变化()t3.假设在单位时间人体的能量消耗与其体重成正比.4.假设人体每天摄入的能量是一定的.记为A.5.正常代谢引起的减少正比于体重,每人每千克体重消耗热量一般为28.75~45.71kcal,且因人而异.6.假设在研究减肥的过程中,我们忽略个体间的差异对减肥的影响.7.人体每天摄入量是一定的,为了安全和健康,每天吸收热量不要小于1429kcal.8.假设单位时间内人体由于基础代谢和食物特殊动力作用所消耗的能量正比于人的体重.2.3 符号说明D : 脂肪的能量转化系数.()t ω:人体的体重关于时间t 的的函数..r : 每千克体重每小时运动所消耗的能量(/)/kcal kg h .b : 每千克体重每小时所消耗的能量(/)/kcal kg h .0A : 每天摄入的能量.1W : 五个人理想的体重目标向量.A : 五个人每天分别摄入的能量..W : 五个人减肥前的体重.B : 每人每天每千克体重基础代谢的能量消耗.3 模型建立与求解3.1 一般模型建立如果以1天为时间的计量单位,于是每天基础代谢的能量消耗量应=24(/)B b kcal d ,由于人的某种运动一般不会是全天候的,不妨假设每天运动h 小时,则每天由于运动所消耗的能量应为=(/)R rh kcal d . 按照假设2, 体重随时间的变化()t ω是连续而且充分光滑的,我们可以在任何一个时间段内考虑由于能量的摄入与消耗引起人的体重的变化. 按照能量的平衡原理,任何时间段内由于体重的改变所引起的人体内能量的变化应该等于这段时间内摄入的能量与消耗的能量之差. 我们选取某一段时间(, )t t t +∆,在时间段(, )t t t +∆内考虑能量的改变: 设体重改变的能量变化为W ∆,则有=[(+)()]W t t t D ωω∆∆- (3.1)设摄入与消耗的能量之差为M ∆,则有[()()]M A B R t t ω∆=-+∆ (3.2)根据能量平衡原理有M W ∆=∆ (3.3)得:[()()][()()]t t t D A B R t t ωωω+∆-=-+∆ (3.4)取0t ∆→,可得d d (0) a d t ωωωω⎧=-⎪⎨⎪⎩= (3.5) 其中/a A D =,()/d B R D =+,0t =(模型开始考察时刻),即减肥问题的数学模型 模型求解得()(1)dt dt at e e dωω--=+- (3.6)/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的百分数(每单位体重中由于基础代谢和活动而消耗掉的那部分). 3.2 针对实际问题的模型建立1. 由一般模型的建立已经知道减肥问题的数学模型为微分方程模型(3.6),利用此方法可求解出每个人要达到自己的理想体重的天数.首先确定此人每天每千克体重基础代谢的能量消耗B ,因为没有运动,所以有0R =,根据式(3.6)式,得AB W=(3.7)从而得到每人每天每千克体重基础代谢的能量消耗从假设5可知,这些人普遍属于代谢消耗相当弱的人,加上吃得比较多,有没有运动,所以会长胖,进一步,由()t ω (五人的理想体重),W (五人减肥前的体重),D=8000kcal/kg (脂肪的能量转换系数),根据式(3.6)式有001/ln ln/a d D B At d a d B B Aωωωω--=-=--- (3.8) 将A (五个人每天分别摄入的能量)的值代入上式时,就会得出五个人要达到自己的理想体重时的天数,如下表3.1所示表3.1 达到理想体重所需天数表人1 2 3 4 5 天数 194 372 313 266 298Matlab 源程序: R = 0;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [100 112 113 114 124 ]; %每人的体重 n = length( W );B = A./W %每人每天每千克体重基础代谢的能量消耗 a = A./D d = (B + R)./D for i = 1:nt(i) = -(D/B(i))*log((W1(i)*B(i)-A0)/(W(i)*B(i)-A0)); %减肥所需要的时间 end2. 为加快进程,增加运动,结合查找资料得到各项运动每小时每kg 体重消耗的热量表2,再结合假设3,取1h h =,R rh r ==,根据式(4.6)有001/()ln ln/()a d D B R At d a d B R B R Aωωωω-+-=-=--++- (3.9) 将A (五个人每天分别摄入的能量)的值代入上式时,取不同的r ,得到一组数据, 在运动的情况下,我们选取的是一个小时,得到了每个人在不同运动强度下,要达到自己的理想目标所需的天数,如下表3.2所示:表3.2 不同运动强度下达到理想体重所需天数运动跑步 跳舞 乒乓 自行车 游泳 时间/天122 155 141 160 116 187 261 229 274 176 173 232 207 243 164 148 198 177 206 140 163 220 196 230 154Matlab 源程序: h = 1;r = [ 7.0 3.0 4.4 2.5 7.9 ]; R = h.*r; n1 = length(R);D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [ 100 112 113 114 124 ]; %每人的体重 n = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗 for j = 1:n1 for i = 1:nt = (i,j) = -(D./(B(i) + R(j)) * log((W1(i). * (B(i)+R(j)) - A0)./(W(i).* (B(i) + R(j)) -A0))); %减肥所需要的时间end end3. 要使体重稳定在一个定值,则有*AB Rω=+ (3.10) 根据自己的不同理想目标和B (每人每天每千克体重基础代谢的能量消耗),在不同小时下的能量消耗表:(1)在1h =的情况下运动所消耗的能量,如下表3.3表3.3 1h =的情况下运动所消耗的能量运动 跑步 跳舞 乒乓 自行车 游泳消耗能量(kcal) 2667.00 2367.800 2472.800 2330.200 2735.300 2376.400 2056.400 2168.400 2016.400 2448.400 2495.600 2175.600 2287.600 2135.600 2567.600 2600.000 2260.000 2379.000 2217.500 2676.500 2644.800 2284.800 2410.800 2239.800 2725.800(2)在2h =的情况下运动所消耗的能量,如下表3.4表3.4 2h =的情况下运动所消耗的能量运动 跑步 跳舞 乒乓 自行车 游泳 消耗能量(kcal) 3198.00 2592.800 2802.800 2517.700 3327.800 2936.400 2296.400 2520.400 2216.400 3080.400 3055.600 2415.600 2639.600 2335.600 3199.600 3195.000 2515.000 2753.000 2430.000 3348.000 3274.800 2554.800 2806.800 2464.800 3436.800Matlab 源程序: h = [12];r = [ 7.0 3.0 4.4 2.5 7.9 ]; R = h*r;D = 8000; %能量转换系数W1 = [ 75 80 80 85 90 ]; %理想的体重目标A = [ 2857 2543 2734 2689 2776 ]; %每人每天摄入的能量 W = [ 100 112 113 114 124 ]; %每人的体重 n1 = length(W);B = A./W; %每人每天每千克体重基础代谢的能量消耗 for j = 1:n for I = 1:n1A1(i,j) = W1(i).*(B(i)+R(1,j)); %在h=1的时间下运动所消耗的能量 A2(i,j) = W1(i).*(B(i)+R(2,j)); %在h=2的时间下运动所消耗的能量 end end4 模型的分析与讨论4.1 针对一般减肥模型在式(3.6)中假设0a =,即假设停止进食,无任何能量摄入,于是有0()dt t e ωω-= (4.1)这表明在t 时刻保存的体重占初始体重的百分率由dt e -给出,特别当1t =时,e d -给出了单位时间内体重的消耗率,它表明在(0,)t 时间内体重的消耗率,它表明在(0,)t 内体重减少的百分率,可见这种情况下体重的变化完全是体内脂肪的消耗而产生的,如此继续下去,由lim 0t t ω→∞=(),即体重(脂肪)将消耗殆尽,可知不进食的节食减肥方法是危险的.a/d 是模型中的一个重要的参数,由于/a A D =表示由于能量的摄入而增加的体重,而()/d B R D =+表示由于能量的消耗而失掉的体重,于是/a d 就表示摄取能量而获得的补充量,综合以上的分析可知, t 时刻的体重由两部分构成, 一部分是初始体重中由于能量消耗而被保存下来的部分. 另一部分是摄取能量而获得的补充部分,这一解释从直观上理解也是合理的. 由式(3.5)0dtd <ω即/a d ω<,体重从0ω递减, 这是减肥产生效果,另外由式(3.6)可以看到t →∞时*()//()t a d A B R ωω→==+,也就是说式(3.5)的解渐进稳定于*a/d ω=,它给出了减肥过程的最终结果,因此不妨称*ω为减肥效果指标,由*/()A B R ω=+,因为B 是基础代谢的能量消耗,它不能作为减肥的措施随着每个人的意愿进行改变,对于每个人可以认为它是一个常数,于是就有如下结论:减肥的效果主要是由两个因素控制的,包括由于进食而摄入的能量以及由于运动消耗的能量,从而减肥的两个重要措施就是控制饮食和增加运动量,这恰是人们对减肥的认识.人体体重的变化时有规律可循的,减肥也应科学化,定量化,这个模型虽然只是揭示了饮食和锻炼这两个主要因素与减肥的关系,但它们对人们走出盲区减肥的误区,从事减肥活动有一定的参考价值. 4.2 针对具体问题从上几个表可知,普遍观察得出结论,游泳是减肥的最佳方法,无论是在长时间还是短时间内,从结果来看,游泳消耗的能量是最多的,也是达到快速减肥的最佳方法,也可从下图可知,图4.1表示每个人的能量消耗图,都是离散的,并且都是递增的,表明了游泳时能量消耗最快的,选此方法减肥是最合理有效的. Matlab 源程序: x = [ 7.0 3.0 4.4 2.5 7.9 ]; y = [ 2667.00 2367.800 2472.800 2330.200 2735.300 2376.400 2056.400 2168.4002016.4002448.4002495.600 2175.600 2287.600 2135.600 2567.600 2600.000 2260.000 2379.000 2217.500 2676.500 2644.8002284.8002410.800 2239.800 2725.800 ];subplot( 3, 2, 1 ); plot( x, y(1,:),' g* '); title(' 第一个人 '); subplot( 3, 2, 2); plot( x, y(2,:),' ro '); title(' 第二个人 ');数学与统计学院课程设计(实习)报告第10页subplot( 3, 2, 3);plot( x, y(3,:),' g. ');title(' 第三个人');subplot( 3, 2, 4);plot( x, y(4,:),' c+ ');title('第四个人');subplot( 3, 2, 5);plot( x ,y(5,:),' go ');title(' 第五个人');图4.1 每个人的能量消耗图参考文献[1]姜启源,谢金星,叶俊. 数学模型[M]. 北京: 高等教育出版社, 2015年.[2]王敏生,王庚. 现代数学建模方法[M]. 北京: 科学出版社, 2008年.[3]罗万成. 大学生数学建模案例精选[M]. 成都: 西南交通大学出版社, 2007年.[4]胡良剑,孙晓君. Matlab数学实验[M]. 北京: 高等教育出版社, 2006年.。

分方程模型减肥模型

5.3.5 减肥模型
随着社会的进步和发展,人们的生活水平不断 提高。 由于饮食营养摄入量的不断改善和提高,“肥 胖”已经成为全社会关注的一个重要的问题。 如何正确对待减肥是我们必须考虑的问题。于 是了解减肥的机理成为关键。
微分方程模型实例4——减肥模型
5.3.5 减肥模型
一. 背景知识
根据中国生理科学会修订并建议的我国人民的每日膳食指南可知: (1) 每日膳食中,营养素的供给量是作为保证正常人身体健康而提出的膳食
二. 问题分析与模型假设
(4) 不同的活动对能量的消耗是不同的,例如:体重分别为50千克和100千 克的人都跑1000米,所消耗的能量显然是不同的。可见,活动对能量的 消耗也不是一个简单的问题,但考虑到减肥的人会为自己制订一个合理 且相对稳定的活动计划,我们可以假设在单位时间(1日)内人体活动 所消耗的能量与其体重成正比,记B为每1千克体重每天因活动所消耗的 能量。
虑能量的摄入和消耗所引起的体重的变化。
根据能量的平衡原理,任何时间段内由于体重的改变所引起的人体内能量的变化
应该等于这段时间内摄入的能量与消耗的能量的差。
考虑时间区间[t,t t]内能量的改变,根据能量平衡原理,有
t t
t t
B为每1千克体重每天 因活动所消耗的能量。
D[w(t t) w(t)] At B
质量标准。如果人们在饮食中摄入营养素的数量低于这个数量,将对身 体产生不利的影响。 (2) 人体的体重是评定膳食能量摄入适当与否的重要标志。 (3) 人们热能需要量的多少,主要决定于三个方面:维持人体基本代谢所需 的能量、从事劳动和其它活动所消耗的能量以及食物的特殊动力作用 (将食物转化为人体所需的能量)所消耗的能量。 (4) 一般情况下,成年男子每一千克体重每小时平均消耗热量为4200焦耳。 (5) 一般情况下,食用普通的混合膳食,食物的特殊动力作用所需要的额外 的能量消耗相当于基础代谢的10%。

减肥模型中使用的建模方法

减肥模型中使用的建模方法引言在如今的社会中,减肥已成为人们追求健康生活方式的一项重要任务。

为了提供科学、有效的减肥方案,建立减肥模型是至关重要的。

本文将探讨减肥模型中使用的建模方法,包括统计模型、机器学习模型和深度学习模型。

统计模型统计模型是减肥研究中常用的建模方法之一。

通过对大量的减肥数据进行统计分析,可以找到减肥与各种因素之间的关联关系,从而为制定减肥方案提供科学的依据。

线性回归模型线性回归模型是统计模型中常用的方法之一。

它假设减肥与各种因素之间存在线性关系,通过最小二乘法来求解模型参数,从而得到减肥模型。

线性回归模型在减肥研究中常用于分析身高、体重、年龄、性别等因素与减肥效果的关系。

逻辑回归模型逻辑回归模型是统计模型中常用的分类方法之一。

它假设减肥的结果是一个二元变量(如减肥成功与失败),通过最大似然法来求解模型参数,从而预测减肥的结果。

逻辑回归模型在减肥研究中常用于分析减肥方法对不同人群的影响。

生存分析模型生存分析模型是统计模型中常用的方法之一。

它假设减肥的过程是一个时间变量,通过危险比法来求解模型参数,从而预测减肥的时间。

生存分析模型在减肥研究中常用于评估不同减肥方法的效果和持续时间。

机器学习模型机器学习模型是减肥研究中新兴的建模方法。

通过对大量的减肥数据进行训练,机器学习模型可以自动学习并提取数据中的特征,从而建立准确的减肥模型。

决策树模型决策树模型是机器学习模型中常用的方法之一。

它通过构建一棵决策树来对减肥数据进行分类或回归预测。

决策树模型在减肥研究中常用于分析减肥方法对不同人群的适应性。

支持向量机模型支持向量机模型是机器学习模型中常用的分类方法之一。

它通过寻找一个最优的超平面来将减肥数据进行分类。

支持向量机模型在减肥研究中常用于分析减肥方法对不同人群的分类效果。

随机森林模型随机森林模型是机器学习模型中常用的方法之一。

它通过构建多个决策树并通过投票或平均的方式来预测减肥结果。

随机森林模型在减肥研究中常用于评估不同减肥方法的效果和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减肥模型中使用的建模方法
减肥是当今社会非常热门的话题,利用建模技术来评估和预测减肥计划的效果已经成
为减肥研究中的一项重要工具。

本文将介绍和详细描述10种减肥模型中使用的建模方法。

1. 线性回归模型
线性回归模型是一种基于统计学的建模方法,可以用来评估减肥计划和身体指标之间
的关系。

该模型可以使用多个变量进行建模,例如饮食、运动、体重等,进而预测身体指
标的变化。

线性回归模型可以用来确定计划中哪些因素对减肥有帮助,以及它们对身体指
标的影响大小。

2. 逻辑回归模型
逻辑回归模型是一种二元分类模型,可以将减肥计划中的元素划分为“有用”或“无用”。

该模型可以用于区分不同饮食和运动计划的效果,并帮助制定更有效的减肥策略。

3. 神经网络模型
神经网络模型是一种深度学习算法,可以用来识别模式和预测未来趋势。

该模型可以
通过学习过去的数据来发现饮食和运动计划中的模式,然后根据这些模式预测减肥计划的
效果。

4. 支持向量机模型
支持向量机模型是一种分类模型,可以将减肥计划中的元素分为不同的类别。

该模型
可以帮助确定哪种类型的饮食和运动计划最适合哪种类型的人。

一些人可能更适合热量控
制的饮食计划,而另一些人可能更适合高蛋白质的饮食计划。

5. 决策树模型
决策树模型是一种基于树结构的分类模型,可以将减肥计划中的元素分成不同的类别。

该模型可以通过将饮食和运动计划中的元素组合起来,来帮助制定更有效的减肥策略。

6. 聚类模型
聚类模型是一种无监督机器学习模型,用于将整个数据集分成互不重叠的群体。

该模
型可以帮助确定哪些饮食和运动计划可以分成互不重叠的组,哪些可以放在一起。

7. 马尔科夫链模型
马尔科夫链模型是一种数学方法,用于描述状态连续性的随机变量序列。

该模型可以
用来建立减肥计划中饮食和运动计划的状态转移概率,并根据当前状态预测未来的状态。

8. 随机森林模型
随机森林模型是一种决策树集合的分类模型,可以用于减肥计划和身体指标之间的关系建模。

该模型可以通过学习过去的数据,来确定饮食和运动计划中的哪些元素对减肥最有帮助,以及可以量化这些因素的重要性。

9. 贝叶斯网络模型
贝叶斯网络模型是一种概率图模型,可以用于评估影响减肥计划和身体指标之间的关系的不同因素。

该模型可以通过学习过去的数据,来发现饮食和运动计划中的不同变量之间的关系,并预测未来的结果。

10. 时间序列模型
时间序列模型是一种建立基于时间的数据关系的模型,可以用于预测未来趋势。

该模型可以用来预测饮食和运动计划的效果,并根据实际情况对计划进行调整。

时间序列模型也可以用来监测变化和评估努力的成功。

相关文档
最新文档