药物基因组学与个体化给药
基因导向的个体化给药在医院临床药学中的应用

血液
3个工 作日
双胍类 (二 甲双胍 苯乙
1-Oct
预测疗效
基因突变,导致转运功能降低,该类药物清除率变 慢,降糖效应减弱;在突变患者中,建议加大用药 剂量或换药
减少药物不良反应
及安全性的关系
基因水平
个体化用药
11
BaiO
个体化用药
身高/体重
遗
传
性
别
年
龄
•老年人 •儿童 •新生儿
药物反应个体差异
并发症
病
12
环境因素
•饮食 •吸烟 •合并用药
脏器功能
•肝功能 •肾功能 • 心功能
程
BaiO
基因导向的个体化给药
A lifelong, individually tailored health care approach to the detection, prevention and treatment of disease based on knowledge of an individual's precise genetic profile.
用药指导:发现携带突变等位基因的患者给与相对低的 华法林剂量。
月平均基因检测量:20例左右
检测项目举例
3. CYP 2C19检测与氯吡格雷 作用:CYP2C19是氯吡格雷重要的体内代谢酶。 突变型:携带CYP2C19*2,*3基因型患者氯吡格雷抗血 小板聚集的效果出现下降,并呈现基因-剂量效应。 用药指导:发现携带突变等位基因的患者增加氯吡格雷 的剂量,或选用其他不经CYP2C19 代谢的抗血小板药物 如替格瑞洛等。 月平均基因检测量:15例左右
基因导向的个体化给药 在医院临床药学中的应用
主要内容
药物基因组学与个体化给药

药物转 运体的 基因差 别也会 导致严 重不良 反应
35
药物受体与不良反应
β受体阻断药(如美托洛尔、卡维地洛 等)作用于β受体,如果突变受体对药 物的敏感性增高,就容易出现不良反应。
抑郁症 25mg/次,3次/日
强迫症 75mg/次,3次/日
5mg /日
5mg /日
25 mg/日 25 mg/ 次 ,1 次 / 日
200mg/日
推荐剂 量(%) 60% 80% 90%
90%
80% 90% 80% 100% 901%6
代谢酶 /受体
药 物 代 谢 酶
CYP2D6在药物治疗中的作用
Gly389 纯合子
低敏 感性
比索洛尔 美托洛尔 阿替洛尔 比索洛尔
5mg/次,1日/次
25mg/次,2次/ 日
50mg/次,1日/ 次
5mg/次,1日/次
150%
建议改用其他 药物
建议改用其他 药物
建议改用其他 药物
20
受体
药 物 代 谢 酶 和 受 体
β2受体相关基因在药物治疗中的作用
基因型
Gly49 纯合子
ABCA1转运蛋白 对氟伐他汀耐药
24
目前在做的抗高血压药物相关基因检测项目
25
药物相关基因与药动学研究
奥美 拉唑.
泮托 拉唑.
CYP2C19
雷贝 拉唑.
兰索 拉唑.
基因多态性对它们影响的程度 26
药物相关基因与药动学研究
奥美拉唑
野生纯合子 (wt/wt)基因型
野生杂合子 (wt/m)基因型
突变纯合子 (m/m)基因型
8%,中国人为0.7%,日本人为0.5%,这都是因为不同的基
药物基因组学与个体化给药

CYP2C18 氟西汀,丙咪嗪, 吡罗昔康,利福平 CYP2C19 氟西汀,丙咪嗪,异烟肼,去甲替林,苯妥英,利福平, 华法林 CYP2D6 CYP2E1 UTG2 氟西汀,地尔硫卓, 丙咪嗪,美托洛尔,去甲替林,茶碱 氟西汀,异烟肼,茶碱,异搏定 布洛芬,萘普生
NAT2
异烟肼
重庆医科大学药学院 秧茂盛
LDG
疾病基因研究室/药物基因组研究中心/生命科学研究院
药物基因组学与个体化给药
重庆医科大学药学院
秧茂盛
LDG
疾病基因研究室/药物基因组研究中心/生命科学研究院
疗效好
药物
无效 不良反应
重庆医科大学药学院
秧茂盛
LDG
疾病基因研究室/药物基因组研究中心/生命科学研究院 年龄
遗传背景
性别
治疗效果
并发症
LDG
疾病基因研究室/药物基因组研究中心/生命科学研究院
疗效好
TPMT+
致死性的骨髓抑制
TPMT-
疗效差
六巯基嘌吟 TPMT:硫嘌呤甲基转移酶
重庆医科大学药学院 秧茂盛
LDG
疾病基因研究室/药物基因组研究中心/生命科学研究院
药物作用的多基因本质
疾病的病源基因 治疗作用 不良反应
宿主易感基因
药物代谢和转运基因
疾病基因研究室/药物基因组研究中心/生命
Alleles C>T C>A A>G C>G C>T C>T G >C G>C G>A C>T G >C 2 4A 4B 10A 10B 10C 17 188 188 188 188 188 1062 1072 1085 1062 1072 1085 1127 1127 1749 1749 1934 1934 1749 1749 1749 2938 4268 4268 4268 4268 4268 4268 2938 4268
药物化学中的药物合理用药与个体化治疗

药物化学中的药物合理用药与个体化治疗药物化学是研究药物的成分、结构与性质之间的关系,并以此为基础研发新药的一门学科。
在现代药物研究中,药物合理用药与个体化治疗是药物化学领域非常重要的两个方面。
本文将从药物合理用药和个体化治疗两个方面进行探讨。
一、药物合理用药药物合理用药是指根据患者的疾病类型、病情严重程度、年龄、性别等因素,合理选择药物及其用法、用量和用药时间,以达到最佳的治疗效果,并尽量减少药物的不良反应。
在药物合理用药中,药物化学为临床提供了重要的指导。
1. 合理的药物选择:药物化学的研究可以帮助临床医生了解药物的化学结构和性质,并根据这些信息选择合适的药物。
不同的疾病可能需要不同的药物治疗,而药物化学提供了针对不同疾病的药物选择方案。
2. 优化的用药剂型:药物化学研究可以设计和改进药物的剂型,以提高药物的药效、稳定性和可控性。
例如,利用药物化学的知识,可以将药物转化为缓释剂型,延长药物在体内的作用时间,减少用药频次,提高患者的依从性。
3. 合理的剂量选择:药物化学的研究可以帮助医生确定合理的药物剂量。
通过了解药物的代谢途径、药动学和药效学等参数,可以根据患者的个体差异,选择适合的药物剂量,避免因药物剂量过高或过低而导致的治疗效果不佳或不良反应。
二、个体化治疗个体化治疗是根据患者的个人基因、环境和生理特征,制定个体化的治疗方案,以提高治疗效果和减少不良反应。
药物化学在个体化治疗中发挥着重要的作用。
1. 药物基因组学:药物化学的研究有助于了解药物在个体基因水平上的相互作用。
通过分析患者的基因信息,可以预测药物在体内的代谢途径和药效,从而个性化地选择药物和药物剂量,提高治疗效果。
2. 药物动力学个体化:药物化学的研究可以帮助了解药物在不同个体中的药代动力学差异。
个体化的药代动力学研究可以根据患者的生理特征,如年龄、性别、体重等,调整药物的给药途径、频次和剂量,以优化药物治疗效果。
3. 药物配伍个体化:药物化学的研究可以指导药物的合理配伍,避免不良的药物相互作用。
精准医疗背景下药物基因组学的应用前景

精准医疗背景下药物基因组学的应用前景随着精准医疗概念的兴起,药物基因组学逐渐成为医学领域的热门研究方向之一。
药物基因组学旨在通过研究个体基因遗传变异对药物代谢、药效和不良反应的影响,实现个体化用药,提高临床治疗效果。
药物基因组学的应用前景广阔,对于提升药物疗效、减少药物不良反应、降低医疗费用等方面都具有重要意义。
一、药物基因组学在药物研发中的应用前景药物研发是药物基因组学应用的重要领域之一。
传统的药物研发模式存在药效差异大、不良反应风险高等问题,导致临床治疗效果不稳定。
而药物基因组学的应用可以通过研究个体基因遗传变异,筛选出适合特定基因型患者的药物靶点,提高临床疗效。
同时,药物基因组学可以帮助研究人员优化药物分子结构,以降低药物代谢率、提高药效,从而降低药物不良反应风险。
因此,药物基因组学在药物研发领域具有巨大的潜力,可以加速新药研发过程,提高新药研发成功率。
二、药物基因组学在个体化用药中的应用前景个体化用药是精准医疗的核心理念之一,而药物基因组学为实现个体化用药提供了重要的科学依据。
个体基因型的差异导致了不同个体对相同药物的代谢、药效和不良反应的差异,因此只有了解个体基因型信息,才能更好地制定个体化的用药方案。
药物基因组学可以通过研究患者基因型信息,确定适合患者的药物剂量和疗程,降低不必要的药物剂量,提高药物治疗效果。
同时,药物基因组学还可以帮助医生预测患者对药物的代谢速度,从而减少药物不良反应的发生率,提高治疗安全性。
因此,药物基因组学在个体化用药领域有着广阔的应用前景,可以为患者提供更精准、更有效的治疗方案。
三、药物基因组学在临床决策中的应用前景药物基因组学在临床决策中也有重要的应用前景。
临床医生在制定治疗方案时,常常需要考虑患者对药物的代谢能力、药效反应等因素,以避免药物不良反应的发生。
药物基因组学可以为临床医生提供个体基因型信息,帮助医生制定更合理的治疗方案,提高临床治疗效果。
同时,药物基因组学还可以帮助医生预测患者对不同药物的反应,指导医生在治疗过程中进行调整,提高治疗效果。
药物基因组学的发展及其在个体化用药中的应用

药物基因组学的发展及其在个体化用药中的应用药物基因组学的发展及其在个体化用药中的应用引言:药物基因组学是一门研究药物与个体基因组之间相互作用的学科,它通过分析个体基因组中与药物代谢、反应和效果相关的遗传变异,为个体化用药提供科学依据。
随着人类基因组计划的完成和高通量测序技术的发展,药物基因组学得到了迅猛发展,并在临床实践中取得了显著成果。
本文将介绍药物基因组学的发展历程以及其在个体化用药中的应用。
一、药物基因组学的发展历程1.1 基础研究阶段在20世纪90年代初期,人类基因组计划启动,这标志着人类基因组研究进入了一个崭新的时代。
随着高通量测序技术的出现和不断完善,科学家们开始挖掘人类基因组中与药物代谢有关的遗传变异,并建立了相关数据库。
1.2 应用研究阶段随着技术和数据积累的不断提升,药物基因组学逐渐从实验室走向临床。
研究者们通过临床试验和观察发现,个体基因组中的遗传变异可以影响药物的代谢速度、药效和不良反应等。
这些发现为个体化用药提供了理论基础。
1.3 临床应用阶段随着技术的进步和研究的深入,药物基因组学逐渐应用于临床实践中。
通过对患者基因组进行分析,医生可以根据个体特征选择最合适的药物、剂量和疗程,从而提高治疗效果,减少不良反应。
二、个体化用药中的应用2.1 药物代谢酶基因多态性许多药物在体内经过代谢酶催化转化为活性或无活性代谢产物,并最终被排出体外。
然而,个体之间存在着对这些代谢酶的遗传变异。
CYP2D6是一种重要的药物代谢酶,在某些人群中存在着CYP2D6*4等突变型,导致其活性显著降低。
在给予这些人群药物治疗时,应考虑到其代谢能力的差异,调整药物剂量。
2.2 药物靶标基因变异药物的作用靶标通常是一种蛋白质,而这些蛋白质的编码基因也存在着遗传变异。
对于某些抗癌药物来说,患者体内的靶标基因突变可能导致药物的耐药性。
通过检测患者基因组中与药物靶标相关的遗传变异,可以预测患者对特定药物的敏感性和耐受性,从而优化治疗方案。
药物基因组学在个体化治疗中的应用

药物基因组学在个体化治疗中的应用随着科技的进步和科学的发展,个体化医疗成为了医疗领域的一个重要研究方向。
药物基因组学,作为个体化治疗的重要组成部分,通过研究药物与个体基因之间的相互作用,可以帮助医生更好地选择和调整药物疗法,提高治疗效果,减少不良反应。
本文将探讨药物基因组学在个体化治疗中的应用。
一、药物基因组学的基本原理药物基因组学是研究个体基因对药物作用的一门学科。
它通过研究个体基因的多样性,寻找与药物治疗反应相关的遗传变异,从而预测个体对特定药物的反应。
基因多态性是个体对药物反应差异的一个重要原因,通过检测个体基因的多态性,可以确定个体对药物的敏感性和耐受性,从而实现个体化治疗。
二、药物基因组学在药物选择中的应用个体对药物的反应受多个基因的影响,其中包括药物转运基因、药物受体基因和药物代谢基因等。
在选择药物治疗方案时,可以根据患者的基因型信息来预测药物的疗效和不良反应风险,从而选择最适合的治疗方案。
例如,某些基因型的患者对特定药物的反应会更好,而另一些基因型的患者则对同一药物更为敏感,这些信息可以帮助医生更好地选择药物并确定剂量。
三、药物基因组学在药物调整中的应用在个体化治疗中,药物调整也是非常重要的一步。
根据患者的基因型信息,医生可以合理调整药物剂量,避免不良反应的发生。
例如,某些基因型的患者对药物代谢较慢,需要减少药物剂量,而另一些基因型的患者对药物代谢较快,需要增加药物剂量才能达到疗效。
通过了解患者的基因信息,可以进行个体化的药物调整,提高治疗的效果。
四、药物基因组学在不良反应预测中的应用药物基因组学还可以用于预测患者不良反应的风险。
某些患者的基因型可能会导致对某些药物的不良反应更为敏感,通过检测患者的基因信息,可以预测患者对某些药物的不良反应风险,并采取相应的预防措施。
例如,在使用某些化疗药物时,某些基因型的患者可能会出现严重的骨髓抑制,通过预测风险可以避免不必要的副作用。
五、药物基因组学的应用前景个体化治疗已经在临床实践中取得了一些积极的成果,但目前仍存在一些挑战。
个体化用药前沿研究报告

个体化用药前沿研究报告个体化用药是一种基于个体的遗传信息、生物标志物和临床特征,为每个患者量身定制的药物治疗方法。
这一领域的研究正在迅速发展,旨在提高药物治疗的效果和安全性。
以下是个体化用药前沿研究的一些重要方向和进展。
1. 基因组学和药物代谢酶基因:个体的遗传变异可以影响药物的代谢和响应。
研究人员正在研究与药物代谢酶相关的基因变异,如CYP450基因家族,以便确定个体在药物代谢方面的特点。
这样可以优化药物剂量,减少药物的副作用和不良反应。
2. 蛋白质组学和药物靶点:蛋白质组学研究可以揭示个体的蛋白质表达水平和功能变异。
研究人员正在研究与药物靶点相关的蛋白质,以便寻找特定患者对药物的敏感性和耐受性。
这有助于选择最有效的药物治疗方法。
3. 表观遗传学研究:表观遗传学研究可以揭示基因组中与药物反应相关的DNA甲基化和组蛋白修饰。
这对于研究个体对药物的反应和耐受性非常重要,特别是在肿瘤治疗方面。
4. 单细胞测序技术:随着单细胞测序技术的发展,研究人员可以更深入地了解个体细胞的基因表达和表型变异。
这对于研究药物治疗和药物耐受性具有重要意义。
5. 数据挖掘和人工智能:个体化用药研究涉及大量的多维数据,如基因表达数据、临床数据和药物数据。
数据挖掘和人工智能技术可以帮助寻找药物和患者之间的关联,提供个体化治疗的决策支持。
个体化用药的研究是一个多学科的领域,涉及基础研究、临床试验和生物信息学等领域的合作。
通过深入了解患者的个体特征,我们可以更好地选择和定制最合适的药物治疗方案,达到更好的治疗效果和安全性。
个体化用药的前沿研究将继续推动医学的发展,并为患者提供更好的治疗选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药物基因组学概述
国外药物基因组学的研究动态
1997年6月28日,金赛特(巴黎)可伯特实验室 宣布成立世界上第一个独立的基因及制药公司研究 药物基因组学,随后已有几十家公司已涉及此领域。 目前,药物基因组学已涉及的研究领域包括:
药物基因组学的研究方法
据推测,人类整个基因组序列约有100万个SNP, 它们可分布在编码区、内含子和启动子等区域,因此, 进行多基因药理学特性相关研究时,SNP可作为涵盖 整个基因组的有用标志物。另外,SNP因具有双等位 特性亦适合高通量的基因型测定。该手段的一个重要 优势,是并非建立在药物作用机制的推测上,因此可 以帮助发现那些及药物反应相关的全新基因。
第一、对一些相关基因进行研究以期发现它们是否 存在一些有害的等位基因,并对其可能造成的结果 进行预防。 第二、应用各种现代技术对一些不是很清楚的相关 基因进行研究。 第三、对整个基因组范围内相关基因的关系进行研 究。
药物基因组学的研究方法
药物基因组学的研究方法
第一、构建全基因组基因多态性图谱; 第二、发现各种疾病和各种药物反应表现型差异及 基因多态性的统计关联; 第三、根据基因多态性对人群或患者进行疾病易感 性和药物反应分类,并开发这种诊断试剂盒; 第四、在临床上,针对易感人群进行疾病防治,针 对不同药物反应的患者进行个性化治疗。
不同情况下的表达数据
GuraGen
整合基因与药物基因组学的平台多样性分析
Epidauros Biotechnologie
Байду номын сангаас
目的基因多态性分析
Janssen Pharmaceutica
线粒体基因多样性分析
Nova Mollecular
中枢神经系统疾病图
药物基因组学的研究方法
药物基因组学的研究大致分为三个阶段
药物基因多态性的分类
药物从进人体内到发挥作用直至被清除, 是一个较为复杂的过程。在这个过程中的任 何一个环节出现问题都可能引起药物效应的 各种异常。药物作用的差异可以是药物动力 学或药效学差异。
药物基因多态性的分类
药代动力学差异指的是将药物转运至介导药物的 效果和(或)毒性的关键分子部位或自该部位除去 的差异。涉及这些过程的分子包括药物代谢酶(如 细胞色素P450酶超家族成员)和介导药物摄入和 排出的细胞内部的药物转运分子。
药物基因组学概述
1990年10月,美国正式启动当时世界最大规模的 “人类基因组计划”。 1994年,中国先后启动了“中华民族基因组中若干 位点基因结构的研究”和“重大基因相关基因的定 位、克隆、结构及功能研究”。
人类基因的多态性
药物基因组学概述
药物基因组学的概念
药物基因组学(pharmacogenomics)是研究 DNA和RNA特征的变异及药物反应相关性的科学, 即研究基因序列的多态性与药物效应多样性之间的 关系。
药物基因组学的研究方法
药物基因组学的研究手段
药物基因组学通常采用两种研究手段。第一种即 “候选基因”策略,第二种是基因组范围内遗传标 志物和药物反应表型之间的关联研究。
药物基因组学的研究方法
“候选基因”策略,主要是在给定某一药物的条 件下,比较有反应者及无反应者靶基因多态性出现 的频率。该方法的一个局限性是候选基因的选择需 以给定药物的假定作用机制和(或)所治疗疾病的病 理生理学为根据。因此,该方法的成功建立在上述 假设的真实性上,且不能鉴定那些根据药物作用或 疾病生物学难以预测的新基因。
Genome Therapeutics Crop (Waltham, MA) 人类高分辨的基因多态性数据库
金塞特
高密度的、等位基因图,6 万个标识物
Variagenics,Inc (Gambrige, MA)
根据杂合型缺失型设计的抗癌治疗,抗癌药物基
因组学
Lion Bioscience,AG (Aeidelberg,DE) 以药物为目标的个人基因序列鉴定、分析软件、
药物基因组学概述
实验室和(或)公司
研究领域
Aeiveos Sciences Group (Seattle, WA) 年龄相关的基因及基因作用
Avitech Diagostics (Malvern, PA)
酶基因突变检测方法
Eurona Medical,AB (Upsala,SE)
药物效应与遗传学关系
药物基因组学的研究方法
基因组范围内遗传标志物和药物反应表型之间的 关联研究。单核苷酸多态性(SNP)是基因组关联 研究最常用的标志之一。SNP是指基因组DNA双 等位基因上单核苷酸的多态性,这些等位基因的丰 度(abundance)不小于1%,有时丰度<1%的等 位基因也会被错误的标为SNP,但这些偶发的改变 应称为“稀有突变”。
药物基因组学概述
药物疗效的个体差异性:研究表明,以选择性环 氧化酶-2抑制剂为代表的新型抗炎镇痛药的疗效仅 为80%,抗抑郁药的有效率为62%,抗哮端药和抗 心律失常药分别为60%,抗糖尿病药为57%,抗急 性偏头痛药为52%,预防偏头痛药为50%,抗丙型 肝炎病毒(HCV)药的有效率为47%,抗尿失禁药 为40%,抗阿尔茨海默病药仅为30%,而抗肿瘤药 更低,仅为25%。
药效学差异指的是等量药物转运到分子作用部位 但出现不同的药物疗效。这反映了药物取得疗效的 靶分子功能的差异,或是各种药物及分子靶位间的 相互作用存在的广泛病理生理上的差异。
药物基因多态性的分类
药物代谢酶基因多态性
药物基因组学与个体化给药
药物基因组学概述
药物基因组学的诞生
早在20世纪50年代,人们就发现不同的遗传背 景会导致药物反应的差异,如一些遗传性葡萄糖6-磷酸脱氢酶缺陷患者在接受抗疟药伯氨喹治疗后, 引发严重的溶血。1959年Vogel提出的“遗传药 理学”就是药物基因组学的一种雏形,它从单基因 的角度研究遗传因素对药物代谢和药物反应的影响, 特别是遗传因素引起的异常药物反应。