药物基因组学与个体化用药

药物基因组学与个体化用药
药物基因组学与个体化用药

药物基因组学与个体化用药

王晓会12生A 124120035

(云南师范大学生命科学学院,云南昆明650500)

摘要:药物基因组学是人类开始功能基因组学研究后出现的一门新兴的交叉学科,它阐述了从基因水平研究基因序列的多态性与药物效应多样性之间的关系.药物基因组学应用于临床药学是一个必然的趋势。将药物基因组学应用于临床药学是合理用药深入发展乃至实现个体化用药的必经之路. 对于深入解释药物治疗的个体差异、减少药物不良反应、提高药物疗效等有重大意义。药物基因组学作为一门新兴的学科, 致力于研究药物代谢、药物转运和药物靶分子的基因多态性与药物作用, 包括疗效和毒副作用之间的关系。其在药学研究中, 特别是药物作用机制、药物代谢、提高药物疗效及新药研发等方面发挥重要作用。本文通过阅读并分析近年国内公开发表的有关药物基因组学的相关文章,根据有关文献, 综合分析、归纳总结了药物基因组学的定义、研究方法、发展和与个体用药的关系,同时阐述了实现个体化用药的基本条件、优点以及个体化用药现阶段的概况、面临的挑战等。

关键词:药物基因组学;个体化用药

1 药物基因组学

1.1 药物基因组学的概念

药物基因组学是基因功能学与分子药理学的有机结合,是研究基因序列变异及其药物不同反应的科学,以药物效应及安全性为目标,运用已知的基因理论研究各种基因突变与药效及安全性的关系,药物基因组学强调个体化。通过它可为患者或者特定人群寻找合适的药物及恰当的剂量,改善病人的治疗效果[1]。药物基因组学的核心是药物反应(药酶)的遗传多态性,宗旨是实现用药个体化,以求得到最佳疗效和最少不良反应。由此可见,药物基因组学研究方法有别于一般的基因组学,它并不是通过研究新的基因来寻找疾病的发病机理,是通过已知基因组学理论来探讨基因因素对药物效应的影响,以明确药物作用靶点,从而准确预测患者对临床治疗反应[2].

1.2 药物基因组学研究

药物遗传学研究发现人体对药物的反应性与基因多态性存在极大关联,参与编码药物代谢酶、转运体、受体等基因的多态性能明显影响药物不良反应发生的概率,并改变药物疗效,导致药物“低代谢”或“超速代谢”表型发生,并在群体中构成一定比例。例如细胞色素酶P450(CYP)参与了B受体阻滞剂、抗抑郁药、抗癌药等重要药物代谢途径,其基因多态性与个体问药物反应有极显著的相关性。以药物遗传学和人类基因组学为基础发展起来的药物基因组学,整合基因分型、DNA测序等完善的分析技术和生物信息学方

法,研究药物起作用、产生毒性以及被清除等过程中存在的个体基因特性,并据此研发新药、视个人遗传学状况指导合理用药,以提高药物的疗效及安全性[3]。

1.3 药物基因组学研究方法[4]

现代技术条件下的基因分析方法,如凝胶电泳技术、聚合酶链反应(polymerase chain reaction,PCR)、等位基因特异的扩增技术、荧光染色高通量基因检测技术、DNA阵列技术、高通量筛选系统为鉴定遗传变异对药物作用的影响提供了高效的测定手段和多种思路口。医务工作者通过应用这些技术来检测药物作用的靶点或分析不同的基因特性导致的药物在人体内产生个体差异,进而对不同患者提供不同的用药指导,为临床用药合理化开辟了新的领域。

2 药物基因组学与个体化用药

药物基因组学揭示了患者对某些药物的反应率与其基因亚型之间关系。这种关系的确定能辅助临床人员在预测某一特定药物时, 患者属何种反应人群, 使医生为患者选择疗效最佳的药物和确定最佳剂量成为可能。药物基因组学在基因水平研究药物效应和体内处置过程个体差异的遗传特征,并以药物效应及安全性为目标,鉴别基因序列,研究基因突变与药物体内处置过程、药物效应及安全性间的关系,为个体化用药提供理论根据[5]。以药物基因组学原理为特定人群设计最佳的药物, 可提高疗效, 缩短病程, 大幅度缩减成本。

将基因组学的成果应用于药学领域, 将给临床合理用药和新药开发带来根本性的变革。已有人将药物基因组学知识应用干高血压、哮喘、高血脂、内分泌、肿瘤等药物治疗中。许多病人对高血压药物的不同药效和耐受性也与遗传变异有关。在临床治疗中, 采用因人而异的疗法, 医生根据各种依据来决定最适合病人的药品和恰当剂量。目前广为使用的方法主要是:测定药物在患者体内的浓度, 以药代动力学原理计算药代动力学参数, 设计个体化给药方案[12]。这一方法对于血药浓度与药效相一致的药物是可行的, 但对于血药浓度与药效不一致的药物, 如何达到个体化给药, 目前尚无较为可靠的方法。

近年来,由于药物不良反应的增多,用药安全问题引起全球的关注。在全世界死亡的病人中,仅药品不良反应致死己占社会人口死因的第4位,我国每年约250万住院病人出现药品不良反应,死亡病例每年近20万人[6]。据统计,我国每年因药物不良反应增加的医疗费用高达40亿,因药物不良反应住院的人数约占总住院人数的5%;美国每年有超过200万的住院患者发生严重的药物不良反应,超过10万人死于不良反应[7]。而且药物不良反应还有逐年上升的趋势,2013年全国药品不良反应监测网络收到《药品不良反应/事件报告表》131.7万份,较2012年增长了9.0%;其中新的和严重药品不良反应或事件报告29.1万份,占同

期报告总数的22.1%[8]。个体化用药是正确的药物以正确的剂量和适合的时间用在适合的患者,根据患者的个体情况实行个体化用药,可以减少药品不良反应的发生,进一步保障用药安全。

3 个体化用药

3.1 实现个体化用药的基本条件[9]

一是通过患者对同一药物反应差异的原因和机制的深入研究,可为个体化用药提供坚实的理论基础和实践依据,于此基于疾病发生机制的研究是个体化用药得以成功的基石;二是成功的个体化用药需要的不仅是单纯地针对疾病的药物治疗,还需要包括疾病诊断和药物选择等辅助措施的同时跟进,如诊断性产品和治疗药物的同时使用.

3.2 个体化用药具有5方面优点[10]

(1)减少疾病的持续时间;(2)减轻疾病的严重程度;(3)提高治疗成功率,避免患者的无效治疗和预防不良反应发生;(4)降低医疗成本;(5)通过更小范围和目标更明确的临床实验,缩短药物开发周期。目前,个体化用药的优势已逐渐为人们广泛认可,必将成为未来理想的药物治疗新模式。

3.3 现阶段个体化用药的应用概况[10]

个体化用药是通过表征个体差异产生的分子发病机制、进程和对治疗的反应实现的,因此在透彻研究和理解分子差异的基础上,通过鉴别疾病的类型进行分类治疗必将提高治

疗效果。越来越多的药物被设计用于少量人群,这一趋势与药物发展过程中应用不同的目标方法进行分层研究的逐渐增加趋势相一致。如今,乳腺癌、结肠癌、肺癌、黑色素瘤和白血病已经可以常规使用“分子诊断技术”,用来帮助医师根据基因亚型选择相应的治疗措施,以提高治愈率和存活率;HLA基因分型的研究进展不仅提高了移植成功率,而且显著提高了预测患者对药物潜在反应的能力,包括用于治疗HIV、血友病、癫痫和双相情感障碍等药物;药物代谢酶的基因分型亦显著提高了制定合理给药方案的能力,有助于避免不良反应、药物相互作用和无效治疗。在个体化用药不断发展和应用过程中,药物基因组学随着DNA 测序和人类基因组的表征所揭示的几千个药物新靶标而蓬勃发展,为基因水平研究药物反应的个体差异提供了理论和技术支持。其生物标志物的发现和合理应用在个体化用药中占有举足轻重的地位,通常情况下整合在药物发现和临床发展中的个体化用药是通过生物标志物的鉴别、发现和验证新靶标以及确定患者属何种人群来选择最佳治疗方案实现的,如何把生物标志物的发现转化为有效的个体化用药方案,一直以来都是研究者和临床医生共同合作并努力实现的终极目标。

3.4现阶段,与个体化用药相关的基础研究及相关新药研发领域主要涉及到如下8个方面[11]

3.4.1 生物标志物的鉴别以及相关技术和工具的发展

通过对重要的生物标志物和反应途径的鉴别,为临床前实验和临床患者的管理方面提供预测、诊断和预后价值,其目标是根据患者对某一疾病或某一特定治疗措施的敏感度而将其归为某一类人群,这一分类包括基因、性别、年龄、生活方式和环境因素(吸烟和肥胖)等。

3.4.2 癌症的生物学基础通过该项研究可提高对癌症内在的生物学特征的理解。如许多携载鼠类肉瘤病毒癌基因(KRAS,在抑制肿瘤细胞生长以及血管生成等过程的信号传递通路中起着重要调控作用,是目前确认的肿瘤靶向治疗药物的重要基因标志物之一)的肿瘤会对某些抗癌药产生抗药性,因此有关本项癌症生物学基础的研究将通过试验方法的建立来鉴别有效治疗方法,用来阻断具有遗传特征肿瘤的抗药性发展。

3.4.3 蛋白治疗的药物基因组学和免疫原性在治疗像血友病之类的人类疾病方面,人们对重组人蛋白的使用态度在稳步转变。然而,这些治疗措施的安全性和有效性受蛋白以抑制性抗体形式引起免疫原性这一因素的影响。遗传变异可导致个体、种族或其他亚人群较高频率地出现抑制性抗体,而治疗性蛋白的抑制性抗体的发展是威胁生命的副作用,要求昂贵的临床干预,因此通过对免疫原性的药物基因组学的决定因素的建立,可以在蛋白治疗前就能提前预测患者的免疫原反应的风险。

3.4. 4 认识DNA 修饰对蛋白产品质量的作用单核苷酸多态性是基因变异,包括药物引起个体差异的重要原因。评估仿人类蛋白的蛋白治疗药物非常复杂,部分原因是存在于正常人群的几组蛋白序列,任何一组都可能发展成药物。另外,现在蛋白和DNA工程改造能提高蛋白治疗药物的产量,其二代产品涉及到改造蛋白获得理想的治疗效果。上述这些处理措施均能潜在地影响蛋白治疗药物的有效性和安全性,但如何产生不同的影响却是一个研究挑战,因此有必要通过研究更好地理解蛋白修饰对蛋白质量的作用。

3.4.5 鉴别疫苗反应的遗传风险因子这一研究结果的数据将有助于未来预测疫苗和其他医疗产品的自身免疫反应。

3.4.6 个性化的基于细胞(间叶细胞和多能干细胞)的评估基于干细胞的治疗方法为提供细胞、组织和器官修复或再生具有临床症状的心血管器官或断肢带来了希望。然而,这些产品及其复杂性会相应地在临床应用时产生一系列问题,比如临床治疗的属性是什么,在患者体内能否形成肿瘤,以及这些产品在体内能否用错导致损害。

3.4.7 药物诱发的过敏反应遗传学理解基因对药物反应的敏感性,如不良反应和功效在个体化用药的实施中起着关键作用。比如,基因变异与治疗癫痫的卡马西平严重不良反应有关,全基因组测序和遗传分析可以鉴别卡马西平诱

导的Stevens.Johnson综合征和表皮坏死溶解症,从而提前预测这一药物是否对患者产生不良反应。

3.4.8 遗传学和心血管风险评估有关遗传因素与普通生活方式相互作用对心脏病贡献的研究正在进行中,如研究高脂饮食后血液中三酰甘油的变化,高盐饮食后血压的变化,服用阿司匹林后血小板聚集反应等。这些项目的研究有助于医生和患者运用个体化用药提高健康水平。

通过对以上8点的总结可以看出,在个体化用药时代,新药研发领域首先应清醒地认识到新药研发不是寻找新的药物靶点,而是通过发病机制及隐藏在机制下深层次的基因或分子变化的研究,证实其与疾病的相关性,从而有针对性地研制能消除引起发病原因的新药,最终成功地把该类患者所需的新药推向市场;其次,在新药研发阶段,需要同时研究开发新药和生物标志物的检测,最大程度发挥“药物伴随诊断”在个体化用药中的积极作用,极大提高新药研发的成功率。

3.5 个体化用药面临的挑战:近年来,医药学界已认识到个体化用药的发展是科学力量用于医疗实践发展的一个有力证明,然而透彻理解人类健康和疾病仍然是一个值得深思的问题。人类所患的疾病不仅仅取决于基因水平,还是环境、遗传、社会和文化因素的综合作用,因此成功的个体化用药应是对每一因素以及它们之间相互作用的全面理解和

应用。个体化用药在实施的过程中还面临着技术、认识和政策上的诸多问题和挑战,总结为以下6个方面[10]:

3.5.1对疾病内在生物因素的理解所知有限过去20年给我们留下了大量的甚至近乎泛滥的数据,然而对其真正含义的理解仍然相对有限,可以认为正确的科学理解和评估仍然可能是这一领域向前发展的最重要的限速因素。

3.5.2多基因/生物标志物的共同情况到现在为止,多基因以及环境和社会因素对共同情况的影响方式还没有很好地掌握,而其个体化用药管理的实现是一个极其复杂的过程,依赖于对临床研究的实质性投资,远远超过最初的基因.疾病关系论证的研究内容。

3.5.3过时的疾病分类系统现在应用的疾病分类系统主要是根据体征和症状进行分类的。这些系统很难兼容入逐渐形成的疾病发生机制的信息,尤其当这些信息与传统体征描述不相符的时候。结果是许多具有明显的不同分子发病机制的疾病亚型被归为一类疾病,而具有同一分子发病机制的不同疾病被不恰当地联系起来。过时的疾病分类系统意图合并最佳的生物学见解的失败成为个体化用药前进路上的基本障碍。创造有关疾病的“新术语”的目的是用来提高对疾病病理和健康的理解,并在描述疾病时以内在的生物学加上传统的体征和症状为基础。

3.5.4 基础设施的匮乏近年来,基因测序价格的暴跌

导致信息的爆炸式增长,但收集、分析、整合、分享和挖掘这些信息的基础设施仍然匮乏。

3.5.5 新型诊断试剂的临床实施许多临床医师在应用新型诊断试剂时是犹豫不决的。产生这种迟疑的原因部分归于对诊断试剂临床使用的持续争议,以及生物标志物的临床使用并非是必需的。

3.5.6 投资的不确定性发展个体化用药的一个显著特征就是低回报率,由于目标药物的适用人群较少,因此会导致较低的销售收入。有利的一面是,这些药物允许较小人群的实验设计、较高的定价,同时还有较高的患者依从性,因而增加了药物的安全性和有效性,可能会抵消这种低回报率的担忧。但是药物与药物之间存在不同的投资和回报率,这种不确定性可能会持续一段时间。

简言之,面对个体化用药的诸多挑战,如何加快新药研发进程,提高药物的疗效,提高临床通过率,减少风险及成本是每一位研究者、临床医师和监管部门需要共同应对的问题。此外,个体化用药的规范化和标准化势在必行,而这一目标的实现依赖于社会各界和政府部门的关注和重视,这一过程可能漫长而复杂。

4 展望由于药物基因组学不是以发现新基因、探明疾病的发生机制和预见发病风险为目的,而是利用已知的基因组学理论, 研究遗传因素对药物反应的影响, 或者说是以药

物效应和安全性为主要目标, 研究药物动力学和药效学差异的基因特征, 以及基因变异所致的不同个体对药物的不同反应,药物基因组学将从根本上改变药物临床治疗模式和新药研发方式[12]。药物基因组学经过十几年的发展,在药物代谢、转运和药理作用的基因多态性的研究有很大的进展。在有些药物上有重大突破,如氨基糖苷类的耳聋问题,但更多的药物研究还都处在起步阶段,有待于更加深入的研究[1]。相信随着病理、药理机制研究的深入、药物基因组学研究方法及新技术的不断的完善,以及个体化用药基因芯片的研发,不久的将来,很多药物都可以实现以基因为导向、“量体裁衣”式的个体化用药治疗模式,使临床用药更具针对性、高效性和安全性,实现治疗学上按基因选药的个体化用药的飞跃。

参考文献

[1]李宁周. 药物基因组学对临床个体化用药的指导作用[J]. 中国中医药咨讯, 2010,2(18):103-105.

[2]周帆,辛华雯.药物基因组学与个体化治疗[J].中国药师,2011,14(11):1674—1676.

[3] 李自钊,周慧君,苏莉,等. 艾滋病的个体化用药与药物基因组学研究进展[J]. 中华实验和临床病毒学杂志,2010,24(5):392-393.

[4]肖女,盖丽,王友玫,等. 药物基因组学在药学中的应用[J]. 西南军医,2013,15(6):634-636.

[5]林阳,杜海燕,谭莉,等. 药物个体化治疗研究进展[J]. 中国医药,2014,9(11):1721-1725.

[6]徐徕,杜文民,游开铭,等.我倒药害事件保险救济制度研究[J].上海金融,2010(1 1):32—36.

[7]郭建曼,张蕊,郭瑞臣.药物基因组学与个体化治疗和药物J临床评价[J].药学研究,2013,32(7):373.378.[8] 2国家食品药品监督管理总局.国家药品良反应监测年

度报告(2013年)[EB/OL].(2014—05—14)[2014—10—15].http://www.sda.gov.cn/W S01/CL0078/99794.htm1.

[9] Tan D.Frontier in Pathology:LC24—1 molecular

diagnosis and personalized medicine of colorectal can cer[J].Pathology~2014,46(Suppl 2):S15.

[10]张伟国,樊慧蓉,刘昌,等.个体化用药时代的新药研发

[J].药物评价研究,2015,38(1):1-7.

[11] Food& Drug Admin.Paving the way for personalized

medicine:FDA's role in a new era of medical product development [EB/OL].(2013-10—01) [2014—10—15].http://www.fda.Gov/downloads/ScienceResearch/Special Topics/Personalized Medicine/UCM37242 1.pdf.

[12]布福俭, 王兆玲. 药物基因组学与合理用药[J]. 齐鲁药

事,2010,29(8):486-488.

专业进展——药物基因组学

专业进展——药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 埃索美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。 药物进入体内方式除被动扩散外,细胞的主动转运发挥着非常重要的作用。 例:

个体化医疗的现状与未来

个体化医疗的现状与未来 43209307 徐慧 【摘要】 现阶段,个体化医疗渐渐成为人们谈论的重点,什么是个体化医疗,怎么实现个体化医疗也牵动了不少人的心。通俗的来说,就是考虑个体的差异,对于不同患者,或是同一患者的不同阶段,采取最合适的治疗方法。研究个体化医疗主要有两个方向,即基因组学和蛋白质组学。基因组学又包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学。而蛋白质组学集中于动态描述基因调节,对基因表达的蛋白质水平进行定量的测定,鉴定疾病、药物对生命过程的影响,以及解释基因表达调控的机制。但是在现阶段,个体化医疗的理论意义大于实际意义。现在就利用这些基因进行疾病的诊断和预测,显然为时过早。尽管如此,个体化医疗还是被匆匆推向了市场,这样造成了许多不利的影响。 【关键词】个体化医疗基因组学蛋白质组学基因检测生物芯片 【参考文献】 王哲,个体化医疗,万里长征才走了一步[J],健康管理,2010(10):37-43 童岱,中国基因歧视第一案[N],北京科技报,2010-8-11(05) 刘冲,个体化医疗[J],日本医学介绍,2006(02):22-28 李德良,基因芯片技术在药物研究中的应用[J],国外医学.药学分刊,2003(01):13-20 李峰,季绍良,记忆卡—个性化医疗的通行证[J],医药世界,2001(5):33-37 【正文】 现阶段,“个体化医疗”这一个词越来越流行,这一学期我也选修了“个体化医疗的现状与未来”这一研讨课程,以下就我自己的理解与学习发表一些观点。 一、个体化医疗的基本概念 从定义上来说,个体化治疗(individualized drug therapy) 是以每个患者的信息为基础决定治疗方针,从基因组成或表达变化的差异来把握治疗效果或毒副作用等应答的个性,对每个患者进行最适宜药物疗法的治疗。通俗的来说,就是考虑个体的差异,对于不同患者,或是同一患者的不同阶段,采取最合适的

个体化用药基因检测

个体化用药基因检测 临床意义:药物反应的个体差异是药物治疗中的普遍现象,也是临床药物治疗失败与不良反应发生的重要原因。其中各种药物相关代谢酶的基因单核苷酸多态性(SNP)成为影响患者药物治疗有效性及毒副反应的重要因素之一。明确患者基因多态性(SNP)是药物精准治疗的前提。目前为止,美国FDA已批准了有约140个需要基因信息指导才能准确治疗的药物,CFDA也推荐卡马西平等药物通过筛查基因避免发生诸如表皮剥脱性皮炎严重不良反应。仁济医院检验科为更好地服务于临床,开展基于患者基因SNP的个体化用药基因检测项目。具体个体化用药基因检测项目见“检验信息-临床分子诊断菜单”。 采血时间:周一至周六门诊时间 检测时间:周一至周五 报告时间:5个工作日 高敏HBV-DNA(检测下限20 IU/mL)检测

临床意义:为了满足临床对乙肝患者病毒DNA基线水平评估、药物疗效与耐药监控、治疗终点判定及治疗后复发的早期检测。检验科开展高敏乙肝病毒DNA (高敏HBV-DNA)检测。高敏HBV-DNA检测灵敏度高(检测下限20 IU/mL),线性范围宽(20 – 109 IU/mL),核酸提取、纯化、加样实现全自动化操作,降低人为误差,提高检测准确性。检验过程从核酸提取开始加入内标,全程监控(提取+扩增),防止假阴性。 采血时间:周一~周六 检测时间:周一~周六 报告时间:3工作日 高通量基因测序产前筛查(胎儿非整倍体无创产前基因检测) 临床意义:仁济医院是国家卫生计生委批准的“高通量基因检测技术进行产筛与疾病诊断”试点单位,为了满足临床诊断需求,检验科和妇产科联合在国家卫生计生委规范要求下开展新项目“高通量基因测序产前筛查”的检测。 无创胎儿染色体非整倍体产前检测项目(简称无创DNA)是筛查胎儿染色体疾病,降低出生缺陷的项目,是一种精确的筛查技术,准确率为99%。本项目定性检测孕周为12-24周的高危孕妇(如产前常规筛查胎儿染色体异常高风险、35岁以上高龄孕妇等)所孕育胎儿的染色体非整倍体(13-三体、18-三体、21-三体)。通过抽取孕妇外周血(8-10mL),通过高通量测序平台对母亲外周血游离胎儿

药物基因组学相关大数据库

药物基因组学数据库 1、Drugbank .drugbank.ca/ 2、dgidb https://www.360docs.net/doc/a311318289.html,/ 3、pharmGKB https://https://www.360docs.net/doc/a311318289.html,/ 4、cancercommon cancercommon./ 5、ChEMBL https://https://www.360docs.net/doc/a311318289.html,/chembldb/ 6、mycancergenome https://www.360docs.net/doc/a311318289.html,/ 7、TTD https://www.360docs.net/doc/a311318289.html,.sg/group/cjttd/ 8、guidetopharmcology https://www.360docs.net/doc/a311318289.html,/ 9、clearityfoundation https://www.360docs.net/doc/a311318289.html,/ 10、CIViC https://https://www.360docs.net/doc/a311318289.html,/#/home 11、DoCM https://www.360docs.net/doc/a311318289.html,/ 1 Drugbank 药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,包括超过800个FDA认可的小分子和生物技术药物,以及超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物相互作用预测和普通药学教育。DrugBank可以在www.drugbank.ca使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预

有关药物基因组学的看法

有关药物基因组学的看法 药物基因组学是以药物效应和安全性为主要目标 ,研究药物体内过程差异 的基因特性,以及基因变异所致的不同病人对药物的不同反应 ,从而研究开发新的药物和合理用药方法的一门新学科。它是基于功能基因组学与分子药理学,从基因水平研究人类个体对药物效应不同的分子机理的学科。药物基因组学的创立,为研究高效、特效药物开辟了新的途径,为患者或特定人群寻找合适的药物及适宜的用药方法。随着1997法国成立了世界第一家独特基因与制药公司和2003 完成了人类历史上每个人的基因都是来自于父母,除了少部分的变异,大部分是一成不变的,由于很多人都会存在某些地方的基因缺陷,所以患上某些疾病的几率会比正常人大很多。而药物基因组学就是针对某个人或某类人专门设计出的药物,从而治疗这些人得上的特有的疾病。王老师曾在课堂上说过有关于东亚人种和欧美人种对于消化牛奶上的区别,并认为东亚人缺少充分消化牛奶的基因,并且以自身举例说喝了牛奶以后特别不舒服。我认为这就是关于基因组差异的一个具体体现。第一个人类基因组序列的测定和图谱的绘制。药物基因组学也走上了快速发展之路。 下面,我想说两点,一是药物基因组学其他科学的关系。二是药物基因组学和新药开发的关系。 一、药物基因组学其他科学的关系 药物基因组学与药物遗传学。药物基因组学虽然起源于药物遗传学,但两者在诸多方面有所不同,要表现在:1研究范畴:尽管两者都是研究基因的遗传学变异与药物反应关系的学科, 但药物遗传学主要集中于研究单基因变异, 特别是药物代谢酶基因变异对药物作用的影响。而药物基因组学除了覆盖药物遗传学研究范畴外,还包括与药物反应有关的所有遗传学标志,药物代谢靶受体或疾病发生链上诸多环节。2应用领域:一般来说,药物基因组学可应用于从药物发现、开发到临床应用的各个领域,较药物遗传学更广。 药物基因组学与基因组学相关学科。人类基因组学研究包括系统地测定和鉴别所有人类基因及基因产品,分析人类基因遗传学变异及不同基因在不同健康或疾病状态下的表达等。药物基因组学利用基因组学研究技术和方法,研究具有不同基因特征人群对药物治疗的反应,它是基因组学在药物开发和药物治疗学领域

基因检测基因分型指导临床个体化用药

基因分型检测指导个体化用药 据联合国世界卫生组织统计,全球死亡患者中三分之一是死于不合理用药,而非死于自然疾病本身。我国卫生部药品不良反应监测中心的数据为:住院病人中,每年约有19.2万人死于药品不良反应;家庭用药不良反应需要住院治疗的病人则多达250万人。 人们对药物毒副作用不重视是药物不良反应的重要原因。处方中的剂量多是常规剂量,对患者来说未必准确,没考虑个人代谢耐受因素,长期过量用药,很可能导致慢性药物中毒。 基因组的多态性是导致药物反应多态性的重要因素。实际上,每个人有自己特有的药物代谢基因,决定着药物的代谢和耐受剂量,只有根据自己的耐受剂量服药,才是最合理的安全剂量。进行药物代谢相关基因型检测,合理调整用药剂量,使长期用药更安全,毒副作用更小,效果更好。 药物基因组学正是从已知基因对药物效应的影响,确定药物作用的靶点,研究从表型到基因型的药物反应个体多样性。从基因水平研究证明和阐述药物疗效以及药物作用的靶位、作用模式和毒副作用。揭示药物反应多态性这些差异的遗传特征,鉴别基因序列中的差异,并以药物效应及安全性为目标,研究各种基因突变与药效及安全性之间的关系。通过对药物疗效与安全性的遗传体质评估,减少药物毒副作用及耐药现象发生,实现“个性化用药”的目标。 我们第四军医大学药学系药物基因组教研室经过研究,已开发了结核病用药指导的基因检测,乙肝治疗药物拉米夫定、抗凝剂药物华法林以及铂类、5-氟尿嘧啶、巯基嘌呤类等肿瘤化疗药物的用药指导基因检测项目,倡导基于基因分型的个体化合理用药。同时还开发了人乳头瘤病毒筛查与宫颈癌预警项目。 1.结核病用药指导的基因检测: 近年来,结核分枝杆菌耐药现象日趋严重,大大削弱了抗结核药物的疗效。目前结核菌的耐药性问题已成为结核病疫情上升和难以控制的一个重要原因。研究表明,结核分枝杆菌基因中基因突变所引起的耐药性是结核分枝杆菌产生耐药的主要方式。多数导致结核分枝杆菌耐药的基因突变机理比较明确,异烟肼、利福平、乙胺丁醇是一线抗结核药物。kat G 基因的点突变与异烟肼耐药性密切相关,kat G 基

氯吡格雷个体化用药基因检测

氯吡格雷个体化用药基因检测 通过CYP2C19基因分型,指导氯吡格雷个体化用药,提高药物临床疗效,降低毒副作用。 临床研究证实,CYP2C19*2、*3、*17位点多态性影响氯吡格雷的代谢速率,从而影响药物的疗效。权威机构推荐: 2012年,中国国家食品药品监督管理局(CFDA )在氯吡格雷说明书中增添了药物基因组学意见, 指出CYP2C19慢代谢情况与氯吡格雷的作用降低相关。 美国FDA 、欧盟药品局(EMA )、日本药品与医疗器械管理局(PDMA )、加拿大健康局 (HCSC )强调CYP2C19慢代谢者使用氯吡格雷的疗效降低,发生副作用的风险增加。 2015年,国家卫计委个体化医学检测技术专家委员会发布《药物代谢酶和药物作用靶点基因检测技术指南(试行)》, 肯定了CYP2C19基因检测在氯吡格雷个体化用药中作用。检测技术:荧光定量PCR 探针法,技术成熟可靠。重复性高:批内及批间重复性均达95%以上。准确度高:探针引物特异性高,准确性达95%以上。 杭州中翰金诺医学检验所 地 址:浙江省杭州市余杭经济开发区兴国路519号电 话:4000 919 220 传真:0571-8902 8159网 址:https://www.360docs.net/doc/a311318289.html, 邮 箱:info@https://www.360docs.net/doc/a311318289.html, 注: * 表示用药建议仅供临床医生参考,不作为最终治疗依据,具体药物选择及用法用量请遵医嘱。1. SA Scott, K Sangkuhl, EE Gardner, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011,90(2):328-32. 2. Holmes D R, Dehmer G J, Kaul S, et al. Journal of the American College of Cardiology, 2010, 56(4): 321-341. 3. 丁力平, 胡桃红,马会利等. CYP2C19基因分型指导下的支架血栓治疗一例.中国心血管病研.2010,8(12):926-927 4. 4. 中华人民共和国国家卫生和计划生育委员会. 药物代谢酶和药物作用靶点基因检测技术指南(试行)概要[J]. 实用器官移植电子杂志, 2015, 3(5):257-267. 样本要求:EDTA 抗凝外周血 2ml 保存及运输条件:2~8℃低温保存、运输

药物基因组学

药物基因组学 PART 01 药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… PART 02 基因多态性 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 艾司奥美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。

阿司匹林用药指导的基因检测

阿司匹林用药指导的基 因检测 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

阿司匹林用药指导的基因检测 (阿司匹林抵抗基因筛查) 阿司匹林是治疗急性冠状动脉综合征和经皮冠状动脉介入术后抗栓的基础药物,广泛应用于心脑血管疾病一级和二级预防。临床发现部分患者尽管长期低剂量服用阿司匹林仍不能有效抑制血小板的活性,即阿司匹林抵抗,其发生率约50%~60%且存在明显种族差异性。研究表明,基因多态性在阿司匹林抵抗中起着重要作用,主要集中在 GPIIIaP1A1/A2、PAI-14G/5G和PEAR1基因多态性。GPIIIaP1A2是阿司匹林抵抗主要基因,该基因突变使得GPIIb/IIIa受体结构发生改变,使血小板之间发生交叉连接,导致血小板聚集。研究发现,发生阿司匹林抵抗患者携带P1A2等位基因的频率明显高于阿司匹林敏感患者,且P1A2/A2纯合突变型患者服用阿司匹林后疗效均不良。携带突变型P1A2等位基因患者行支架术后,其亚急性血栓事件发生率是P1A1纯合野生型患者的5倍,需要更高剂量的阿司匹林才能达到抗凝效果。PAI-1是血浆中组织纤溶酶原激活物的主要抑制剂,PAI-1基因研究较多是PAI-14G/5G插入或缺失多态性。4G等位基因与PAI-1血浆水平升高有关,导致血小板聚集趋势增加,导致心肌梗死和冠心病发生风险增加,携带4G 等位基因的患者比5G心肌梗死风险高5倍,需要更高剂量的阿司匹林。PEAR1GG等位基因对阿司匹林应答好,AA或AG基因型患者支架植入术后服用阿司匹林(或结合氯吡格雷),其心肌梗死和死亡率高。因此,建议在使用阿司匹林前检测GPIIIaP1A1/A2、PAI-14G/5G和PEAR1,临床药师将针对患者基因型对患者进行疗效预测,并对高风险患者提前干预,以降低患者用药风险,保障临床用药安全、有效。 该项目收费为1200元(医保、新农合报销),每个患者只需检测1次即可。临床医生可按照相应流程提出检测申请,并采用EDTA抗凝真空采血管(紫色帽头)采集外周静脉血2ml(无需空腹,无论是否用药,随时抽取血标本),检测人员将在2个工作日内出具基因检测报告,并提供个体化给药建议供临床参考。 目前我院在用的阿司匹林:

个体化用药基因检测报告单模板氯吡格雷等

XXXXXXXXXXXXXXX药剂科 脱氧核糖核酸(DNA)位点测定报告单 姓名:XXX 性别:女年龄:67 身高:体重:民族: 科室:心内科病历号:病床号:33 送检医生:XXXX 送检日期:.02.09 临床诊断: 冠状动脉粥样硬化、PCI术后 DNA序列测定结果:(氯吡格雷用药相关基因) 序号检测基因检测位点检测结果 1 CYP2C19* 2 681G>A(rs4244285)GG 2 CYP2C19* 3 636G>A(rs4986893)GG CYP2C19*1/*1野生纯合型 4 PON1 576 G > A (rs662) AA:PON1突变纯合型 检测结论:该患者CYP2C19酶为正常代谢型,酶活性表达正常,PON1基因型突变纯合型(AA),酶活性表达减弱。该患者PCI术后,行标准氯吡格雷治疗,1年后发生支架血栓的风险,比正常人高11.6倍,因此,从理论上认为该患者使用常规剂量(75mg/d)的氯吡格雷可能无法有效转化为其活性代谢产物,可能导致氯吡格雷抵抗,使得血栓形成风险增加。 个体化用药建议: (1)该患者采用氯吡格雷(75mg,qd)抗血小板治疗,可能无法发挥良好的抗血小板作用。因此,建议替 代使用新型抗血小板药物替格瑞洛;但应关注替格瑞洛所致呼吸困难。或给予氯吡格雷(75mg/d)、阿司匹林(100mg/d)和西洛他唑三联抗血小板治疗;或者将阿司匹林剂量增加至200~300mg/d;或停用氯吡格雷,换用其他抗血小板药。 (2)调整给药方案后,应检测血小板聚集率或血栓弹力图以评价临床疗效。 (3)治疗期间应密切关注患者有无皮肤黏膜及消化道等部位出血的发生,若出现则应调整给药方案。 (4)在应用氯吡格雷时,应避免使用CYP2C19酶抑制药,如奥美拉唑、兰索拉唑、埃索美拉唑等,因其可 抑制CYP2C19酶,导致CYP2C19酶活性进一步减弱,使得氯吡格雷生物转化进一步下降,而降低氯吡格雷疗效。如必须使用,可替代使用其他对氯吡格雷作用影响较弱的药物如雷贝拉唑或H2受体阻断剂如雷尼替丁等。 (5)合并使用他汀类降脂抗炎药物,应避免使用阿托伐他汀、辛伐他汀等药物,体外研究表明,阿托伐他 汀及其体内代谢产物阿托伐他汀酯均对氯吡格雷有竞争性抑制作用,可降低氯吡格雷生物转化达90%,并呈浓度依赖性,可能会导致氯吡格雷疗效进一步减弱。可选择对氯吡格雷影响较弱的瑞舒伐他汀钙或氟伐他汀钠。 (6)上述建议仅供临床医生参考,具体使用还应该结合临床实际情况来制定和调整用药方案。 说明:氯吡格雷为前体药,主要依赖于CYP2C19代谢生成活性代谢产物,发挥抗血小板疗效。CYP2C19基因存在多态性,其酶有四种不同的代谢类型:快代谢型(RM,*1/*1);超快代谢型(UM,*1/*17,*17/*17);中间代谢型(IM,*1/*2,*1/*3,*17/*2,*17/*3);慢代谢型(PM,*2/*2,*2/*3,*3/*3)。常规剂量的氯吡格雷在慢代谢型患者中产生的活性代谢物减少,抑制血小板聚集作用下降,形成血栓风险增加;在超快代谢型患者中产生活性代谢产物增加,抑制血小板聚集作用增强,出血风险增加。2010年美国FDA修改的氯吡格雷说明书中黑框警示:CYP2C19基因型检测结果应作为医生调整治疗策略的参考。此外,ABCB1-3435C>T为氯吡格雷第二独立风险因素,突变型(TT型)肠道吸收减少,心血管事件发生率明显高于野生型(CC型)。最新研究证实,PON1在氯吡格雷生物转化上起着关键作用,PON1-576G>A基因多态性可影响PON1活性表达,是氯吡格雷疗效重要预测因子。与野生型(GG型)比较,GA型和AA型氯吡格雷抵抗风险增加,其半年后发生支架内血栓风险亦明显增加。

2016国家自然科学奖推荐项目:个体化医学的药物基因组学基础研究

国家自然科学奖推荐书 ( 2016年度) 一、项目基本情况 二、推荐单位意见

三、项目简介 基因变异不但是个体传统表现型千差万别的重要原因,也是长期以来导致临床药物不良反应、疗效不好乃至治疗失败的重要原因。针对这一重大实践课题,项目展开了系统深入研究,历时30余年获得以下成果。。 一、通过万人以上样本查明了7个细胞色素P450药物代谢酶活性群体分布特征。对30多种相关基因变异及相关单倍型的群体分布及其对活性影响规律、不同CYP450代谢酶的基因构型对30多种药物的代谢动力学特征及其相关在体与临床实践意义进行了全面系统的阐述。克隆了一个新的药物代谢酶功能多态基因,提出了“基因剂量效应”理论。这些成果为我国现代药物个体化精准治疗提供了重要的科学基础。 二、查明了药物转运体BCRP、ABCC1和OATP1B1基因型在中国人群中的分布特征及对重要药物瑞苏伐他汀、普伐他汀、那格列奈药代和药效动力学的影响;发现乳腺癌耐药蛋白BCRP 421C>A基因多态性可显著影响瑞苏伐他汀的血药浓度,是乳腺癌耐药蛋白基因变异对药物反应性差异影响的首篇报道,为他汀类调脂药物的“胆固醇逃逸”现象提供了新的解释。 三、以β1肾上腺素受体(β1-AR)、核转录因子7类似物2基因(TCF7L2)和ATP敏感性钾通道 (KATP) 亚单位基因 (KCNJ11) 为代表,查明了中国人群中上述药物作用靶点基因型的分布特征,发现这些基因的遗传多态性可显著影响美托洛尔或瑞格列奈的药物效应,为阐明药物作用靶点基因多态性导致药物反应个体差异的遗传机制提供了科学依据。 所列8篇代表性论文被他引423次(SCI他引313次),其中5篇发表于药理学领域权威期刊Clin Pharmacol Ther;20篇核心论文被他引1331次(SCI他引895次),单篇最大他引172次,并被JAMA、Physiol Rev和Nat Genet等国际权威期刊引用和高度评价;出版教材和专著5部,填补了我国药物基因组学的学科空白;在理论成果支撑下成功研制了我国第一张针对具体疾病的“高血压个体化用药基因芯片”并获得专利授权,被CFDA批准为III类医疗器械;应邀成为国际遗传药理学倡导组织(PGENI)全球7大中心之一;在中华医学检验分会的倡导下,国家卫计委在项目完成单位建立了全国首批(共3家)个体化医学检测试点单位和唯一个体化医学检测培训基地。 研究成果奠定了我国药物基因组学的基础,开创了我国个体化医学的时代,同时也引领了我国药物基因组学和转化医学的发展。

药物基因组学与个体化用药

药物基因组学与个体化用药 王晓会12生A 124120035 (云南师范大学生命科学学院,云南昆明650500) 摘要:药物基因组学是人类开始功能基因组学研究后出现的一门新兴的交叉学科,它阐述了从基因水平研究基因序列的多态性与药物效应多样性之间的关系.药物基因组学应用于临床药学是一个必然的趋势。将药物基因组学应用于临床药学是合理用药深入发展乃至实现个体化用药的必经之路. 对于深入解释药物治疗的个体差异、减少药物不良反应、提高药物疗效等有重大意义。药物基因组学作为一门新兴的学科, 致力于研究药物代谢、药物转运和药物靶分子的基因多态性与药物作用, 包括疗效和毒副作用之间的关系。其在药学研究中, 特别是药物作用机制、药物代谢、提高药物疗效及新药研发等方面发挥重要作用。本文通过阅读并分析近年国内公开发表的有关药物基因组学的相关文章,根据有关文献, 综合分析、归纳总结了药物基因组学的定义、研究方法、发展和与个体用药的关系,同时阐述了实现个体化用药的基本条件、优点以及个体化用药现阶段的概况、面临的挑战等。 关键词:药物基因组学;个体化用药 1 药物基因组学 1.1 药物基因组学的概念

药物基因组学是基因功能学与分子药理学的有机结合,是研究基因序列变异及其药物不同反应的科学,以药物效应及安全性为目标,运用已知的基因理论研究各种基因突变与药效及安全性的关系,药物基因组学强调个体化。通过它可为患者或者特定人群寻找合适的药物及恰当的剂量,改善病人的治疗效果[1]。药物基因组学的核心是药物反应(药酶)的遗传多态性,宗旨是实现用药个体化,以求得到最佳疗效和最少不良反应。由此可见,药物基因组学研究方法有别于一般的基因组学,它并不是通过研究新的基因来寻找疾病的发病机理,是通过已知基因组学理论来探讨基因因素对药物效应的影响,以明确药物作用靶点,从而准确预测患者对临床治疗反应[2]. 1.2 药物基因组学研究 药物遗传学研究发现人体对药物的反应性与基因多态性存在极大关联,参与编码药物代谢酶、转运体、受体等基因的多态性能明显影响药物不良反应发生的概率,并改变药物疗效,导致药物“低代谢”或“超速代谢”表型发生,并在群体中构成一定比例。例如细胞色素酶P450(CYP)参与了B受体阻滞剂、抗抑郁药、抗癌药等重要药物代谢途径,其基因多态性与个体问药物反应有极显著的相关性。以药物遗传学和人类基因组学为基础发展起来的药物基因组学,整合基因分型、DNA测序等完善的分析技术和生物信息学方

基因检测与用药

基因与用药指导新用药时代 科学的发展让许多不可能变为了可能,攀月登空,潜海游龙。如今我们身边充斥着诸多高 科技的元素,基因——DNA更是这其中耀眼的明星。日常我们听到的转基因大豆、转基因 动物、DNA眼霜。这些看似高科技外衣下的产品,使我们越来越习惯于听说基因的消息, 那基因DNA到底离我们有多远呢? 平日老百姓生活最普通的一部分,感冒发烧,到医院拿点药,或者干脆自己到药店买点儿 药。好了也便好了,不好只能归咎于“病毒性的”。遇到大病,医生幵药也是按照常规处 方,摸着石头过河。患者更是糊里糊涂,听大夫的便是。至于好不好,好到什么程度,那 只能说个人差异了。 岂不知,这差异就体现在基因上,而这吃药也是有讲究的。我们的基因决定了我们吃什么 药管用,吃什么药不管用。正确合理的用药是未来个体化医疗的重要组成部分。据世界卫 生组织统计,全球死亡患者中,1/3是死于不合理用药,而非死于自然疾病本身。 “基因指导用药”这个概念并不等同于一般意义上的“抗生素耐药”。后者是针对侵害人体的细菌而言,抗生素是一类能够破坏细菌生理结构或生长代谢的物质。 细菌通过不断的优胜劣汰以抗拒抗生素对它们的杀灭,导致耐药菌株队伍不断壮大,这导致了细菌耐药性的出现,并且这种耐药形势在抗生素滥用的情况下不断恶化,以至于出现 了“超级病菌”。 “基因指导用药”则是针对我们每个人先天的遗传基因而言,在一般情况下,基因是伴随 我们一生不变的,上面提到医生常规用药,同样的病、同样剂量的药,不同患者服用后疗 效可能大相径庭,比如:高血压,据不完全统计,我国现有高血压病人约2亿。高血压是心肌梗死、脑卒中发病的重要危险因素,高血压每年在全球造成的死亡超过700万人,也就是每分钟约有13个人因高血压而与世长辞。很多高血压患者有过用药、疗效不佳、换药的经历。为什么同是高血压,同样的药却结果不一样呢?答案是:基因。基因决定了一 个人吃何种药有效、吃何沖药无效,甚至有不良反 应。根据现有研究表明,部分抗高血压的药物降压疗效及不良反应的个体差异主要是因为 相关药物的代谢酶、转运体和受体的基因多态性所致。临床常用抗高血压药物包括利尿剂、13-受体阻滞剂(如美托洛尔、卡维地洛等)、钙离子拮抗剂、血管紧张素转换酶抑制剂(ACE-I)、血管紧张素受体拮抗剂(ARB)等,其中大部分抗高血压药物可能因为基因多态性差异,致使不同患者个体间出现降压效应的差异。 患者当发现患上高血压时,应到相关医院咨询,医生幵具化验单检测上述基因,并在医生 指导下合理选择药物,进行有针对性的用药,以免贻误病情或造成不必要的经济损失。 另一个重要的基因指导药物的代表是硝酸甘油。硝酸甘油用于心绞痛的治疗及预防,主要 通过生成一氧化氮(NO)而起血管扩张作用。ALDH2 (线粒体乙醛脱氢酶2)是使硝酸甘油生

麻醉领域的个体化用药,药物基因组学(Evan Kharasch)

Pharmacogenetics in Anesthesia Evan D. Kharasch, M.D., Ph.D. St. Louis, Missouri 302 Page 1 Pharmacogenetics (or pharmacogenomics) aims to understand the inherited basis for variability in drug response. The promise of pharmacogenetics has been a change from “one drug and dose fits all” to individualized predictive medicine, or “the right drug at the right dose in the right patient”. Anesthesiology as a specialty played a key role in developing pharmacogenetics. Prolonged apnea after succinylcholine, thiopental-induced acute porphyria, and malignant hyperthermia were clinical problems of the 1960’s whose investigation helped craft the new science of pharmacogenetics. Today we perhaps take for granted the knowledge that they are genetically-based problems, due to variants in pseudocholinesterase, heme synthesis and the ryanodine receptor, respectively. This review will address basic principles of pharmacogenetics and their application to drugs used in anesthetic practice. The term pharmacogenetics was originally defined (1959) as “the role of genetics in drug response”. Since the science of pharmacokinetics (drug absorption, distribution, metabolism, excretion) evolved earlier than pharmacodynamics, early pharmacogenetic studies addressed mainly pharmaco-kinetics. Application (fusion) of the genomic revolution and associated technologies to pharmaco-genetics spawned pharmacogenomics. Pharmacogenetics has been used by some in a more narrow sense, to refer only to genetic factors which influence drug kinetics and dynamics (drug receptor actions), while pharmacogenomics has been used more broadly to refer to the application of genomic technologies (whole-genome or individual gene changes) to drug discovery, pharmacokinetics and pharmacodynamics, pharmacologic response, and therapeutic outcome. Nonetheless, many consider this distinction unimportant and use the two terms interchangeably, as will this review. BASIC CONCEPTS A polymorphism is a discontinuous variation in a population (a bimodal or trimodal distribution). It is different than simple continuous variability (i.e. a unimodal population distribution, even if quite wide). A genetic polymorphism is the presence of multiple discrete states (i.e. for a particular trait) within a population, which has an inherited difference. The complete human genome consists of approximately 3 billion base pairs, which encode approximately 30,000 genes. A single nucleotide polymorphism (SNP) is a variation in the DNA sequence which occurs at a specific base. Polymorphisms are relatively common, occurring by definition in ≥1% of the population, while mutations are less common, occurring in <1%. Only 3% of DNA consists of sequences which code for protein (exons). Other portions of the DNA include promoter regions (near the transcription initiation site), enhancer regions (which bind regulatory transcription factors), and introns (DNA sequences which do not code for protein). After exons and introns are transcribed, the intronic mRNA is excised and the exonic mRNA is spliced together to form the final mature mRNA, which then undergoes translation into protein. SNPs are frequent, occurring in approximately 1:100-1:1000 bases. SNPs and mutations may occur in the coding or noncoding regions of the DNA. Since most occur in the latter, they are usually synonymous (or silent, having no effect on proteins), although intronic changes and promoter variants can change protein expression. Non-synonymous SNPs result in a change in an amino acid. A conservative change results in a similar amino acid that does not alter protein function, while a non-conservative change yields an amino acid which alters protein structure or function. These latter SNPs may be clinically significant. SNPs are not the only events which can cause RNA and protein changes; others are deletions, insertions, duplications, and splice variants, however these are not inherited. Multiple SNPs can occur in the DNA which encodes a particular protein. A haplotype is a set of closely linked alleles or DNA polymorphisms which are inherited together. While SNPs are important, haplotypes are more clinically relevant. Polymorphisms can be classified at the DNA locus (which depicts the normal “wild-type” and the altered base pair; for example the mu opioid receptor gene polymorphism at base pair 118 which codes for changing an adenine nucleotide to a guanine is abbreviated as A118G, or 118 A>G); at polymorphism changes the amino acid at position 40

药物基因组学浅析

药物基因组学浅析 药学系曾邦国陈曦 摘要:药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科。本文综述了药物基因组学的研究方法和手段以及在合理用药、新药开发等多方面的应用情况,并介绍了药物基因组学产品。 关键词:药物基因组学;合理用药;新药开发。 2011年11月17-18日,第一届全国药物基因组学大会暨中国药理学会药物基因组学专业委员会举行了第一次全体会议。这标志着标志着我国药物基因组学和个体化医疗的研究和应用迈入一个新的发展阶段。 1 药物基因组学的定义及其由来 药物基因组学区别于一般意义上的基因学,它不是以发现人体基因组基因为主要目的,而是相对简单地运用已知的基因理论改善病人的治疗。也可以这么说,药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科;主要阐明药物代谢、药物转运和药物靶分子的基因多态性与药物效应及不良反应之间的关系,并在此基础上研制新的药物或新的用药方法。 2 药物基因组学的研究方法和手段 目前药物基因组学的研究方法有:第一,构建全基因组基因多态性图谱;第二,发现各种疾病和各种药物反应表现型差异与基因多态性的统计关联;第三,根据基因多态性对人群或患者进行疾病易感性和药物反应分类,并开发这种诊断试剂盒;第四,在临床上,针对易感人群进行疾病防治,针对不同药物反应的患者进行个性化治疗。[3]药物基因组学通常采用两种研究手段。第一种即“候选基因”策略,第二种是基因组范围内遗传标志物和药物反应表型之间的关联研究。“候选基因”策略,主要是在给定某一药物的条件下,比较有反应者及无反应者靶基因多态性出现的频率。该方法的一个局限性是候选基因的选择需以给定药物的假定作用机制和(或)所治疗疾病的病理生理学为根据。因此,该方法的成功建立在上述假设的真实性上,且不能鉴定那些根据药物作用或疾病生物学难以预测的新基因。基因组范围内遗传标志物和药物反应表型之间的关联研

相关文档
最新文档