全等三角形复习课教学设计

合集下载

全等三角形全章复习(二) 优秀教学设计

全等三角形全章复习(二)  优秀教学设计

全章复习课(二)
【教学目标】:
(1)系统归纳整理多边形有关的知识、方法、数学思想,沟通知识、方法间的联系,形成多边形知识板块的整体结构,提高学生分析问题和解决问题的能力;
(2)复习多边形的有关概念,了解多边形的对角线条数规律;
(3)灵活运用多边形内角和与外角和解决多边形的有关计算问题;
(4)掌握用正多边形拼地板的基本方法,设计镶嵌图案。

【教学重点】:多边形的有关计算问题。

【教学难点】:结合方程等知识解决多边形的计算问题。

【教法、学法设计】:讲练结合。

中考数学全等三角形的复习课教学设计

中考数学全等三角形的复习课教学设计

全等三角形复习〔第1课时〕泰安六中苏晓林一、教材分析:本节课是全等三角形全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形概念,理解性质、判定与运用;其次对学生所学全等三角形知识进展查缺补漏,再次通过拓展延伸以习题训练,提高学生综合运用全等三角形解决问题能力,并对中考对全等三角形考察方向有一个初步感知,为以后复习指明方向。

在练习过程中,要注意强调知识之间相互联系,使学生养成以联系与开展观点学习数学习惯.二、学情分析在知识上,学生经历全等三角形全章学习,对全等三角形性质、判定以及应用根本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何根底与工具也是中考必考内容。

对全等三角形综合应用以及全章知识脉络形成正是以上各种能力综合表达,教学中要充分发挥学生主体作用,通过复习学生在全等三角形计算、证明对学生推理能力、发散思维能力与概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形概念,掌握三角形全等条件与性质;会应用全等三角形性质与判定解决有关问题.2.在题组训练过程中,引导学生总结出全等三角形解题模型,培养学生归纳总结能力,使学生体会数形结合思想、转化思想在解决问题中作用.3.培养学生把已有知识建立在联系思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。

四、教学重难点重点:全等三角形性质与判定应用.难点:能理解运用三角形全等解题根本过程。

五、教法与学法以“自助探究〞为主,以小组合作、练习法为辅;在具体教学活动中,要给予学生充足时间让学生自主学习,先形成自己全等三角形知识认知体系,尝试完成练习;给予学生充足空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课教学目.六、教具准备多媒体课件,七、课时安排2课时八、教学过程本节课是全等三角形全章复习课,本节课我主要采用学生“练后思〞模式,帮助学生搜整?全等三角形?全章知识脉络,建构知识网络,通过根底训练、概念变式练习、典例探究、拓展应用等活动进展查缺补漏与拓展延伸;借助“根底了题目-变式题目-典型题目-拓展题目〞五个梯次递进教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维方向,实现课堂教学最优化。

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

°.
【知识点】三角形全等的性质;三角形内角和定理. 【思路点拨】由△ABC≌△A′B′C′,其中∠C′=24°可得∠C=24°,所以∠ B=180°-∠A-∠C=180°-36°-24°=1200 【解答过程】解:∵△ABC≌△A′B′C′, ∴∠C=∠C′=24° ∵∠A+∠B+∠C=1800
∠A=36° ∴∠B=180°-∠A-∠C=180°-36°-24°=1200 【答案】1200 14.如图 BC=EF,AC=DF,要证明△ABC≌△DEF,还需添加一个条件: (1)若以“ ”为依据,需添加的条件是 ; (2)若以“ ”为依据,需添加的条件是 .
【考点】全等三角形的判定与性质. 【思路点拨】延长 BA 交 CE 的延长线于 F,证明△BCE≌△BFE,由全等可证 CE=EF, 再证△ACF≌△ABD,可得 BD=CF 【数学思想】截长补短. 【解答过程】 证明:延长 BA 交 CE 的延长线于 F, ∵BE 平分∠ABC,CE⊥BE, ∴△BCE≌△BFE, ∴CE=EF, ∵在△ABC 中,∠BAC=90°,CE⊥BE, ∴∠FCA=∠ABD, 又∵ AB=AC ∠FAC=∠BAD ∴△ACF≌△ABD, ∴BD=CF, ∴BD=2CE.
2
三、章末检测题
一、选择题 (每题 4 分,共 48 分)
1.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍
然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
B.BC=EF
C.∠ACB=∠F
D.AC=DF
【知识点】三角形全等的判定 【思路点拨】已知有一条边和相邻的一个角对应相等,可以添∠A=∠D(依据 ASA) 或∠ACB=∠F(依据 AAS),也可以添边 BC=EF(依据 SAS) 【解答过程】选项 A 的依据为 ASA; 选项 B 的依据为 SAS;选项 C 的依据为 AAS; 选项 D 不能判断两个三角形全等. 【答案】D 2.下列说法正确的是( ) A.周长相等的两个三角形全等; B.有两边和其中一边的对角对应相等的两个三角形全等; C.面积相等的两个三角形全等; D.有两角和其中一角的对边对应相等的两个三角形全等. 【知识点】三角形全等的判定和性质. 【思路点拨】三角形全等的判定方法有:SSS;SAS;AAS;ASA;HL. 【解答过程】选项 A 周长相等不能判断三角形全等;选项 B 两边和一个角对应相 等,只能是两边和两边的夹角对应相等才能判定三角形全等;选项 C 面积相等的 两个三角形不一定全等;选项 D 对,依据为 AAS.

初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1《全等三角形判定的复习》教学设计教学目标1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。

2、通过变式练习提高学生的分析能力和解题能力。

学情分析本节课是在学生已经学习完了全等三角形的几种判定方法的基础上进一步通过一题多解、变式教学的措施促使学生对全等三角形判定方法有一个整体的认识。

教学重点1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。

2、通过变式练习提高学生的分析能力和解题能力。

教学难点能根据题意灵活利用所学知识进行解题。

教学过程一、回顾全等三角形的判定方法全等三角形的判定方法有种,它们分别是(填简称),其中直角三角形专用的是(填简称)。

二、“全等三角形的判定”对应练习(一)小组讨论,活用方法例1、已知:如图,AD=BE,AC=BC,CD=CE,请你试用不同方法证明:△AEC≌△BDC(二)题组训练,总结经验1.(A组)如图1,△ABC中,AB=AC,AD平分∠BAC,则依据 (填简称)可得到__________≌__________。

反思:此题第一个空还有其它答案吗?23图1 图2 2. (B 组)已知:如图2, ∠C=∠E ,∠1=∠2,AC=AE ,求证:AB=AD反思:你从此题得到了什么解题经验?3.(B 组)已知:如图,AB =CD ,AB ∥DC .求证:AD ∥BC , AD =BC反思:你从此题得到了什么解题经验?4. (C 组)如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,求证:PD =PE反思:你从此题得到了什么解题经验?(三)随堂小测1、(A 组)如图,已知AB=AD ,试用四种不同方法添加适当条件使得三角形全等。

(1)添加条件 后, 可判定△ABC ≌△ADC ,依据是 (填简称);(2)添加条件 后,可判定△ABC ≌△ADC ,依据是 (填简称);(3)添加条件 后,A B CD可判定△ABC≌△ADC,依据是(填简称);(4)添加条件后,可判定△ABC≌△ADC,依据是(填简称)。

全等三角形的复习课教学设计

全等三角形的复习课教学设计

全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。

教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。

内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。

二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。

2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。

3. 培养学生的空间想象力,提高学生的逻辑思维能力。

三、教学难点与重点重点:全等三角形的定义、性质及判定方法。

难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。

四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。

学具:练习本、彩笔、剪刀、胶水。

五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。

2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。

(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。

3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。

4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。

5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。

教师巡回指导,解答学生疑问。

6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。

六、板书设计板书内容:全等三角形的定义、性质、判定方法。

七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。

()b. 全等三角形的对应角相等。

()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计教学目标:1.知识目标:学生能够理解全等三角形的概念,并掌握全等三角形的判定方法。

2.能力目标:培养学生的逻辑推理能力和问题解决能力。

3.情感目标:培养学生对数学的兴趣,增强他们对数学的自信心。

教学重点和难点:1.重点:全等三角形的判定方法。

2.难点:学生掌握并运用判定方法进行实际问题的解决。

教学准备:1.教学材料:教科书、练习册、白板、彩色笔。

2.教学方法:讲授、互动、实践。

教学过程:Step 1 导入新知(10分钟)1.引入问题:请同学们回顾一下,什么是全等三角形?全等三角形有哪些性质?2.引导学生回答,并给出全等三角形的定义。

3.引入课题:本节课我们将复习全等三角形的判定方法,以及如何应用这些方法解决实际问题。

Step 2 示范教学(15分钟)1.教师给出两个全等三角形的形状,并解释这两个三角形相等的原因。

2.教师讲解全等三角形的判定方法,包括SSS判定法、SAS判定法、ASA判定法以及证明两组三角形全等的方法。

3.教师通过几个例题演示如何运用这些方法判定两个三角形是否全等。

Step 3 学生练习(20分钟)1.学生进行练习册上相关习题的解答,并在解答过程中运用全等三角形的判定方法。

2.部分学生上台讲解解题思路,并互相交流讨论。

Step 4 拓展运用(20分钟)1.学生分组合作,自选一个实际问题,并应用全等三角形的判定方法解决问题。

2.每个小组派一名代表上台展示解题过程和结果,其他小组进行评价和讨论。

Step 5 总结归纳(10分钟)1.教师与学生共同总结全等三角形的判定法,并强调每种判定法的使用条件和步骤。

2.教师提问学生,全等三角形的判定是一种证明方法,那么如何进行三角形全等的证明呢?Step 6 课堂作业(5分钟)1.布置课堂作业:完成练习册上的相关习题,同时要求学生用全等三角形的判定法证明一组三角形全等。

2.提醒学生写明解题思路和步骤。

教学反思:本节课通过引入问题、示范教学、学生练习、拓展运用以及总结归纳的多种教学手段,旨在帮助学生复习并掌握全等三角形的判定方法。

华师大版八年级上册第13章全等三角形复习课教学设计

华师大版八年级上册第13章全等三角形复习课教学设计
-邀请学生分享自己在学习全等三角形过程中的收获和感悟。
-对学生的表现进行点评,强调学习全等三角形的重要性。
2.教学目的:
-帮助学生巩固所学知识,形成知识体系。
-培养学生的归纳总结能力,提高学生的几何素养。
-激发学生学习数学的兴趣,增强学生的自信心。
五、作业布置
为了巩固学生对全等三角形知识的掌握,提高学生的应用能力和解题技巧,特布置以下作业:
1.强调作业完成的时间和质量,培养学生按时完成作业的良好习惯。
2.鼓励学生独立思考,遇到问题可以与同学讨论,培养合作学习能力。
3.注重作业反馈,教师应及时批改作业,给予评价和建议,帮助学生提高。
2.教学目的:
-激发学生的学习兴趣,引导学生关注全等三角形在实际生活中的应用。
-唤起学生对全等三角形相关知识点的回忆,为新课的学习做好铺垫。
(二)讲授新知
1.教学活动设计:
-对全等三角形的定义进行复习,强调全等三角形的含义和性质。
-详细讲解全等三角形的判定方法,如SSS、SAS、ASA、AAS等,结合具体实例进行分析。
-鼓励学生在课后进行自主学习和拓展阅读,提高学生的自主学习能力,拓宽知识视野。
四、教学内与过程
(一)导入新课
1.教学活动设计:
-通过展示一些生活中常见的全等三角形图案,如风筝、自行车三角架等,引起学生对全等三角形的好奇心和兴趣。
-提问:“同学们,你们知道这些图案有什么共同特点吗?它们在几何学中有什么特别之处?”
-通过小组讨论、合作解题,培养学生的团队协作能力和交流表达能力,同时也能够在讨论中发现问题、解决问题。
4.创设问题情境,激发学生的探究欲望。
-教学中应设计具有挑战性的问题,引导学生主动探究,培养学生的创新思维和解决问题的能力。

全等三角形复习课教案

全等三角形复习课教案

《全等三角形复习》教学设计市桥中学 数学科 梁仲宁一、教学目标1、 使学生能综合运用三角形全等的各种识别方法解题。

2、 让学生学会从多角度,多方位观察图形。

3、 培养学生将生活实际问题转化为数学问题去思考。

4、 培养学生合作交流,自主探究的能力。

二、教学重点与难点重点难点:三角形全等的各种识别方法的综合运用。

三、教具准备电脑、实物投影、相关课件。

四、教学过程设计 (一)知识回顾利用课件回顾三角形全等的各种识别方法。

(SSS 、SAS 、ASA 、AAS 、HL )(二)师生互动,熟悉全等三角形识别方法的基础应用1、投影以下图形,提供开放的教学平台,让学生自主编题与解题。

(图1) (图2) (图3)2、提醒学生注意发掘图中的隐含条件(公共边、对顶角、公共角)。

3、如有需要,教师对学生所编题目作出适当补充。

DCBAA BCDOOABCDE(三)全等知识在其他知识领域中的应用1、测量如图河的宽度,某人在河 的对岸找到一参照物树木A,视线AB 与河岸垂直,然后该人沿河岸步行7米 到O 处,进行标记,再向前7米到D 处, 最后背对河岸向前步行15米到C 点, 此时A ,O ,C 三点恰好在同一视线上, 则河的宽度为_________米.2、直线l 经过正方形ABCD 的顶点B , 点A 、C 到直线l 的距离分别是3和4,则 正方形的边长是______________.3、如图,AB 是⊙O 的直径,BC 是⊙O 的 切线,D 是⊙O 上一点,且∠ABD= ∠C=30°, 求证:ΔADB ≌ ΔOBC4、 将平行四边形纸片ABCD 按如图方式 折叠,使点C 与点A 重合,点D 落到D'处, 折痕为EF. 求证ΔABE ≌ΔAD'F(四)掌握全等的变换思想,深化提高5、 将两个全等的等腰直角三角板按如图所示摆放,令两个三角形的斜边在同一直线上,C 为两个三角形的公共顶点,连结AE 、DB ,试猜想AE 与DB 的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形复习课教学设计
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。

本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。

本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。

设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。

然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识
解决实际问题的能力。

3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。

(引出课题)。

师:识别三角形及等的方法有哪些?
生:SAS 、SSS、ASA、AAS 、HL。

复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽
AB,判定△OAB≌△OA/B/现由()
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。

学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。

师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。

生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。


例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一
对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD 的长度,看看EF与FD长度
关系如何?
生:基本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

学生先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH 师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。


师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学
生真正成为课堂主体。

2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

相关文档
最新文档