平面问题的有限元分析
合集下载
[工学]第4章 平面问题的有限元法-3刚度矩阵
![[工学]第4章 平面问题的有限元法-3刚度矩阵](https://img.taocdn.com/s3/m/25867d5d31b765ce050814be.png)
* 1 1 * 2 * 3 3
* T
F
T
* * * * * x x y * * y z z xy xy yz yz zx zx
({ } )
T
e T
R
e
(f)
而单元内的应力在虚应变上所做的功为
tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d)式及(4-16) 式代入上式,并将提到积分号的前面,则有
({ } )
e T
B D B
T
e
tdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程 即 e T e e T e T ({ } ) R ({ } ) B D B tdxdy 注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
R
e
B D Btdxdy
T
e
记
k B D B tdxdy
e T
(4-24) (4-25)
则有
R k
e e
e
上式就是表征单元的节点力和节点位移之间关系的刚 度方程,[k]e就是单元刚度矩阵。如果单元的材料是均质的 ,那么矩阵 [D] 中的元素就是常量,并且对于三角形常应 变单元,[B]矩阵中的元素也是常量。当单元的厚度也是常 量时,因 dxdy ,所以式(4-24)可简写为
1 2 4 7 11 3 5 8 6 9 10 15
12
13
14
图 4-6 a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 15
2
3
4
5
* T
F
T
* * * * * x x y * * y z z xy xy yz yz zx zx
({ } )
T
e T
R
e
(f)
而单元内的应力在虚应变上所做的功为
tdxdy
(g)
这里我们假定单元的厚度t为常量。把(d)式及(4-16) 式代入上式,并将提到积分号的前面,则有
({ } )
e T
B D B
T
e
tdxdy
根据虚位移原理,由(f)和(h)式可得到单元的虚功方程 即 e T e e T e T ({ } ) R ({ } ) B D B tdxdy 注意到虚位移是任意的,所以等式两边与相乘的项应该相等, 即得
R
e
B D Btdxdy
T
e
记
k B D B tdxdy
e T
(4-24) (4-25)
则有
R k
e e
e
上式就是表征单元的节点力和节点位移之间关系的刚 度方程,[k]e就是单元刚度矩阵。如果单元的材料是均质的 ,那么矩阵 [D] 中的元素就是常量,并且对于三角形常应 变单元,[B]矩阵中的元素也是常量。当单元的厚度也是常 量时,因 dxdy ,所以式(4-24)可简写为
1 2 4 7 11 3 5 8 6 9 10 15
12
13
14
图 4-6 a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 15
2
3
4
5
有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1
弹性力学与有限元分析-第四章 平面问题有限元分析及程序设计

有限单元法及程序设计
第四章 平面问题有限元分析及程序设计
§4.1 平面问题单元离散 §4.2 平面问题单元位移模式 §4.3 平面问题单元分析 §4.4 平面问题整体分析 §4.5 平面问题有限元程序设计
有限元网格划分的基本原则
• 网格数目 • 网格疏密 • 单元阶次 • 网格质量 • 网格分界面和分界点 • 位移协调性 • 网格布局 • 结点和单元编号 • 网格自动剖分
f
y
面力
f
f y
xy
xy
基本量和方程的矩阵表示
位移
d
u
v
物理方程 简写为
x y
xy
E
1 2
1
0
1
0
0 0
x y
1
xy
2
D
§4.2 单元位移模式
几何方程:
ux
v y
xvuyT
只要知道了单元的位移函数,就可由几何方程求出应变,再由物理 方程就可求出应力。
(1)位移模式必须能够反映单元的刚体位移; (2)位移模式必须能够反映单元的常应变;
必要条件
(3)位移模式尽可能反映位移的连续性;
u12x3y12x5 23y5 23y v4 5x6y46y5 23x5 23x
u0 1
v0 4
5 3
2
刚体平动
刚体转动
充分条件
u
v
u0 v0
y x
作业: P141 6-1
u12x3y N iuiNjujN m um
其中, N i 、N j 、N m 是系数,是 x、 y 的线性函数;
可以求得:
N i a i b ix ciy2A (i, j, m )
第四章 平面问题有限元分析及程序设计
§4.1 平面问题单元离散 §4.2 平面问题单元位移模式 §4.3 平面问题单元分析 §4.4 平面问题整体分析 §4.5 平面问题有限元程序设计
有限元网格划分的基本原则
• 网格数目 • 网格疏密 • 单元阶次 • 网格质量 • 网格分界面和分界点 • 位移协调性 • 网格布局 • 结点和单元编号 • 网格自动剖分
f
y
面力
f
f y
xy
xy
基本量和方程的矩阵表示
位移
d
u
v
物理方程 简写为
x y
xy
E
1 2
1
0
1
0
0 0
x y
1
xy
2
D
§4.2 单元位移模式
几何方程:
ux
v y
xvuyT
只要知道了单元的位移函数,就可由几何方程求出应变,再由物理 方程就可求出应力。
(1)位移模式必须能够反映单元的刚体位移; (2)位移模式必须能够反映单元的常应变;
必要条件
(3)位移模式尽可能反映位移的连续性;
u12x3y12x5 23y5 23y v4 5x6y46y5 23x5 23x
u0 1
v0 4
5 3
2
刚体平动
刚体转动
充分条件
u
v
u0 v0
y x
作业: P141 6-1
u12x3y N iuiNjujN m um
其中, N i 、N j 、N m 是系数,是 x、 y 的线性函数;
可以求得:
N i a i b ix ciy2A (i, j, m )
第七章 平面问题的有限单元法(Q4)

b y3 y2 y y1 4 2 2
8
4节点四边形单元
y, v
u1 v 1 u2 u de 2 u3 u3 u4 u 4 displacements at node 1 displacements at node 2 displacements at node 3 displacements at node 4
x 1 2 3 4 N1 x1 N 2 x2 N 3 x3 N 4 x4 y 1 2 3 4 N1 y1 N 2 y2 N 3 y3 N 4 y4
1 N (1 )(1 ) 1 4 N 1 (1 )(1 ) 2 4 1 N (1 )(1 ) 3 4 N 1 (1 )(1 ) 4 4
1 4
Nj 1 4 (1 j )(1 j )
4 ( 1, +1) ( u4, v4)
1
N3 1 4 (1 )(1 ) N4 1 4 (1 )(1 )
N 3 at node 1 1 4 (1 )(1 ) 1 0 N 3 at node 2 1 4 (1 )(1 ) 1 0
同理:
1 1 1 1 1 y1 2 1 1 1 1 1 y2 1 1 1 1 4 3 y3 1 1 1 1 y4 4
K e B DBtd
e
T
11
等参单元
对于一般的四边形单元,在总体坐标系下构造 位移插值函数,则计算形状函数矩阵、单元刚 度矩阵及等效节点载荷列阵时十分冗繁;而对 于矩形单元,相应的计算要简单的多。 矩形单元明显的缺点是不能很好的符合曲线边 界,因此可以采用矩形单元和三角形单元混合 使用(网格划分困难)。更为一般的方法是通 过等参变换将局部自然坐标系内的规格化矩形 单元变换为总体坐标系内的任意四边形单元( 包括高次曲边四边形单元)。 等参单元的提出为有限元法成为现代工程实
8
4节点四边形单元
y, v
u1 v 1 u2 u de 2 u3 u3 u4 u 4 displacements at node 1 displacements at node 2 displacements at node 3 displacements at node 4
x 1 2 3 4 N1 x1 N 2 x2 N 3 x3 N 4 x4 y 1 2 3 4 N1 y1 N 2 y2 N 3 y3 N 4 y4
1 N (1 )(1 ) 1 4 N 1 (1 )(1 ) 2 4 1 N (1 )(1 ) 3 4 N 1 (1 )(1 ) 4 4
1 4
Nj 1 4 (1 j )(1 j )
4 ( 1, +1) ( u4, v4)
1
N3 1 4 (1 )(1 ) N4 1 4 (1 )(1 )
N 3 at node 1 1 4 (1 )(1 ) 1 0 N 3 at node 2 1 4 (1 )(1 ) 1 0
同理:
1 1 1 1 1 y1 2 1 1 1 1 1 y2 1 1 1 1 4 3 y3 1 1 1 1 y4 4
K e B DBtd
e
T
11
等参单元
对于一般的四边形单元,在总体坐标系下构造 位移插值函数,则计算形状函数矩阵、单元刚 度矩阵及等效节点载荷列阵时十分冗繁;而对 于矩形单元,相应的计算要简单的多。 矩形单元明显的缺点是不能很好的符合曲线边 界,因此可以采用矩形单元和三角形单元混合 使用(网格划分困难)。更为一般的方法是通 过等参变换将局部自然坐标系内的规格化矩形 单元变换为总体坐标系内的任意四边形单元( 包括高次曲边四边形单元)。 等参单元的提出为有限元法成为现代工程实
有限元分析 平面问题

汽车工程系
结构分析与CAE研究室
3.1 有限元模型
3.1.1 有限元网格划分
单元类型
由分析结构的几何形状及精度要求,选择单元类型。
单元大小
变量梯度大,单元小 精度要求高,单元小 汽车工程系
结构分析与CAE研究室
3.1 有限元模型
3.1.2 载荷处理——等效结点载荷
汽车工程系
结构分析与CAE研究室
i
yi )
所以,由
δ i ,δ j ,δ m
插值函数
u ( x, y ) v( x, y )
(单元位移模式)
结构分析与CAE研究室
汽车工程系
3.2 单元分析
一般取(x,y)的多项式为插值函数, 三结点三角形单元的位移模式可假设为: u ( x, y ) = α1 + α 2 x + α 3 y (3 1) v ( x, y ) = α 4 + α 5 x + α 6 y 式中 α1 , α 2 ,..., α 6 由满足结点条件: ( xi , yi ) → (ui , vi ) (i, j , m) 确定, 即在结点i上,有:
ui = α1 + α 2 xi + α 3 yi vi = α 4 + α 5 xi + α 6 yi ( i, j , m ) (3 2)
由(3-2)式可求得
α1 ,α 2 , ...,α 6
(三结点6个位移分量(六个自由度)恰好可确定这六个数)[?] 汽车工程系
结构分析与CAE研究室
3.2 单元分析
2.7 弹性力学平面问题(二维问题) 平面应力问题和平面应变问题:
{σ } , {ε } , {d } 仅为(x , y)的函数
有限元分析第四章

19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0
证
N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )
4.5.14.5平面问题有限元分析步骤及计算实例

K
88
K 12 11 K21 1
K 12 31
K41 2
K22 1 K32 1
K 12 33
K43 2
K
44
2
由于[Krs]=[Ksr]T,又单元1和单元2的节点号按1、2、
3对应3、4、1,则可得:
K11 1
K33 2
3E 16
3 0
0 1
K21 1 K43 2
K12 1
3E 8
3 1 0
0 0 1
3 1 1
1 3 1
0 0 1
013
q/E 0
q/E 0
3E 8
8q
0 /(3E) 0
0 q1
0
0
单元应力可看作是单元形心处的应力值。
7)引入约束条件,修改刚度方程并求解
根据约束条件:u1 =v1=0;v2=0;u4=0和等效节点力列
阵:F 0 0 0 0 0 q / 2 0 q / 2T
五. 边界条件的处理及整体刚度矩阵的修正 整体刚度矩阵的奇异性可以通过引入边界约束条件来排除弹性体的
刚体位移,以达到求解的目的。
(两种)方法 “化1置0法”
“乘大数法”
⑴修改后的总刚为非奇异,对应的总体平衡方程可求解; ⑵如果已知位移不等于0,采用第二种方法,固定约束用 第一种方法。 ※求解可以采用解方程组的任何一种方法。(高斯消去法 常用),可借用一些计算机软件:如Matlab,Excel等。
所以 q / E0 0 1/ 3 0 1/ 3 1 0 1T
习题和思考题
• 4.1三角形常应变单元的特点? • 4.2平面问题有限元法的基本思想和解题步骤。 • 4.3简述形函数的概念和性质。 • 4.4平面问题整体刚度矩阵的推导过程。 • 4.5矩形单元的特点? • 4.6有限元方法解的收敛准则。
有限元分析 第二章 平面问题的有限元方法

当采用有限元方法求解时,第一步是将平板离散成有 限个小单元。
A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6
A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 三角形常应变单元
(1)单元特性分析 1)用面积坐标建立单元位移场——面积坐标的定义
Ai Apjm Aj Apmi Ak Apij
恒等关系:
A Ai Aj Am Aijm
P点位置可由3个比值来确定:
p(Li , Lj , Lm )
其中面积坐标:
Li Ai / A Lj Aj / A Lm Am / A
4):单元推导。 对单元构造一个适合的近似解,即推导有限单元的列式,其中
包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元 各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或 柔度阵)。
对工程应用而言,重要的是应注意每一种单元的解题性能与约
束。 5)总装集成。 将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似
0
Nm
Ni
I22
单元内任意一点的位移可由节点位移表示为:
N j I22
d
u
v
Nδe
e ui vi u j v j um
Nm I22
T
vm
4.1 三角形常应变单元
(1)单元特性分析
2)单元应变和单元应力
d
u
v
Nδe
代入
ε
x y
u / x v / y
xy
u / y v / x
其中
K rs
BrT DBshA
Eh
4(1 2 ) A
brbs
1
2
crcs
crbs
1
2
brcs
brcs
1
2
crbs
crcs
1
2
brbs
4.1 三角形常应变单元
求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件 。总装是在相邻单元节点进行,状态变量及其导数(可能的话)连续性 建立在节点处。
6)求解和结果解释。 联立方程组的求解可用直接法、选代法和随机法。求解结果是
单元节点处状态变量的近似值。对于计算结果的好坏,将通过与设计 准则提供的允许值比较来评价并确定是否需要重复计算。
Li Lj Lm 1
1)用面积坐标建立单元位移场——面积坐标与直角坐标之间的关系
角坐标轮换规则为:
i j mi
1x
Ai
1 2
1
xj
1 xm
y
yj
1 2
( x
j
ym
y
j xm )
(y
j
ym
)x
( xm
x j ) y
ym
1 2 (ai bi x ci y)
Li
Ai A
1 2A
(ai
bi x ci y)
由于应变矩阵是常数矩阵,若 单元厚度h也是常数。
K e BTDBhA
4.1 三角形常应变单元
(1)单元特性分析 3)单元刚度矩阵
K e BTDBhA
代入 应变矩阵式 平面应力问题的弹性矩阵
平面应力问题中常应变三角形单元的刚度矩阵为
Kii Kij Kim
Ke
K
ji
K jj
K
jm
Kmi Kmj Kmm
限个单元组成的离散域,习惯上称为有限元网格划分。 单元越小(网格越细)则离散域的近似程度越好,计算结果
也越精确,但其计算量及误差也将会增大,因此求解域离散化 是有限元分析的核心技术之一。
3)确定状态变量及控制方法。 一个具体的物理问题通常可以用一组包含问题状态变量边
界条件的微分方程式表示,为适合有限元求解,通常将微分方 程化为等价的泛函形式。
2)单元应变和单元应力
S D Bi Bj Bm Si Sj Sm
平面应变问题,子矩阵:
bi
Si
E(1 ) 2(1 )(1 2) A
1
bi
3)单元刚度矩阵
1 2 2(1
)
ci
1 ci
ci
1 2 2(1
)
bi
由最小势能原理, 三角形单元的单元刚度矩阵为
K e BTDBd BTDBhdxdy
ε
1 2A
bi
0ci0 ci来自bibj 0 cj0 cj bj
bm 0 cm
0
cm
Bδe
bm
B Bi Bj Bm 元素都
是常量
Bi
1 2A
bi
0
0
ci
(i, j,m)
ci bi
4.1 三角形常应变单元
(1)单元特性分析 2)单元应变和单元应力
ε
1 2A
bi
0
ci
0 ci bi
bj 0 cj
《有限元基本理论及应用》
平面问题的有限元分析
有限元分析实质是将一个连续求解区域分割成有限个不重叠且
按一定方式相互连接在一起的子域(单元),利用在每一个单元内假设 的近似函数来分片地表示全求解域上待求的未知场函数。
1)问题及求解域定义。 根据实际问题近似确定求解域的物理性质和几何区域。
2)求解域离散化。 将求解域近似为具有不同有限大小和形状且彼此相连的有
)
y
1 2A
(ci
Li
cj
Li
cm
Lm
)
4.1 三角形常应变单元
(1)单元特性分析 1)用面积坐标建立单元位移场——常应变三角形单元的位移场 常应变三角形单元的形函数取面积坐标
Ni Li , N j Lj , Nm Lm
形函数矩阵为:
N
Ni
0
0 Ni
Nj 0
0 Nj
Nm 0
0 cj bj
bm 0 cm
0
cm
Bδe
bm
代入
应力应变关系式
σ DBδe Sδe
应力矩阵 S D Bi Bj Bm Si Sj Sm
平面应力问题,子矩阵:
Si
E
2(1 2 ) A
bi
bi
1
2
ci
ci
ci
1
2
bi
(i, j, m)
4.1 三角形常应变单元
(1)单元特性分析
1 x
cm y
同理
x xi Li x j Lj xm Lm y yi Li y j Lj ym Lm
+ Li Lj Lm 1
1 1
x
xi
y yi
1 xj yj
1 xm
Li Lj
ym Lm
按求导 法可得:
x
1 2A
(bi
Li
bj
Li
bm
Lm
面积坐标的特点:
1.三角形内与节点i的对边j-m平行的直线上的诸点有相同的 Li
2.三角形3个角点的面积坐标是i(1,0,0),j(0,1,0),m(0,0,1)。 3.三角形三条边的边方程是:
4.1 三角形常应变单元
(1)单元特性分析 1)用面积坐标建立单元位移场——面积坐标的定义 4. 三个面积坐标并不相互独立,3个面积坐标间必然满足
ai x j ym y j xm
bi y j ym
ci xm x j
4.1 三角形常应变单元
(1)单元特性分析
1)用面积坐标建立单元位移场——面积坐标与直角坐标之间的关系
面积坐标用直角坐标表示的矩阵表达式为
Li Lj
Lm
1 2A
ai
a
j
am
bi bj bm
ci cj