飞蠓-BP神经网络分类

飞蠓-BP神经网络分类

(完整版)BP神经网络的基本原理_一看就懂

5.4 BP 神经网络的基本原理 BP (Back Propagation)网络是 1986 年由 Rinehart 和 McClelland 为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP 网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是 使用最速下降法,通过反向传播来不断调整网络的权值 输入层 和阈值,使网络的误差平方和最小。BP 神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5. 2所示)。 5. 4. 1 BP 神经元 图5. 3给出了第j 个基本BP 神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x. x?…XJ"分别代表来自神经元1、2-i-n 的输入;w/ 则分别表示神经元1、与第j 个神经元的连接强度,即权 值;,为阈值;f(・)为传递函数;%为第j 个神经元的输出。 第j 个神经元的净输入值邑为: 邑=E 吗>=跖£+与 2-1 若视而=1,吗口二%,即令笈及%包括通及吗口,则 隐层 输出层 BP 神经掰络结构示 (5. 12) 图5.3 BP 神经元

X 三同演12…看…演 于是节点j 的净输入均可表示为: (5. 13) 净输入邑通过传递函数(Transfer Function) f (•)后,便得到第j 个神经元的 输出匕: 式中f(・)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加, 必有一最大值。 5.4.2 BP 网络 BP 算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播 时,传播方向为输入层一隐层一输出层,每层神经元的状态只影响下一层神经元。若在输 出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行, 在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达 到最小值,从而完成信息提取和记忆过程。 5.4.2. 1正向传播 设BP 网络的输入层有n 个节点,隐层有q 个节点,输出层有m 个节点,输入层与隐层之间 的权值为唳,隐层与输出层之间的权值为吗和如图5.4所示。隐层的传递函数为f 1(・), 输出层的传递函数为f(・),则隐层节点的输出为(将阈值写入求和项中): 2 2-0 乃=儿)=个)=凶(部㈤ i-0 (5. 14) 图5.4三层神经陶络的拓扑结构

BP神经网络的介绍

BP神经网络的简要介绍 一、BP神经网络的提出; 在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。 BP网络是1986年由Rumelhart和 McCelland为首的科学家小组提出,是 一种按误差逆传播算法训练的多层前 馈网络,是目前应用最广泛的神经网 络模型之一。BP网络能学习和存贮大 量的输入-输出模式映射关系,而无需 事前揭示描述这种映射关系的数学方 程。它的学习规则是使用最速下降法, 通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。 BP神经网络模型拓扑结构包括输入层 (input)、隐层(hide layer)和输出层(output layer)。(如图5.2) 二、BP神经网络的基本算法; BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。具体步骤如下; 1、从训练集中取出某一样本,把信息输入网络中。 2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。 3、计算网络实际输出与期望输出的误差。 4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。 5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。 BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。 (1)节点输出模型 隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1) 输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2) f-非线形作用函数;q -神经

BP神经网络的优缺点

BP神经网络的优缺点 BP神经网络,也称为“反向传播神经网络”,是一种常见的人工神经网络模型。它是基于误差反向传播算法的一种机器学习方法,广泛应用于分类、回归、预测等场景中。 优点 1. 非线性逼近能力强 BP神经网络的非线性逼近能力优秀,可以逼近任何非线性的函数。它的输入层、隐层和输出层之间的结构可以实现对高维非线性数据的拟合。 2. 适用 range 广泛 BP神经网络可以应用于许多不同领域,如医药、自然语言处理、图像识别等。它可以对各种形式的数据进行分类、回归、预测等。 3. 学习能力强 BP神经网络可以通过大量的样本数据进行训练,并能够自动学习和自我适应。可以对训练数据进行高效的学习和泛化,从而适应未知数据。 4. 适应动态环境 BP神经网络可以适应不断变化的环境。当模型和所需输出之间的关系发生变 化时,网络可以自适应,自动调整权重和阈值,以适应新的情况。 缺点 1. 学习速度慢 BP神经网络的学习速度相对较慢。它需要大量的时间和数据来调整权重和阈值,以达到稳定的状态。 2. 容易陷入局部极小值 BP神经网络很容易陷入局部极小值,而无法达到全局最优解。这可能会导致 网络的准确度降低,并影响到后续的预测、分类和回归任务。 3. 需要大量的数据 BP神经网络需要大量的数据进行训练,以使网络达到优秀的效果。如果训练 数据不充分,可能会导致网络过度拟合或欠拟合。

4. 对初始参数敏感 BP神经网络对初始参数非常敏感。如果初始参数不好,那么网络可能会无法 进行训练,或者陷入局部最小值。 综合来看,BP神经网络具有良好的非线性逼近能力和学习能力,但也存在一 些缺点,比如学习速度慢、容易陷入局部极小值等。因此,在具体应用场景中,我们需要权衡BP神经网络的优点和缺点,选择合适的机器学习模型进行训练和预测。

BP神经网络及深度学习研究 - 综述

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W.Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用 w表示神经元i和神经元j之间的连接强度。 ij (2)具有反映生物神经元时空整合功能的输入信号累加器 。

BP神经网络——从原理到应用

1 BP神经网络概念 首先从名称中可以看出,Bp神经网络可以分为两个部分,bp和神经网络。bp是Back Propagation 的简写,意思是反向传播。 BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 其主要的特点是:信号是正向传播的,而误差是反向传播的。 举一个例子,某厂商生产一种产品,投放到市场之后得到了消费者的反馈,根据消费者的反馈,厂商对产品进一步升级,优化,一直循环往复,直到实现最终目的——生产出让消费者更满意的产品。产品投放就是“信号前向传播”,消费者的反馈就是“误差反向传播”。这就是BP 神经网络的核心。 2 算法流程图 3 神经元模型

每个神经元都接受来自其它神经元的输入信号,每个信号都通过一个带有权重的连接传递,神经元把这些信号加起来得到一个总输入值,然后将总输入值与神经元的阈值进行对比(模拟阈值电位),然后通过一个“激活函数”处理得到最终的输出(模拟细胞的激活),这个输出又会作为之后神经元的输入一层一层传递下去。 4 激活函数:( θ) 引入激活函数的目的是在模型中引入非线性。如果没有激活函数(其实相当于激励函数是f(x) = x),那么无论你的神经网络有多少层,最终都是一个线性映射,那么网络的逼近能力就相当有限,单纯的线性映射无法解决线性不可分问题。正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络表达能力就更加强大 BP神经网络算法常用的激活函数:

1)Sigmoid(logistic),也称为S型生长曲线,函数在用于分类器时,效果更好。 2)Tanh函数(双曲正切函数),解决了logistic中心不为0的缺点,但依旧有梯度易消失的缺点。

BP神经网络的优缺点

BP神经网络的优缺点介绍 人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论。 首先BP神经网络具有以下优点: 1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。 2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。即BP神经网络具有高度自学习和自适应的能力。 3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。也即BP神经网络具有将学习成果应用于新知识的能力。 4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。即BP神经网络具有一定的容错能力。 鉴于BP神经网络的这些优点,国内外不少研究学者都对其进行了研究,并运用网络解决了不少应用问题。但是随着应用范围的逐步扩大,BP神经网络也暴露出了越来越多的缺点和不足,比如: 1) 局部极小化问题:从数学角度看,传统的 BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。 2) BP 神经网络算法的收敛速度慢:由于BP神经网络算法本质上为梯度下降法,它所要优

人工神经网络发展历程和分类

人工神经网络发展历程和分类 人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建 立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家 提出了突触联系强度可变的设想。60年代,人工神经网络得到了进 一步发展,更完善的神经网络模型被提出 人工神经网络 ,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析

了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart, Hinton, Williams发展了BP算法。 Rumelhart 和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP 算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。1988年,Broomhead和Lowe用径向基函数(Radial basis function, RBF)提

BP神经网络的特点

神经网络 人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。 BP神经网络 在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。 BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。当实际输出与期望输出不符时,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。 BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。 多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论。首先BP神经网络具有以下优点: 1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。 2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。即BP神经网络具有高度自学习和自适应的能力。 3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。也即BP神经网络具有将学习成果应用于新知识的能力。 4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。即BP神经网络具有一定的容错能力。 鉴于BP神经网络的这些优点,国内外不少研究学者都对其进行了研究,并运用网络解决了不少应用问题。但是随着应用范围的逐步扩大,BP神经网络也暴露出了越来越多的缺点和

人工神经网络原理、分类及应用

人工神经网络原理、分类及应用 作者:王磊 来源:《科技资讯》 2014年第3期 人工神经网络原理、分类及应用 王磊 (东莞职业技术学院教育技术中心广东东莞 523808) 摘要:本文就人工神经网络的原理进行了介绍,对于人工神经网络技术进行了分类,对 各类神经网络工作原理进行了阐述,并以BP神经网络为例,对其工作原理利用数学推导方式进行了重现,深刻揭示了神经网络的工作流程和细节。 关键词:神经网络 BP网络 中图分类号:TP3 文献标识码:A 文章编号:1672-3791(2014)01(c)-0000-00 神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自 适应动力系统。神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。该模型对于拟合现实复杂世界有着重要的实用价值。 1 神经网络简介 人工神经网络(Artificial Neural Network,ANN),亦称神经网络(Neural Network,NN),是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身 大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、统计学、物理学、计算机科学以及工程科学的一门技术。心理学家Mcculloch,数学家Pitts在上世 纪40年代第一次提出了神经网络模型,从此开创了神经科学理论的研究时代,此后半个世纪神经网络技术蓬勃发展。神经网络是一种计算模型,由大量的神经元个体节点和其间相互连接的 加权值共同组成,每个节点都代表一种运算,称为激励函数(activation function)。每两个相互连接的节点间都代表一个通过该连接信号加权值,称值为权重(weight),神经网络就是 通过这种方式来模拟人类的记忆,网络的输出则取决于网络的结构、网络的连接方式、权重和 激励函数。而网络本身通常是对自然界或者人类社会某种算法或函数的逼近,也可能是一种逻 辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络 则是把对生物神经网络的认识与数学统计模型向结合,借助数学统计工具来实现。另一方面在 人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决 定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。 2 神经网络模型及训练 2.1生物神经元模型 人脑是自然界所造就的高级动物,人的思维是由人脑来完成的,而思维则是人类智能的集 中体现。人脑的皮层中包含100亿个神经元、60万亿个神经突触,以及他们的连接体。神经系

bp神经网络的应用综述

bp神经网络的应用综述 近年来,随着人工智能(AI)发展的飞速发展,神经网络技术也在迅速发展。BP神经网络是一种能够将输入大量信息并有效学习并做出正确决策的广泛应用的深度学习算法。它的强大的学习能力令人印象深刻,从很多方面来看都是一种具有潜在潜力的技术。 在科学和工程方面,BP神经网络的应用非常广泛。它可以用于模式识别,数据挖掘,图像处理,语音识别,机器翻译,自然语言处理和知识发现等等。当可用的数据量很大时,BP神经网络可以有效地自动分析和提取有用的信息,从而有效地解决问题。 例如,在图像处理领域,BP神经网络可以用于图像分类、目标检测和图像语义分析。它能够以准确的速度检测目标图像,包括人脸、行人、汽车等等,这在过去难以实现。在机器翻译等技术中,BP神经网络可以用于语义分析,以确定机器翻译的正确语义。 此外,BP神经网络还可以用于人工智能的自动控制,例如机器人与机器人感知、模式识别、语音识别和控制系统。除此之外,BP 神经网络还可以用作在计算机游戏和科学研究中的决策支持系统,以便帮助决策者做出正确的决策。 总而言之,BP神经网络是一种具有广泛应用的深度学习算法,它能够自动处理大量复杂的信息,并能够做出正确的决策。它可以用于各种科学和工程任务,如模式识别、机器翻译、图像处理、语音识别、机器人感知及自动控制等领域。此外,它还可以用于决策支持系统,以便帮助决策者做出正确的决策。

BP神经网络在许多领域都具有巨大的潜力,希望以后能得到更多的研究和应用。因为随着计算机技术的发展,BP神经网络在未来有望发挥更大的作用,帮助人们实现和科学研究的突破。 BP神经网络的潜力巨大,尽管它的应用前景十分广阔,但许多研究仍然存在挑战。因此,有必要开展更多的研究,并利用其强大的特性,尽可能多地发掘它的潜力,以便最大限度地利用它的优势。我们期待着BP神经网络会给人类的发展带来更多的惊喜。

遗传算法优化确定BP神经网络的遥感图像分类

遗传算法优化确定BP神经网络的遥感图像分类 遗传算法(Genetic Algorithm,GA)是一种应用于求解优化问题的智能算法。遥感图像分类是一种常见的图像处理任务,而BP神经网络是一种常用的分类模型。将遗传算法与BP神经网络相结合,可以提高遥感图像分类的准确性和效率。 在遥感图像分类中,首先需要准备训练样本和测试样本。训练样本用于训练BP神经网络的权重和阈值,而测试样本用于评估网络的分类性能。然后,通过遗传算法确定BP神经网络的参数。遗传算法的核心思想是模拟生物进化中的自然选择和优胜劣汰的过程。 具体而言,遗传算法通过三个操作模拟自然进化的过程:选择、交叉和变异。根据适 应度函数选择适应度较高的个体(即BP神经网络参数)作为父代。然后,通过交叉操作将两个父代个体的染色体(即网络参数)进行交叉组合,生成子代。通过变异操作对子代的 染色体进行随机变换,以增加种群的多样性。这样,经过多次迭代,遗传算法可以找到适 应度最高的个体,即最优的BP神经网络参数。 在遥感图像分类中,适应度函数可以通过网络的分类准确率来定义。遗传算法的优势 在于可以在大量参数空间中进行搜索,并通过自然选择机制不断优化,从而找到最优解。 而BP神经网络作为分类模型,具有很好的学习能力和非线性拟合能力,可以更好地处理遥感图像分类问题。 将遗传算法应用于优化BP神经网络的遥感图像分类任务,可以提高分类准确率和效率。这种方法可以广泛应用于遥感图像的土地利用分类、目标检测等相关问题,具有很好的应 用前景。但是需要注意的是,遗传算法的效果受到问题复杂度、种群大小、交叉和变异的 概率等参数的影响,需要通过实验和调优来确定最佳的参数设置。

BP神经网络的优缺点

BP神经网络的优缺点 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(BP神经网络的优缺点)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为BP神经网络的优缺点的全部内容。

BP神经网络的优缺点介绍 人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用.多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的,为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论. 首先BP神经网络具有以下优点: 1)非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。 2)自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。即BP神经网络具有高度自学习和自适应的能力. 3)泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类.也即BP神经网络具有将学习成果应用于新知识的能力。 4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。即BP神经网络具有一定的容错能力。 鉴于BP神经网络的这些优点,国内外不少研究学者都对其进行了研究,并运用网络解决了不少应用问题。但是随着应用范围的逐步扩大,BP神经网络也暴露出了越来越多的缺点和不足,比如: 1)局部极小化问题:从数学角度看,传统的 BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,其往往会收敛于不同的局部极小,这也是很多学者每次训练得到不同结果的根本原因。 2) BP 神经网络算法的收敛速度慢:由于BP神经网络算法本质上为梯度下降法,它所要优化的目标函数是非常复杂的,因此,必然会出现“锯齿形现象”,这使得BP算法低效;又由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;BP神经网络模型中,为了使网络执行

BP神经网络的优缺点

BP神经网络的优缺点介绍 人工神经网络Artificial Neural Network又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果;最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具;神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用;多层前向BP网络是目前应用最多的一种神经网络形式, 它具备神经网络的普遍优点,但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开一些讨论; 首先BP神经网络具有以下优点: 1 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数;这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力; 2 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中;即BP神经网络具有高度自学习和自适应的能力; 3 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类;也即BP神经网络具有将学习成果应用于新知识的能力; 4 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的;即BP神经网络具有一定的容错能力; 鉴于BP神经网络的这些优点,国内外不少研究学者都对其进行了研究,并运用网络解决了不少应用问题;但是随着应用范围的逐步扩大,BP神经网络也暴露出了越来越多的缺点和不足,比如: 1 局部极小化问题:从数学角度看,传统的 BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败;加上BP神经网络对初始网络权重非常敏感,以不同的权重初始化网络,

BP神经网络在用电用户分类中的应用

BP神经网络在用电用户分类中的应用 李秋硕;王岩;孙宇军;肖勇;欧阳涛 【摘要】BP神经网络在解决非线性复杂系统中存在很大的优势.针对家庭用电设备自身的负荷特点,以广州供电局用户用电设备能耗数据作为训练样本,利用BP神经网络构建用电设备能耗分析模型,选定能够反映对象特性的能效指标,确定神经元数,构建用户分类指标,依据训练的BP神经网络进行用户划分,实现用户间的能效对比分析.结果表明,模型收敛性较好,所得分析结果绝对误差较小.因此,利用BP神经网络进行用户能效分析的结果具有实用性和有效性.%The BP neural network has great advantage to solve the nonlinear complex system. According to the characteris-tics of the household electricity load itself,the electrical equipment energy consumption data of the users attaching to Guang-zhou Power Supply Bureau is taken as the training sample. The BP neural network is used to construct the energy consumption analysis model of the electrical equipment. The energy efficiency index which can reflect the target features is selected to deter-mine the quantity of the neurons,and construct the users classification index. The users are classified according to the trained BP neural network to realize the energy efficiency contrastive analysis among users. The results show that the model has good convergence,and the analysis result has small absolute error. Therefore,the BP neural network used to analyze the users' ener-gy efficiency has practicability and availability. 【期刊名称】《现代电子技术》

神经网络的类型

概述 本文主要介绍了当前常用的神经网络,这些神经网络主要有哪些用途,以及各种神经网络的优点和局限性。 1BP神经网络 BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。 初始权值阈值的确定:所以权值及阈值的初始值应选为均匀分布的小数经验 值,约为(-2.4/F〜2.4/F)之间,其中F为所连单元的输入层节点数 1.1主要功能 (1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数。 (2)模式识别:用一个待定的输出向量将它与输入向量联系起来。 (3)分类:把输入向量所定义的合适方式进行分类。 (4)数据压缩:减少输出向量维数以便传输或存储。 1.2优点及其局限性 BP神经网络最主要的优点是具有极强的非线性映射能力。理论上,对于一个三层和三层以上的BP网络,只要隐层神经元数目足够多,该网络就能以任意精度逼近一个非线性函数。其次,BP神经网络具有对外界刺激和输入信息进行联想记忆的能力。这是因为它采用了分布并行的信息处理方式,对信息的提取必须采用联想的方式,才能将相关神经元全部调动起来。BP神经网络通过预先存储信息和学习机制进行自适应训练,可以从不完整的信息和噪声干扰中恢复原始的完整信息。这种能力使其在图像复原、语言处理、模式识别等方面具有重要应用。再次,BP神经网络对外界输入样本有很强的识别与分类能力。由于它具有强大的非线性处理能力,因此可以较好地进行非线性分类, 解决了神经网络发展史上的非线性分类难题。另外,BP神经网络具有优化计算能力。BP神经网络本质上是一个非线性优化问题, 它可以在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。不过,其优化计算存在局部极小问题,必须通过改进完善。 由于BP网络训练中稳定性要求学习效率很小,所以梯度下降法使得训练很慢。动量法因为学习率的提高通常比单纯的梯度下降法要快一些,但在实际应用中还是速度不够,这两种方法通常只应用于递增训练。 多层神经网络可以应用于线性系统和非线性系统中,对于任意函数模拟逼近。当然,感知器和线性神经网络能够解决这类网络问题。但是,虽然理论上是可行的,但实际上BP网络并

BP神经网络详细讲解

PS:这篇介绍神经网络是很详细的,有一步一步的推导公式!神经网络是DL(深度学习)的基础。 如果对神经网络已经有所了解,可以直接跳到“三、BP算法的执行步骤“部分,算法框架清晰明了。 另外,如果对NN 很感兴趣,也可以参阅最后两篇参考博文,也很不错! 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法.而有的算法可能可用于多种模型。不过,有时人们也称算法为模型。 自从40年代Hebb提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。 1.2.1 神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网络,Hopfield网络,ART网络和Kohonen 网络中;BP网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和 Kohonen网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。 一、感知器的学习结构 感知器的学习是神经网络最典型的学习。 目前,在控制上应用的是多层前馈网络,这是一种感知器模型,学习算法是BP法,故是有教师学习算法。 一个有教师的学习系统可以用图1—7表示。这种学习系统分成三个部分:输入部,训练部和输出部。

神经网络学习之BP神经网络

神经网络学习之 BP神经网络 https://www.360docs.net/doc/6819023860.html,/u013007900/article/details/50118945

目录 第一章概述 第二章BP算法的基本思想 第三章BP网络特性分析 3.1 BP网络的拓扑结构 (4) 3.2 BP网络的传递函数 (5) 3.3 BP网络的学习算法 (6) 第四章BP网络的训练分解 4.1前向传输(Feed-Forward前向反馈) (8) 4.2逆向反馈(Backpropagation) (9) 4.3 训练终止条件 (10) 第五章BP网络运行的具体流程 (10) 5.1网络结构 (10) 5.2变量定义 (10) 5.3误差函数: (11) 第六章BP网络的设计 (14) 6.1 网络的层数 (14) 6.2 隐层神经元的个数 (15) 6.3 初始权值的选取 (15) 6.4 学习速率 (15)

BP网络的局限性 (15) BP网络的改进 (16) 第一章概述 神经网络是1986年由Rumelhart和McCelland为首的科研小组提出,参见他们发表在Nature 上的论文Learning representations by back-propagating errors。 BP神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 第二章BP算法的基本思想 多层感知器在如何获取隐层的权值的问题上遇到了瓶颈。既然我们无法直接得到隐层的权值,能否先通过输出层得到输出结果和期望输出的误差来间接调整隐层的权值呢?BP算法就是采用这样的思想设计出来的算法,它的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。 •正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。 •反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。 这两个过程的具体流程会在后文介绍。

相关主题
相关文档
最新文档