15定积分的概念
定积分的概念 课件

a
f(x)dx等于由直线x=a,x=b,y=0与
曲线y=f(x)围成曲边梯形的面积,这是定积分的几何意义.
b
(2)计算
a
f(x)dx时,先明确积分区间[a,b],从而确定曲
边梯形的三条直边x=a,x=b,y=0,再明确被积函数f(x),
从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积
S而得到定积分的值:
c
f(x)dx
(其中a<c<b).
[点睛] 性质(1)的等式左边是一个定积分,等式右边是常数与 一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立. 性质(3)对于把区间[a,b]分成有限个(两个以上)区间也 成立.
利用定义求定积分
3
[典例] 利用定义求定积分0x2dx. [解] 令f(x)=x2,
n
(3)求和:
i=1Leabharlann f(ξi)·b-n a;
b
(4)取极限:a
n
f(x)=lim n i=1
b-a f(ξi)· n .
用定积分的性质求定积分
[典例]
(1)f(x)=x2+ x2,1,1≤0≤x≤x<21.,
2
则
f(x)dx=(
0
)
2
A. (x+1)dx 0
2
B. 2x2dx 0
1
2
C. (x+1)dx+ 2x2dx
(1)如果被积函数是几个简单函数的和的形式,利用定 积分的线性性质进行计算,可以简化计算.
(2)如果被积函数含有绝对值或被积函数为分段函数, 一般利用积分区间的连续可加性计算.
用定积分的几何意义求定积分
[典例] 根据定积分的几何意义,求下列定积分的值.
定积分知识点总结数学

定积分知识点总结数学一、定积分的定义1. 定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分进行定义的一种方法。
定积分可以表示函数在一个区间上的“累积效果”,即函数在该区间上的总体积或总面积。
2. 定积分的符号表示定积分可以用符号∫ 来表示,即∫f(x)dx,其中f(x)是要积分的函数,dx表示自变量x的微元。
3. 定积分的定义设函数f(x)在区间[a, b]上连续,将区间[a, b]等分成n个小区间,每个小区间的长度为Δx,取每个小区间上任意一点ξi,计算出函数在每个小区间上的面积,然后将所有小区间上的面积相加,得到一个近似值。
当n趋于无穷大时,这个近似值趋于一个确定的值,称为定积分,记作∫a到b f(x)dx。
4. 定积分的几何意义定积分的几何意义是函数f(x)在区间[a, b]上的图像和坐标轴之间的面积,当函数为正值时,定积分表示曲线下面积;当函数为负值时,定积分表示曲线上面积减去曲线下面积。
二、定积分的性质1. 定积分的存在性定积分的存在性是指对于一个函数在一个区间上的定积分是否存在,存在的充分必要条件是函数在该区间上连续。
2. 定积分的线性性定积分具有线性性质,即若f(x)和g(x)在区间[a, b]上可积,c和d为常数,则有∫a到b(c*f(x)+d*g(x))dx=c*∫a到b f(x)dx+d*∫a到b g(x)dx。
3. 定积分的区间可加性若函数f(x)在区间[a, b]、[b, c]上都可积,则有∫a到c f(x)dx=∫a到b f(x)dx+∫b到c f(x)dx。
4. 定积分的不变性对于函数f(x)在区间[a, b]上的定积分,若将区间[a, b]内的点重新排列,定积分的结果不会受到影响。
5. 定积分的估值通过使用上下和左右长方形法、梯形法等方法,可以对定积分进行估值,获得定积分的近似值。
三、定积分的计算1. 定积分的基本计算方法定积分的基本计算方法是使用定积分的定义进行计算,即按照定义对函数在区间内每个小区间上的面积进行求和,并计算出极限值。
定积分的概念、性质

三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.
高中数学定积分的概念及相关题目解析

高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。
一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。
定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。
那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。
二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。
例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。
然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。
这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。
在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。
1.5定积分的概念

1.5 定积分的概念三维目标:知识与技能:⒈通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;⒉借助于几何直观体会定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分. 3.理解掌握定积分的几何意义和性质;过程与方法:通过问题的探究体会逼近、以直代曲的数学思想方法。
情感态度与价值观:通过分割、逼近的观点体会定积分的来历,使学生从本质上理解定积分的几何意义,从而激发学生学习数学的兴趣。
教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景问题:我们在小学、初中就学习过求平面图形面积的问题。
有的是规则的平面图形,但现实生活中更多的是不规则的平面图形。
对于不规则的图形我们该如何求面积?比如浙江 省的国土面积。
此问题在学生九年级中已有涉及,在九 年级时学生了解过以下求不规则面积的方法:方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”。
方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近。
方法3 将这块图形用一个正方形围住,然后随机地向正方形内扔“点”(如小石子等小颗粒),当点数P 足够大时,统计落入不规则图形中的点 数A ,则图形的面积与正方形面积的比约为。
方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正方形面积的比是重量之比。
二.合作探究问题一 曲边梯形的面积如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段,我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积?探究1:分割,怎样分割?分割成多少个?分成怎样的形状?有几种方案? (分割) 提出自己的看法,同伴之间进行交流。
探究2:采用哪种好?把分割的几何图形变为代数的式子。
1.5定积分概念

i
点的取法无关。 3.定积分的值与积分变量用什么字母表示无关,即有
b
a
f ( x)dx f (t )dt f (u)du
a 定理1 若函数 f ( x ) 在区间[a , b]上连续,
则 f ( x ) 在区间[a , b]上可积.
定理2 设函数 f ( x ) 在区间[a , b]上有界,
0
i 1 n
2.被积函数,积分区间,积分变量; 3.介于曲线 y f ( x ) , x 轴 ,直线 x a , x b 之间 各部分面积的代数和; 4. dx .
a b
1 二、 (b 3 a 3 ) b a . 3 1 三、 (b 2 a 2 ) . 2
x
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形面积和越接近 曲边梯形面积.
曲边梯形如图所示, 在区间 [a, b] 内插入若干
个分点, a x 0 < x1 < x 2 < L < x n 1 < x n b,
把区间 [a , b] 分成 n 个小区间 [ xi 1 , xi ], 长度为 xi xi xi 1 ;
如果不论对[a , b] 怎样的分法,也不论在小区间[ xi 1 , xi ] 上
点 i 怎样的取法, 和 S 总趋于 确定的极限I , 如果当n∞时,
我们称这个极限 I 为函数 f ( x )在区间[a , b]上的定积分, 记为
即
b
a
ba f ( x)dx lim f (i ) n n i 1
定积分的概念 课件

从几何上看,如果在区间[a,b]上函数f(x)连续且恒有 f(x)≥0 ,那么定积 分 ʃbaf(x)dx 表示由 直线x=a,x=b,y=0和曲线y=f(x) 所围成的曲边梯形 的面积.这就是定积分ʃbaf(x)dx 的几何意义.
知识点三 定积分的性质
思考 你能根据定积分的几何意义解释ʃbaf(x)dx=ʃcaf(x)dx+ʃbcf(x)dx(其中 a<c<b)吗? 答 直线x=c把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边 梯形的面积S是两个小曲边梯形的面积S1,S2之和,即S=S1+S2. (1)ʃbakf(x)dx=_k_ʃ_ba_f(_x_)d_x__(k 为常数). (2)ʃba[f1(x)±f2(x)]dx=_ʃ_baf_1(_x_)_d_x_±_ʃba_f_2(_x_)d_x_. (3)ʃbaf(x)dx=__ʃ_caf_(_x)_d_x_+__ʃ_bc_f(_x_)d_x___(其中 a<c<b).
解 ʃ20 4-x-22dx 表示圆心在(2,0),半径等于 2 的圆的面积的14, 即ʃ20 4-x-22dx=14×π×22=π.
类型三 定积分的性质 例 3 计算ʃ3-3( 9-x2-x3)dx 的值. 解 如图, 由定积分的几何意义得 ʃ3-3 9-x2dx=π×232=92π,ʃ3-3x3dx=0, 由定积分性质得 ʃ3-3( 9-x2-x3)dx=ʃ3-3 9-x2dx-ʃ3-3x3dx=92π.
定积分的概念
知识点一 定积分的概念
思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共 同点. 答 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都 可以归结为一个特定形式和的极限.
知识点二 定积分的几何意义
定积分的概念和基本思想

定积分的概念和基本思想一、定积分的概念和基本思想1、定积分的概念一般地,如果函数$f(x)$在区间$[a,b]$上连续,用分点$a=x_0<x_l<$$\cdots<$$x_{i-l}<x_i<$S\cdots<$$x_n=b$将区间$ la, b] S等分成$n$ 个小区间,在每个小区间$[x_{iT},x_i]$上任取一点$ C _i (i=l, 2, \cdots, n)$,作和式$\underset{i=l}{\overset{n}{\sum}}f(4 _i)Ax=$$\underset{i=l}{\overset {n} {\sum ))\frac(b-a} {n}f(C_i)$,当Sn-8$时,上述和式无限接近某个常数,这个常数叫做函数$f (x) $在区间$[a,b]$上的定积分,记作$\int_{a} * (b}f (x) (\rm d}x$,即$\int_{a}*{b}f(x){\rmd}x=$$\underset(n~* °°}{\lim}\underset{i=l}{\overset{n}{\sum}}\frac{b_ a}{n}f(g_i)$,这里,$a$与$b$分别叫做积分下限与积分上限,区间$[a,b]$叫做积分区间,函数$f(x)$叫做被积函数,$x$叫做积分变量,$f(x) {\rm d}x$叫做被积式。
(1)定积分$\int_{a}*{b}f(x) {\rm d}x$不是一个函数式,而是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即$\int_{a}*{b}f(x){\rm d}x=$S\int_{a}*{b}f(t)(\rm d}t=$$\int_{a}*{b}f(u){\rm d}u$o(2)定义中区间的分法和$ g _i$的取法是任意的。
2、定积分的基本思想定积分的基本思想就是以直代曲,即求曲边梯形的而积时,将曲边梯形分割成一系列的小曲边梯形,用小矩形近似代替,利用矩形面积和逼近的思想方法求出曲边梯形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放大
P
再放大
P
因此,我们可以用这条直线L来代替点P附近的曲线, 也就是说:在点P附近,曲线可以看作直线(即在很小范围 内以直代曲).
y = f(x) y
A1
Oa
b
x
用一个矩形的面积A1近似代替曲边梯形的面积A,
得 A A1.
y = f(x) y
A1 Oa
A2
b
x
用两个矩形的面积 近似代替曲边梯形的面积A, 得 A A1+ A2
成的曲边梯形的面积.
作业:P47练习,P50练习,2
教学后记:
定积分的重点在于掌握计算,会求简单应 用,(面积,路程,功)。其中面积的计算,有 很多都是需要分割成几个面积之和(或差)。学 生的计算通常会出问题。
合作愉快
MARKETING
18
y x2
k n
nx
n
y x2
k n
nx
n
小结:求由连续曲线yf(x)对应的曲边梯形面积的方法
(1)分 (2)求面积的和 (3)取极限n
割 把这些矩形面积相加
y
作为整个曲边形面积S
的近似值。 有理由相信,分点
越来越密时,即分割 越来越细时,矩形面 积和的极限即为曲边 形的面积。
o
x
1.5.2汽车行驶的路程
v
S1 S2
2
vt () S 3 S4
Sj
Sn
t2 2
O
1
t
123 j n 1
nnn n n
v
S1 S2
2
S 3 v(t)
t2 2
s0
1 n
Sj
s1
1 n
s3
1 n
Sn 1
sn 1
1 n
s3
1 n
O
1
t
1 2 3 jn 1n
nnn n n n
上图中:所有小矩形的面积之和,其极限就
是由直线x=0,x=1和曲线v(t)=-t2+2所围
解把底边[0,1]分成n等份,然后在每个分点作底边的垂线, 这 样曲边三角形被分成n个窄条, 用矩形来近似代替,然后把这些 小矩形的面积加起来, 得到一个近似值:
因此, 我们有理由相
信, 这个曲边三角形
y
的面积为:
S
lim
n
Sn
lim
n
1 6
1
1 n
2
1 n
1.
3
y x2
O 12
k
nn
y = f(x) y
A1
A2
A3
A4
Oa
b
x
用四个矩形的面积 近似代替曲边梯形的面积A, 得 A A1+ A2+ A3+ A4
y = f(x) y
A1
Ai
An
Oa
bx
将曲边梯形分成 n个小曲边梯形,并用小矩阵形的面积代替
小曲边梯形的面积, 于是曲边梯形的面积A近似为
A A1+ A2 + + An
—— 以直代曲,无限逼近
2.曲边梯形的面积
求曲边梯形的面积即
求 y f(x) 下的面积 f (x)0
若“梯形” 很窄, 可近似地用矩形面积代替 在不很窄时怎么办?
y
—— 分成很窄的小曲边梯形, 然后用矩形面积代后求和。
y f (x)
y
x
O ab
y f(x)
—— 以直代曲
Oa
bx
例1.求抛物线y=x2、直线x=1和x轴所围成的曲边梯形的面积。
n
S n
n i1
S
' i
n i1
f (i 1)x n
n (i 1)2 i1 n
1 n
0
1 n
1 n
2
1 n
2 n
2
1 n
பைடு நூலகம்
n
n
1
2
1 n
1 n3
(1 2
22
(n 1)2 )
1 n3
(n
1)n(2n 6
1)
1 6
1
1 n
2
1 n
.
nx
n
y
y
O 12 nn
O 12 nn