简单的随机抽样PPT优秀课件1
合集下载
25.1-简单的随机抽样ppt课件(第1课时)

我接过了铅笔,写道:“自中国来。” 他的眼睛瞪大了,而且脸上泛起一丝笑容。他继续写道:皇家国际真人现场厅 n “来此何为?” 我写道:“读书。” 这下子,他眼睛瞪得更大了,他收敛起笑容,严肃的向我们翘起了他的大拇指,然后他又踱回到柜台后面他的座位上。 我们到柜台边去付帐。他摇摇头、摆摆手,好像是不肯收费,他说了一句话好象是:“统统是唐人呀!” 我们称谢之后刚要出门,他又喂喂的把我们喊住,从柜台下面拿出一把雪茄烟,送我们每人一支。 我回到车上,点燃了那支雪茄。在吞烟吐雾之中,我心里纳闷,这位老者为什么不收餐费?为什么奉送雪茄?大概他在夏安开个小餐馆,很久没看到中国人,很久没看到一群中国青年,更很久没看 到来读书的中国青年人。我们的出现点燃了他的同胞之爱。事隔数十年,我不能忘记和我们作简短笔谈的那位唐人。
那年,去宝鸡考察民艺。途经西安,与平凹一聚。这一天,正赶上平凹获茅盾文学奖,人逢喜事精神爽,喝酒吃肉,交谈甚欢。我们没有讨论文学,所说全是书画古物。古人说得对:开口必言诗, 定知非诗人。整天写得很累,反而想说点别的。再说平凹与我,都着迷于书画文玩,平日心得颇多,说来兴致则高。饭后,他邀我和妻子同昭去他家的书房,看看他的收藏,我们自然欣然愿往,遂去了。
随机抽样简单随机抽样ppt课件

访谈
与被调查者进行面对面交流,收集口头信息。
数据收集途径及注意事项
观察法
直接观察被调查者的行为、态度等,记录相关信息。
实验法
通过控制实验条件,收集实验数据。
数据收集途径及注意事项
注意事项
明确调查目的和对象,选择合适的数据收集方法 。
设计合理的问卷或访谈提纲,避免引导性问题和 歧义。
数据收集途径及注意事项
06
抽样方法:不同的抽样方法会导致不同的 抽样误差。
置信区间构建方法与意义
确定置信水平
通常选择95%或99%的置信水平。
计算样本统计量
根据样本数据计算样本均值、样本比例等统计量。
置信区间构建方法与意义
确定抽样分布
根据中心极限定理,当样本量足够大 时,样本统计量的分布近似于正态分 布。
计算置信区间
04
4. 根据生成的随机数, 从总体中选取对应编号 的家庭作为调查对象。
03
抽样误差与置信区间
抽样误差来源及影响因素
抽样误差来源
01
04
影响因素
随机性:由于抽样是随机的,每次抽样结 果可能会有所不同。
02
05
总体分布:总体分布越离散,抽样误差越 大。
样本量:样本量的大小会影响抽样误差的 大小。
03
独立性
一个样本的选取不影响其他样 本的选取。
代表性
当样本量足够大时,样本能够 很好地代表总体。
实现过程与步骤
1. 确定总体
明确要研究的对象范围,即总体。
3. 随机选择样本
采用随机数表、计算机程序等方法从总体中 随机选择样本。
2. 确定样本量
根据研究目的、总体规模、误差要求等因素 确定合适的样本量。
与被调查者进行面对面交流,收集口头信息。
数据收集途径及注意事项
观察法
直接观察被调查者的行为、态度等,记录相关信息。
实验法
通过控制实验条件,收集实验数据。
数据收集途径及注意事项
注意事项
明确调查目的和对象,选择合适的数据收集方法 。
设计合理的问卷或访谈提纲,避免引导性问题和 歧义。
数据收集途径及注意事项
06
抽样方法:不同的抽样方法会导致不同的 抽样误差。
置信区间构建方法与意义
确定置信水平
通常选择95%或99%的置信水平。
计算样本统计量
根据样本数据计算样本均值、样本比例等统计量。
置信区间构建方法与意义
确定抽样分布
根据中心极限定理,当样本量足够大 时,样本统计量的分布近似于正态分 布。
计算置信区间
04
4. 根据生成的随机数, 从总体中选取对应编号 的家庭作为调查对象。
03
抽样误差与置信区间
抽样误差来源及影响因素
抽样误差来源
01
04
影响因素
随机性:由于抽样是随机的,每次抽样结 果可能会有所不同。
02
05
总体分布:总体分布越离散,抽样误差越 大。
样本量:样本量的大小会影响抽样误差的 大小。
03
独立性
一个样本的选取不影响其他样 本的选取。
代表性
当样本量足够大时,样本能够 很好地代表总体。
实现过程与步骤
1. 确定总体
明确要研究的对象范围,即总体。
3. 随机选择样本
采用随机数表、计算机程序等方法从总体中 随机选择样本。
2. 确定样本量
根据研究目的、总体规模、误差要求等因素 确定合适的样本量。
9.1.1简单随机抽样(一)课件-高一下学期数学人教A版必修第二册

总体 个体
树人中学全部高一年级学生的身高 每一位学生的身高
• 我们可以对高一年级进行简单随机抽样,用抽出的样本的平均身高 估计高一年级学生的平均身高.
问题1
一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平 均身高,以便设定可调节课桌椅的标准高度。已知树人中学高一年级有712名学生,如果 要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?
随机获取. 摇匀后再摸出一个球,如此重复n次.
特别地,当样本量n=1000时,不放回摸球己经把袋中的所有球取出, 这就完全了解了袋中红球的比例.
思考2:两种抽样方式有何优劣?
放回摸球可能出现同一个小球被摸中多次的情况,极端情况是每 次摸到同一个小球,而被重复的小球只能提供同一个小球颜色信息. 这样的抽样结果误差较大.
解析 在简单随机抽样中,每一个个体被抽到的可能性都相等,与第 几次抽样无关,故A,C,D不正确,B正确.
3
问题1
一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高一年级的平
均身高,以便设定可调节课桌椅的标准高度。已知树人中学高一年级有712名学生,如果 要通过简单随机抽样的方法调查高一年级学生的平均身高,应该怎样抽取样本?
合用全面调查?哪些适合用抽样调查?
(1)调查一个班级学生每周的体育锻炼时间;
全面调查
(2)调查一个地区结核病的发病率;
抽样调查
(3)调查一批炮弹的杀伤半径;
抽样调查
(4)调查一个水库所有鱼中草鱼所占的比例.
抽样调查
思考1:“普查”与“抽样”各有何优缺点?
方式 普查
优点
全面、准确性高
缺点
工作量大,时间长, 耗人力、物力、财力
简单随机抽样ppt课件

流行病学调查
在特定人群中随机抽取一部分样本,收集他们的健康信息和生活习 惯等数据,以研究某种疾病在人群中的分布和影响因素。
医疗器械评估
随机选取一部分患者使用某种新型医疗器械,并收集使用效果和患者 反馈等信息,以评估该器械的临床应用价值和市场前景。
社会科学研究领域应用案例
社会舆论调查
通过简单随机抽样选取一部分社会成员,了解他们对某个社会事件或政策的看法和态度, 以反映社会整体的舆论倾向。
抽样调查作用
抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料 ,因而也可起到全面调查的作用。
抽样方法与分类
抽样方法
简单随机抽样、系统抽样、分层抽样和整群抽样。
抽样分类
概率抽样和非概率抽样。
简单随机抽样原理
简单随机抽样的定义
简单随机抽样也称为单纯随机抽样、纯随机抽样、SRS抽样,是指从总体N个单位中任意抽取n个单位作为样本, 使每个可能的样本被抽中的概率相等的一种抽样方式。
教育水平评估
在某一地区或学校中随机抽取一部分学生,测试他们的学业成绩和综合素质等方面,以评 估该地区或学校的教育质量和水平。
选举民意调查
在选民中随机抽取一部分样本,询问他们的投票意向和候选人评价等信息,以预测选举结 果和分析选民的政治倾向。
06
实验设计与数据分析方法介绍
实验设计原则及步骤
对照原则
设立对照组以消除非处理因素对 实验结果的影响。
随机原则
实验对象应随机分组,以消除个 体差异对实验结果的影响。
实验设计原则及步骤
• 重复原则:实验应重复进行,以提高实验的准确性和可靠 性。
实验设计原则及步骤
明确实验目的和假设
确定实验要解决的问题和假设条件。
在特定人群中随机抽取一部分样本,收集他们的健康信息和生活习 惯等数据,以研究某种疾病在人群中的分布和影响因素。
医疗器械评估
随机选取一部分患者使用某种新型医疗器械,并收集使用效果和患者 反馈等信息,以评估该器械的临床应用价值和市场前景。
社会科学研究领域应用案例
社会舆论调查
通过简单随机抽样选取一部分社会成员,了解他们对某个社会事件或政策的看法和态度, 以反映社会整体的舆论倾向。
抽样调查作用
抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料 ,因而也可起到全面调查的作用。
抽样方法与分类
抽样方法
简单随机抽样、系统抽样、分层抽样和整群抽样。
抽样分类
概率抽样和非概率抽样。
简单随机抽样原理
简单随机抽样的定义
简单随机抽样也称为单纯随机抽样、纯随机抽样、SRS抽样,是指从总体N个单位中任意抽取n个单位作为样本, 使每个可能的样本被抽中的概率相等的一种抽样方式。
教育水平评估
在某一地区或学校中随机抽取一部分学生,测试他们的学业成绩和综合素质等方面,以评 估该地区或学校的教育质量和水平。
选举民意调查
在选民中随机抽取一部分样本,询问他们的投票意向和候选人评价等信息,以预测选举结 果和分析选民的政治倾向。
06
实验设计与数据分析方法介绍
实验设计原则及步骤
对照原则
设立对照组以消除非处理因素对 实验结果的影响。
随机原则
实验对象应随机分组,以消除个 体差异对实验结果的影响。
实验设计原则及步骤
• 重复原则:实验应重复进行,以提高实验的准确性和可靠 性。
实验设计原则及步骤
明确实验目的和假设
确定实验要解决的问题和假设条件。
9.1.1简单随机抽样第1课时课件(人教版)

9.1.1 简单随机抽样 第1课时
学习目标
新课讲授
课堂总结
1.正确理解总体、个体、样本、普查、抽样调查的概念
2.理解简单随机抽样的概念,掌握抽签法和随机数法的 一般步骤
学习目标
新课讲授
课堂总结
知识点1:统计的相关概念及抽样的必要性
在现实生活中,我们经常会接触到各种统计数据.
统计学是通过收集数据和分析数据来认识未知现象的一门科学. 为解决问题奠定基础
说明:如果生成的随机数有重复,即同一编号多次被抽到,可以剔除重 复的编号并重新产生随机数,直到产生不同的编号个数等于样本数.
学习目标
新课讲授
课堂总结
随机数的产生
1.用随机实验生成随机数
准备10个大小质地一样的小球,小球上分别写上数字0,1,2,…9,放 在不透明的盒子中, 当编号是三位的时候,有放回抽取3次,抽前充分搅拌,第一、二、三 次号作摸到数字分别作为百、十、个位数.
如果抽取是放回的,叫做放回简单随机抽样; 如果抽取是不放回的,称为不放回简单随机抽样. 效率更高
通过简单随机抽样获得的样本称为简单随机样本. 如没特殊说明,本章所称简单随机抽样指不放回简单随机抽样.
学习目标
新课讲授
课堂总结
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本;× 总体的个数不是有限的 (2)从50台冰箱中一次性抽取5台冰箱进行质量检查;× 不是逐个抽取 (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮 球赛; × 不是等可能抽样 (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无 放回地抽出6个号签. √
问题:一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高 一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一 年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均 身高,应该怎样抽取样本?
学习目标
新课讲授
课堂总结
1.正确理解总体、个体、样本、普查、抽样调查的概念
2.理解简单随机抽样的概念,掌握抽签法和随机数法的 一般步骤
学习目标
新课讲授
课堂总结
知识点1:统计的相关概念及抽样的必要性
在现实生活中,我们经常会接触到各种统计数据.
统计学是通过收集数据和分析数据来认识未知现象的一门科学. 为解决问题奠定基础
说明:如果生成的随机数有重复,即同一编号多次被抽到,可以剔除重 复的编号并重新产生随机数,直到产生不同的编号个数等于样本数.
学习目标
新课讲授
课堂总结
随机数的产生
1.用随机实验生成随机数
准备10个大小质地一样的小球,小球上分别写上数字0,1,2,…9,放 在不透明的盒子中, 当编号是三位的时候,有放回抽取3次,抽前充分搅拌,第一、二、三 次号作摸到数字分别作为百、十、个位数.
如果抽取是放回的,叫做放回简单随机抽样; 如果抽取是不放回的,称为不放回简单随机抽样. 效率更高
通过简单随机抽样获得的样本称为简单随机样本. 如没特殊说明,本章所称简单随机抽样指不放回简单随机抽样.
学习目标
新课讲授
课堂总结
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本;× 总体的个数不是有限的 (2)从50台冰箱中一次性抽取5台冰箱进行质量检查;× 不是逐个抽取 (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮 球赛; × 不是等可能抽样 (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无 放回地抽出6个号签. √
问题:一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高 一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一 年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均 身高,应该怎样抽取样本?
简单随机抽样PPT课件

误差可控
通过计算样本量,可以控制抽样误差在可接 受的范围内。
操作简便
简单随机抽样方法相对简单,易于实施和操 作。
适用于各种类型的数据
简单随机抽样适用于各种类型的数据,如定 量数据和定性数据。
缺点
样本量较大时实施困难
当总体样本量较大时,简单随机抽样 需要大量的时间和资源来实施。
对总体分布敏感
如果总体分布不均匀,简单随机抽样 的代表性可能会受到影响。
详细描述
在市场调研中,企业或机构通常会采用简单随机抽样方法来选取一定数量的样 本,然后通过问卷调查、电话访问等方式收集数据,以了解市场趋势、消费者 偏好和竞争情况等信息。
学术研究案例
总结词
学术研究领域中,简单随机抽样被广泛应用于社会学、心理学、经济学等学科, 以验证假设和得出科学结论。
详细描述
在学术研究中,研究者通常会采用简单随机抽样方法来选取样本,然后通过实验 、调查等方式收集数据,以验证假设和得出科学结论。这种方法有助于提高研究 的可靠性和有效性。
02
简单随机抽样的方法
抽签法
定义:抽签法是将总体中的每一个单位分别写在签上, 并放入一个容器中充分搅拌,然后从中随机抽取若干个 签,对应签上的单位即为被抽取的单位。 步骤
2. 从容器中随机抽取若干个签。
适用范围:适用于总体容量较小,或者虽然总体容量较 大,但总体结构简单,各单位间差异不大的情况。
产品测试与改进
通过简单随机抽样,选取一部分 消费者作为测试对象,了解他们 对产品的反馈和意见,以便对产 品进行改进或优化。
人口普查
统计人口数据
在人口普查中,简单随机抽样被广泛 应用于统计人口数量、年龄、性别、 教育程度等数据,为政府制定政策和 规划提供依据。
通过计算样本量,可以控制抽样误差在可接 受的范围内。
操作简便
简单随机抽样方法相对简单,易于实施和操 作。
适用于各种类型的数据
简单随机抽样适用于各种类型的数据,如定 量数据和定性数据。
缺点
样本量较大时实施困难
当总体样本量较大时,简单随机抽样 需要大量的时间和资源来实施。
对总体分布敏感
如果总体分布不均匀,简单随机抽样 的代表性可能会受到影响。
详细描述
在市场调研中,企业或机构通常会采用简单随机抽样方法来选取一定数量的样 本,然后通过问卷调查、电话访问等方式收集数据,以了解市场趋势、消费者 偏好和竞争情况等信息。
学术研究案例
总结词
学术研究领域中,简单随机抽样被广泛应用于社会学、心理学、经济学等学科, 以验证假设和得出科学结论。
详细描述
在学术研究中,研究者通常会采用简单随机抽样方法来选取样本,然后通过实验 、调查等方式收集数据,以验证假设和得出科学结论。这种方法有助于提高研究 的可靠性和有效性。
02
简单随机抽样的方法
抽签法
定义:抽签法是将总体中的每一个单位分别写在签上, 并放入一个容器中充分搅拌,然后从中随机抽取若干个 签,对应签上的单位即为被抽取的单位。 步骤
2. 从容器中随机抽取若干个签。
适用范围:适用于总体容量较小,或者虽然总体容量较 大,但总体结构简单,各单位间差异不大的情况。
产品测试与改进
通过简单随机抽样,选取一部分 消费者作为测试对象,了解他们 对产品的反馈和意见,以便对产 品进行改进或优化。
人口普查
统计人口数据
在人口普查中,简单随机抽样被广泛 应用于统计人口数量、年龄、性别、 教育程度等数据,为政府制定政策和 规划提供依据。
抽样调查第2章简单随机抽样ppt课件

记录样本
将读取到的随机数对应的个体作为样本,并记录其编号。
计算机模拟法
编号
选择随机数生成器
设置参数
生成随机数
筛选样本
将总体的个体编号,并将 编号数据输入计算机。
在计算机中选择一个合适 的随机数生成器。
根据需要设置随机数生成 器的参数,如生成随机数 的范围、数量等。
使用随机数生成器生成 一定数量的随机数。
详细记录每个被抽中样本的信息和特征,如 姓名、性别、年龄、职业等。
处理异常情况
保密原则
如遇到无法联系或拒绝接受调查的样本,需 按照预先设定的方案进行处理,如替换或重 新抽取等。
在整个抽样过程中,需严格遵守保密原则, 确保被调查者的隐私不被泄露。
05
数据分析与结果解读
数据整理与初步分析
1 2
数据来源与采集方式
根据生成的随机数,从总 体中筛选出对应的个体作 为样本,并记录其编号。 如果需要,还可以对样本 进行进一步的处理和分析。
03
样本容量确定与误差控制
样本容量确定原则及方法
原则
在满足调查精度和可靠性的前提下, 尽可能减少样本容量,以节约成本和 提高效率。
方法
根据总体大小、总体方差、调查精度要 求等因素,采用适当的统计公式或经验 法则来确定样本容量。
01
介绍点估计和区间估计的概念、方法和应用场景,并比较其优
缺点。
假设检验的基本原理
02
阐述假设检验的基本原理和步骤,包括原假设和备择假设的设
定、检验统计量的选择、显著性水平的确定等。
常用统计检验方法
03
介绍常用的统计检验方法,如t检验、F检验、卡方检验等,并
说明其应用场景和注意事项。
将读取到的随机数对应的个体作为样本,并记录其编号。
计算机模拟法
编号
选择随机数生成器
设置参数
生成随机数
筛选样本
将总体的个体编号,并将 编号数据输入计算机。
在计算机中选择一个合适 的随机数生成器。
根据需要设置随机数生成 器的参数,如生成随机数 的范围、数量等。
使用随机数生成器生成 一定数量的随机数。
详细记录每个被抽中样本的信息和特征,如 姓名、性别、年龄、职业等。
处理异常情况
保密原则
如遇到无法联系或拒绝接受调查的样本,需 按照预先设定的方案进行处理,如替换或重 新抽取等。
在整个抽样过程中,需严格遵守保密原则, 确保被调查者的隐私不被泄露。
05
数据分析与结果解读
数据整理与初步分析
1 2
数据来源与采集方式
根据生成的随机数,从总 体中筛选出对应的个体作 为样本,并记录其编号。 如果需要,还可以对样本 进行进一步的处理和分析。
03
样本容量确定与误差控制
样本容量确定原则及方法
原则
在满足调查精度和可靠性的前提下, 尽可能减少样本容量,以节约成本和 提高效率。
方法
根据总体大小、总体方差、调查精度要 求等因素,采用适当的统计公式或经验 法则来确定样本容量。
01
介绍点估计和区间估计的概念、方法和应用场景,并比较其优
缺点。
假设检验的基本原理
02
阐述假设检验的基本原理和步骤,包括原假设和备择假设的设
定、检验统计量的选择、显著性水平的确定等。
常用统计检验方法
03
介绍常用的统计检验方法,如t检验、F检验、卡方检验等,并
说明其应用场景和注意事项。
211简单随机抽样(三种抽样方法)ppt课件

确定抽取的样本量n,通常要求n远小 于N,且n和N都是已知的;
对样本进行必要的检查和调整,确保 样本的代表性。
简单随机抽样优缺点
优点
简单易行,样本具有较好的代表性,能够客观地反映总体情况;每个单位被抽 中的概率相等,保证了抽样的公正性;
缺点
当总体容量N较大时,样本的抽取比较困难;需要对总体中的所有单位进行编 号,工作量较大;如果总体中单位特征差异较大,简单随机抽样可能导致样本 的偏差。
整群抽样
将总体分成若干群,随机抽取部 分群,对抽中群进行全面调查。
优点
便于组织和管理,节省人力物力。
缺点
抽样误差可能较大,样本代表性可 能较差。
抽样方法选择依据
研究目的
明确研究目的和需求, 选择最合适的抽样方法
。
总体特征
了解总体的分布、异质 性等特征,以便选择合
适的抽样方法。
资源限制
考虑时间、人力、物力 等资源限制,选择可行
分层抽样步骤
确定分层变量
选择能够反映总体个体差异的变量作为分层 变量。
确定各层的样本量
根据各层的权重、样本量分配比例等因素, 确定各层的样本量。
对总体进行分层
根据分层变量的取值范围,将总体分成若干 个互不重叠的层。
在各层内进行随机抽样
在各层内分别采用简单随机抽样、系统抽样 等方法抽取样本。
分层抽样优缺点及适用场景
02
03
简单随机抽样
每个样本被选中的概率相 等,完全随机。
优点
简单易行,无偏性,一致 性。
缺点
可能产生较大抽样误差, 样本分布可能不均匀。
三种抽样方法比较
分层抽样
将总体分成若干层,每层 内进行简单随机抽样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵放回抽样:当我们逐个地从总体中抽取个体时,如果每 次抽去的个体先将它放回总体,然后再取下一个个体. 这种抽 样叫做放回抽样.
为了使被抽查的样本能更好地反映总体,那么样 本应该具备什么要求?
(1)具有代表性; (2)不偏向总体中的某些个体.
只有5张演唱会 门票,由哪些同学 去更公平合理呢?
演唱会
思考: 你认为抽签法有什么优点和缺点;当总体中的个体数很多时, 用抽签法方便吗?
解析:操作简便易行,当总体个数较多时工作量大, 也很难做到“搅拌均匀”。
2、随机数表法 利用随机数表、随机数骰子或计算机产生的随机数
进行抽样,叫随机数表法,这里仅介绍随机数表法。
怎样利用随机数表产生样本呢? 下面通过例子来说明,假设我们要考察某公司生产的500 克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋 进行检验,利用随机数表抽取样本时,可以按照下面的 步骤进行:
答:用到了普查的统计方法;优点是全面准确,缺点是 工作量大,在绝大部分的统计案例中无法实现(检查具 有破坏性);随机抽查的方法。
再看下面几个例子:
1.炊事员为了知道饼熟了没有,从刚出锅的饼上切下 一小块尝尝,如果这一小块饼熟了,那么可以估计整 张饼也熟了. 2.环境监测中心为了了解一个城市的空气质量情况, 会在这个城市中分散地选定几个点,从各地点采集数 据,对这些数据进行分析,就可以估计整个城市的空 气质量. 3.农科站要了解农田中某种病虫害的灾情,会随意地 选定几块地,仔细检查虫卵数,然后估计一公顷农田 大约平均有多少虫卵,会不会发生病虫害. 以上几个例子都不适宜做普查,而需要做抽样调查.
【说明】随机数表法抽样的步骤: (1)将总体的个体编号。 (2)在随机数表中选择开始数字。 (3)读数获取样本号码。
第一步,先将800袋牛奶编号,可以编为: 000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第 7列的数7(为了便于说明,下面摘取了附表1的第6行 至第10行)。
16 22 77 94 39 84 42 17 53 31 63 01 63 78 59 33 21 12 34 29 57 60 86 32 44 87 35 20 96 43 21 76 33 50 25 12 86 73 58 07 15 51 00 13 42 90 52 84 77 27
分析:(1)不是,样本的总体有无限个。 (2)不是,简单随机抽样是一种不放回的抽样。
二、简单随机抽样方法
1、抽签法 一般地,抽签法就是把总体中的N个个体编号,把号码
写在形状、大小相同的号签上,将号签放在一个容器中, 搅拌均匀后,每次从中抽取一个号签,连续抽般步骤: (1)将总体的个体编号。 (2)写号制签,把制好的签放在箱中摇匀; (3)连续抽签获取样本号码。
第三步,从选定的数7开始向右读(读数的方向也可以是 向左、向上、向下等),得到一个三位数785,由于785 <799,说明号码785在总体内,将它取出;继续向右读, 得到916,由于916>799,将它去掉,按照这种方法继 续向右读,又取出567,199,507,…,依次下去,直 到样本的60个号码全部取出,这样我们就得到一个容量 为60的样本。
演唱会
引例
假定一个小组有6个学生,要通过逐个抽取的方
法从中取3个学生参加一1 项活动。如果第1次抽取时
每个被抽到的概率都是
1
个被抽到的概率都是
,第2次抽取时,余下的每
,6 第3次抽取时,余下的每个
1
被抽到的概率都是
5,这种抽样 就是简单随机抽样。
4
新课讲授
一、简单随机抽样的概念 一般地,设一个总体含有有限个个体,设总体的个体数
简单的随机抽 样
统计初步的基本知识:总体与样本
总体:在统计学中,所有考察对象的全体叫做总体. 个体: 每一个考察的对象叫做个体. 样本:从总体中抽取的一部分个体叫做总体的一个样本. 样本容量:样本中个体的数目叫做样本的容量.
问题引入
根据国务院的决定,我国于2000年11月1日进行了第五次 全国人口普查的登记工作。近千万普查工作人员投入到了 艰苦繁重的工作中,结果显示至普查日期为止我国人口总 数为129533万。 上面的例子是一个统计上的典型事例,它用到了什么统计 方法?它有什么优缺点?你有什么其他的办法吗?发表一 下你的观点。
统计学中数据分析过程
采取样本
处理样本
分析样本
统计的基本思想方法是用样本估计总体,即通常 不是直接去研究总体,而是通过从总体中抽取一个样 本,根据样本的情况去估计总体的相应情况.
样本如何抽取?
抽样分为不放回抽样和放回抽样两种情况:
⑴不放回抽样:当我们逐个地从总体中抽取个体时,如果 每次抽去的个体不再放回总体,这种抽样叫做不放回抽样.
为N ,从中逐个不放回地抽取n个个体作为样(n≤N), 如果每次抽取时总体内的各个个体被抽到的概率相等,
就把这种抽样方法叫做简单随机抽样。
【说明】简单随机抽样必须具备下列特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
n
(5)简单随机抽样的每个个体入样的可能性均为 N 。
练一练: 1、下列抽样的方式是否属于简单随机抽样?为什么? (1)从无限多个个体中抽取50个个体作为样本。 (2)箱子里共有100个零件,从中选出10个零件进行质量 检验,在抽样操作中,从中任取出一个零件进行质量检验后, 再把它放回箱子。
49 54 43 54 82 57 24 55 06 88 16 95 55 67 19 78 64 56 07 82 09 47 27 96 54 84 26 34 91 64 83 92 12 06 76 44 39 52 38 79 99 66 02 79 54 08 02 73 43 28
17 37 93 23 78 77 04 74 47 67 98 10 50 71 75 52 42 07 44 38 49 17 46 09 62
为了使被抽查的样本能更好地反映总体,那么样 本应该具备什么要求?
(1)具有代表性; (2)不偏向总体中的某些个体.
只有5张演唱会 门票,由哪些同学 去更公平合理呢?
演唱会
思考: 你认为抽签法有什么优点和缺点;当总体中的个体数很多时, 用抽签法方便吗?
解析:操作简便易行,当总体个数较多时工作量大, 也很难做到“搅拌均匀”。
2、随机数表法 利用随机数表、随机数骰子或计算机产生的随机数
进行抽样,叫随机数表法,这里仅介绍随机数表法。
怎样利用随机数表产生样本呢? 下面通过例子来说明,假设我们要考察某公司生产的500 克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋 进行检验,利用随机数表抽取样本时,可以按照下面的 步骤进行:
答:用到了普查的统计方法;优点是全面准确,缺点是 工作量大,在绝大部分的统计案例中无法实现(检查具 有破坏性);随机抽查的方法。
再看下面几个例子:
1.炊事员为了知道饼熟了没有,从刚出锅的饼上切下 一小块尝尝,如果这一小块饼熟了,那么可以估计整 张饼也熟了. 2.环境监测中心为了了解一个城市的空气质量情况, 会在这个城市中分散地选定几个点,从各地点采集数 据,对这些数据进行分析,就可以估计整个城市的空 气质量. 3.农科站要了解农田中某种病虫害的灾情,会随意地 选定几块地,仔细检查虫卵数,然后估计一公顷农田 大约平均有多少虫卵,会不会发生病虫害. 以上几个例子都不适宜做普查,而需要做抽样调查.
【说明】随机数表法抽样的步骤: (1)将总体的个体编号。 (2)在随机数表中选择开始数字。 (3)读数获取样本号码。
第一步,先将800袋牛奶编号,可以编为: 000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第 7列的数7(为了便于说明,下面摘取了附表1的第6行 至第10行)。
16 22 77 94 39 84 42 17 53 31 63 01 63 78 59 33 21 12 34 29 57 60 86 32 44 87 35 20 96 43 21 76 33 50 25 12 86 73 58 07 15 51 00 13 42 90 52 84 77 27
分析:(1)不是,样本的总体有无限个。 (2)不是,简单随机抽样是一种不放回的抽样。
二、简单随机抽样方法
1、抽签法 一般地,抽签法就是把总体中的N个个体编号,把号码
写在形状、大小相同的号签上,将号签放在一个容器中, 搅拌均匀后,每次从中抽取一个号签,连续抽般步骤: (1)将总体的个体编号。 (2)写号制签,把制好的签放在箱中摇匀; (3)连续抽签获取样本号码。
第三步,从选定的数7开始向右读(读数的方向也可以是 向左、向上、向下等),得到一个三位数785,由于785 <799,说明号码785在总体内,将它取出;继续向右读, 得到916,由于916>799,将它去掉,按照这种方法继 续向右读,又取出567,199,507,…,依次下去,直 到样本的60个号码全部取出,这样我们就得到一个容量 为60的样本。
演唱会
引例
假定一个小组有6个学生,要通过逐个抽取的方
法从中取3个学生参加一1 项活动。如果第1次抽取时
每个被抽到的概率都是
1
个被抽到的概率都是
,第2次抽取时,余下的每
,6 第3次抽取时,余下的每个
1
被抽到的概率都是
5,这种抽样 就是简单随机抽样。
4
新课讲授
一、简单随机抽样的概念 一般地,设一个总体含有有限个个体,设总体的个体数
简单的随机抽 样
统计初步的基本知识:总体与样本
总体:在统计学中,所有考察对象的全体叫做总体. 个体: 每一个考察的对象叫做个体. 样本:从总体中抽取的一部分个体叫做总体的一个样本. 样本容量:样本中个体的数目叫做样本的容量.
问题引入
根据国务院的决定,我国于2000年11月1日进行了第五次 全国人口普查的登记工作。近千万普查工作人员投入到了 艰苦繁重的工作中,结果显示至普查日期为止我国人口总 数为129533万。 上面的例子是一个统计上的典型事例,它用到了什么统计 方法?它有什么优缺点?你有什么其他的办法吗?发表一 下你的观点。
统计学中数据分析过程
采取样本
处理样本
分析样本
统计的基本思想方法是用样本估计总体,即通常 不是直接去研究总体,而是通过从总体中抽取一个样 本,根据样本的情况去估计总体的相应情况.
样本如何抽取?
抽样分为不放回抽样和放回抽样两种情况:
⑴不放回抽样:当我们逐个地从总体中抽取个体时,如果 每次抽去的个体不再放回总体,这种抽样叫做不放回抽样.
为N ,从中逐个不放回地抽取n个个体作为样(n≤N), 如果每次抽取时总体内的各个个体被抽到的概率相等,
就把这种抽样方法叫做简单随机抽样。
【说明】简单随机抽样必须具备下列特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
n
(5)简单随机抽样的每个个体入样的可能性均为 N 。
练一练: 1、下列抽样的方式是否属于简单随机抽样?为什么? (1)从无限多个个体中抽取50个个体作为样本。 (2)箱子里共有100个零件,从中选出10个零件进行质量 检验,在抽样操作中,从中任取出一个零件进行质量检验后, 再把它放回箱子。
49 54 43 54 82 57 24 55 06 88 16 95 55 67 19 78 64 56 07 82 09 47 27 96 54 84 26 34 91 64 83 92 12 06 76 44 39 52 38 79 99 66 02 79 54 08 02 73 43 28
17 37 93 23 78 77 04 74 47 67 98 10 50 71 75 52 42 07 44 38 49 17 46 09 62