波导的模式

合集下载

间隙波导传播的电磁波模式

间隙波导传播的电磁波模式

间隙波导传播的电磁波模式
间隙波导是一种传输电磁波的结构,在波导中存在多种不同的电磁波模式。

这些模式的存在和传播取决于波导的几何形状以及介质的特性。

常见的间隙波导模式包括以下几种:
1. TE模式:这种模式中,只有横向的电场分量存在,磁场分
量为零。

TE模式根据横向电场分布的不同,可以细分为TE10、TE20、TE01等不同的模式。

2. TM模式:这种模式中,只有横向的磁场分量存在,电场分
量为零。

TM模式根据横向磁场分布的不同,可以细分为
TM11、TM21、TM02等不同的模式。

3. TEM模式:这种模式中,既没有横向电场分量,也没有横
向磁场分量,即电磁波完全在波导口外传播。

TEM模式也可
以细分为TEM10、TEM20等不同的模式。

除了以上三种基本模式,间隙波导中还存在混合模式,即横向电场和磁场同时存在。

这些模式由于波导的几何形状和介质的特性的不同而具有不同的分布特征。

选择合适的模式取决于传输的频率范围和波导的尺寸。

不同的模式具有不同的传播特性和功率损耗,因此在应用中需要根据具体要求进行选择和设计。

矩形波导的模式(3篇)

矩形波导的模式(3篇)

第1篇一、矩形波导的模式分类矩形波导中的电磁波模式主要分为TE(横电磁波)模式和TM(纵电磁波)模式。

1. TE模式TE模式是指电场只在波导的横向(垂直于传播方向)分量存在,而磁场则在纵向(沿传播方向)分量存在。

根据电场和磁场在波导横截面上的分布,TE模式又可以分为TE10、TE20、TE01等模式。

(1)TE10模式:TE10模式是矩形波导中最基本、最常用的模式。

其电场分布呈矩形,磁场分布呈椭圆。

TE10模式的截止频率最高,适用于高频传输。

(2)TE20模式:TE20模式的电场分布呈矩形,磁场分布呈圆形。

其截止频率低于TE10模式,适用于中频传输。

(3)TE01模式:TE01模式的电场分布呈矩形,磁场分布呈椭圆。

其截止频率最低,适用于低频传输。

2. TM模式TM模式是指磁场只在波导的横向分量存在,而电场则在纵向分量存在。

根据电场和磁场在波导横截面上的分布,TM模式又可以分为TM01、TM11、TM21等模式。

(1)TM01模式:TM01模式的电场分布呈矩形,磁场分布呈圆形。

其截止频率最高,适用于高频传输。

(2)TM11模式:TM11模式的电场分布呈矩形,磁场分布呈椭圆。

其截止频率低于TM01模式,适用于中频传输。

(3)TM21模式:TM21模式的电场分布呈矩形,磁场分布呈圆形。

其截止频率最低,适用于低频传输。

二、矩形波导的模式特性1. 截止频率截止频率是矩形波导中一个重要的参数,它决定了电磁波在波导中能否有效传输。

不同模式的截止频率不同,其中TE10模式的截止频率最高,适用于高频传输。

2. 相速度相速度是指电磁波在波导中传播的速度。

不同模式的相速度不同,TE模式的相速度比TM模式快。

3. 模式损耗模式损耗是指电磁波在波导中传播时,由于波导壁的吸收和辐射等原因,能量逐渐衰减的现象。

不同模式的损耗不同,TE模式的损耗比TM模式小。

4. 传输特性矩形波导中不同模式的传输特性不同,如TE模式的传输特性较好,适用于高频传输;TM模式的传输特性较差,适用于低频传输。

波导定义

波导定义

波导波导,本意指一种在微波或可见光波段中传输电磁波的装置,用于无线电通讯、雷达、导航等无线电领域;宁波波导股份有限公司是专业从事移动通讯产品开发、制造和销售的高科技上市公司,主要产品有“波导”牌移动电话、掌上电脑、系统设备等;另有宁波波导萨基姆电子有限公司、宁波萨基姆波导研发有限公司。

1电磁波导定义波导(WAVEGUIDE),用来定向引导电磁波的结构。

常见的波导结构主要有平行双导线、同轴线、平行平板波导、矩形波导、圆波导、微带线、平板介质光波导和光纤。

从引导电Waveguide磁波的角度看,它们都可分为内部区域和外部区域,电磁波被限制在内部区域传播(要求在波导横截面内满足横向谐振原理)。

[1]通常,波导专指各种形状的空心金属波导管和表面波波导,前者将被传输的电磁波完全限制在金属管内,又称封闭波导;后者将引导的电磁波约束在波导结构的周围,又称开波导。

当无线电波频率提高到3000兆赫至300吉赫的厘米波波段和毫米波波段时,同轴线的使用受到限制而采用金属波导管或其他导波装置。

波导管的优点是导体损耗和介质损耗小;功率容量大;没有辐射损耗;结构简单,易于制造。

波导管内的电磁场可由麦克斯韦方程组结合波导的边界条件求解,与普通传输线不同,波导管里不能传输TEM模,电磁波在传播中存在严重的色散现象,色散现象说明电磁波的传播速度与频率有关。

表面波波导的特征是在边界外有电磁场存在。

其传播模式为表面波。

在毫米波与亚毫米波波段,因金属波导管的尺寸太小而使损耗加大和制造困难。

这时使用表面波波导,除具有良好传输性外,主要优点是结构简单,制作容易,可具有集成电路需要的平面结构。

表面波波导的主要形式有:介质线、介质镜像线、H-波导和镜像凹波导。

基本特征电磁波在波导中的传播受到波导内壁的限制和反射。

波导管壁的导电率很高(一般用铜、铝等金属制成,有时内壁镀有银或金),通常可假定波导壁是理想导体,波导管内的电磁场分布可由麦克斯韦方程组结合波导的边界条件来求解。

简述金属圆形波导的三个常用模式及应用场合

简述金属圆形波导的三个常用模式及应用场合

简述金属圆形波导的三个常用模式及应用场合金属圆形波导是一种常用的电磁波导形式,具有良好的电磁屏蔽和传输性能,适用于高频和微波领域。

它的三个常用模式分别是TE模式、TM模式和TEM模式。

下面将对这三个模式及其应用场合进行详细介绍。

1.TE模式(横电模式)TE模式是金属圆形波导中最常见的模式之一,它是指在横向电场分量存在的情况下,在轴向磁场分量为零的模式。

在TE模式中,横向电场分量(Eθ)存在,而轴向磁场分量(Hz)为零。

TE模式可以分为多个模态,例如TE01模式、TE11模式等,不同的模式对应着不同的场分布形式和工作频率。

TE模式的应用场合主要涉及到高频电磁场的传输和射频电路的设计。

例如在微波、雷达和通信系统中,TE模式的波导可用于传输和导引高频信号。

此外,TE模式的波导还可以用于滤波器、功分器、变压器等高频电路中,其良好的传输特性为这些器件的高效工作提供了良好的支持。

2.TM模式(横磁模式)TM模式是金属圆形波导中另一个常见的模式,它是指在轴向磁场分量存在的情况下,在横向电场分量为零的模式。

在TM模式中,轴向磁场分量(Hz)存在,而横向电场分量(Eθ)为零。

TM模式也可以分为多个模态,如TM01模式、TM11模式等。

TM模式的应用场合主要涉及到微波感应加热、微波炉等高功率微波器件。

在这些设备中,TM模式的波导具有较好的电磁屏蔽性能,可以有效防止电磁波的泄漏和传输损耗,同时还能够集中能量,提高功率传输效率。

此外,TM模式的波导还可以用于高频振荡器、非线性器件等微波电子器件中,为它们的正常工作提供必要的电磁环境。

3.TEM模式(传输线模式)TEM模式是金属圆形波导中最特殊的模式,它是指在横向电场和轴向磁场同时存在的情况下,在波导内部电场和磁场都沿着波导轴向分布的模式。

在TEM模式中,横向电场和轴向磁场同时存在,并且它们的分布形式满足麦克斯韦方程组的解。

TEM模式的应用场合主要是短距离的高频信号传输和微波电路连接。

第1章--波导的模式

第1章--波导的模式
分析各种结构的波导的模式特性都是从亥姆霍兹方程出发,在一定边界条件下求其解,得到波导的特征方程和场分布函数,进一步数值求解特征方程则可得到波导的模有效折射率N和相应的模传播常数 。因此亥姆霍兹方程在分析平板波导模式特性方面具有十分重要性的意义。
12.什么是本征模?本征模的作用是什么?
在一定的电磁场边界条件下求解波导的横向亥姆霍兹方程,可得到其一系列特解:场函数 和传播常数 ,这些特解称为本征模。
16.平板波导TM模的电磁场分量的表达式为
试阐述它们之间的相互关系。
由上面公式可知,TM模电磁场的6个分量中有3个分量为零,另外3个分量不为零,即Hx0(x) = 0,Hz0(x) = 0,Ey0(x) = 0,Hy0(x)0,Ex0(x)0,Ez0(x)0。还可看出,只要知道Hy0(x)的表达式,Ex0(x)、Ez0(x)的表达式都可以用Hy0(x)表示出来。因此对于TM模我们只要求出Hy0(x)的表达式,则Ex0(x)、Ez0(x)的表达式亦可求出。
25.对称型三层平板波导中导模的有效折射率随波导芯厚度的变化曲线如图所示,试阐述其变化规律。
(25题图)对称型三层平板波导中TE(实线)和TM(虚线)导模的有效折射率N随波导芯厚度b的变化曲线
图中可以看出,有效折射率N随波导芯厚度b的增大而增大,随模阶数m的增大而减小,其中0阶导模的传播常数为最大。当波导芯厚度给定后,传播常数取分立值,并组成分立谱。在此算例中芯层与上下包层的折射率差较小,模阶数相同的TE和TM导模的传播常数趋于相同而接近简并,相应的TE和TM导模的传输曲线近于重合。所谓简并,是指同一个有效折射率的值对应两个或两个以上的模式。如果芯层与上下包层的折射率差增加到足够大,这种简并将会被消除,相应的TE和TM导模的传输曲线将会分离。当导模的有效折射率N等于包层的折射率n2时, 变为零,此时导模不再存在,辐射模产生,称为导模截止,图中传输曲线与横轴的交点称为导模的截止点,这些截止点等间距分布。图中可以看出,0阶导模的传输曲线通过坐标原点,即0阶导模的截至芯厚度等于0,这意味着对于任何芯厚度的对称型平板波导,TE0和TM0基模总能在其中传输,永不截止。

1.2-介质板波导

1.2-介质板波导
( x d )
k k0 n2
应有K 2 k0 2 n2 2 2 0, 令 2 2 k0 2 n2 2
D ( x d ) e i D x ( x d ) ( )e x
12
(3) 边界条件和特征方程式
当x d 时, 应有E y1 E y 2 , H z1 H z 2 A(1 K
1.2 介质平板波导
1
主要内容
1.
基本波动方程和波导方程式
2.
3.
对称介质平板波导的传输模式
介质板波导中的多模群时延
2
1、波动方程和波导方程式
1)波动方程:由麦克斯韦方程组推导出
B E t E ( B ) t D 2 ( E ) E ( ) t t D ( E ) E E 0 E E
准备2
i E z H z Ex 2 ( ) K x y i H z E z Hx ( ) 2 K x y i E z H z E y 2 ( ) K y x i H z E z Hy ( ) 2 K y x K 2 k 2 2 2 2
两个平面波的传输方向与介质板的法线夹角
tan

K
在介质板上,两个平面波满足内部全反射条件, 它们对介质板入射角度是由模式传输矢量的分量β、K所决定。
21 结论:模式截止的情况与以临界角入射到介质板上的平面波相对应
3)TM模式(以TE分析类似) 3.介质板波导中的多模群时延
d dL dH K 2 k0 2 n12 2 f 0
得 令

光波导镜片原理

光波导镜片原理

光波导镜片原理
光波导镜片是利用光波导效应来实现光的传输和控制。

光波导镜片一般由高折射率的介质以及包围在介质外部的低折射率的介质组成。

光波导镜片的原理如下:
1. 光波导效应:当光从高折射率介质中向低折射率介质传播时,由于光在两种介质中传播速度的不同,光束会受到反射和折射的影响。

其中一部分光束会被完全反射回高折射率介质中,形成镜面反射。

另一部分光束会被折射出低折射率介质,在介质边界处形成反射和透射。

2. 全反射:在光波导镜片的边界上,当入射角大于临界角时,光束会发生全反射,完全反射回高折射率介质中。

这样,光波就会在介质中一直传播,不会从边界漏出。

3. 波导模式:光波导镜片内的光波传播形成不同的模式,称为波导模式。

波导模式是光波在光波导镜片中的特定传播方式,由于界面反射和折射的限制,波导模式会导致光束在波导内部沿着特定路径传播。

通过控制光波导镜片的结构和材料参数可以调节光波的传输和控制,实现光信号的分光、聚焦、耦合、分散、延迟、调制等功能,并在光学传感、光通信、光计算等领域得到广泛应用。

波导中微波的模式

波导中微波的模式

波导中微波的模式(TE\TM\TEM)首先什么是模式,模式就是没有激励源条件下的Maxwell方程的解。

T是transverse 的缩写,本意为“横向”。

在模式中特指“与传输方向垂直的方向”。

举例,若波导中电磁波传输方向为z方向,则横向为直角坐标系中的x,y 方向;或柱坐标系的\rho,\phi方向。

TE模式表示“所有电场分量均与传输方向垂直”,即“传输方向上没有电场分量”;TM模式同理。

TEM模式意义为“电场、磁场分量均与传输方向垂直”。

TEM波就是横波,HxE与k三者相互垂直,其他方向都没有分量,但有的在波传播方向k上有H波或E波,这就产生了所谓的TE波或TM波沿一定途径(比如说波导)传播的电磁波为导行电磁波。

根据麦克斯韦方程,导行电磁波在传播方向上一般是有E和H分量的。

光的传播形态分类:根据传播方向上有无电场分量或磁场分量,可分为如下三类,任何光都可以这三种波的合成形式表示出来。

1、TEM波:在传播方向上没有电场和磁场分量,称为横电磁波。

若激光在谐振腔中的传播方向为z方向,那么激光的电场和磁场将没有z方向的分量!实际的激光模式是准TEM模,即允许Ez、Hz分量的存在,但它们必须<<横向分量,因为较大的Ez 意味着波矢方向偏离光轴较大,容易溢出腔外,所以损耗大,难于形成振荡。

2、TE波(即s波):在传播方向上有磁场分量但无电场分量,称为横电波。

在平面光波导(封闭腔结构)中,电磁场分量有Ey, Hx, Hz,传播方向为z方向。

3、TM波(即p波):在传播方向上有电场分量而无磁场分量,称为横磁波。

在平面光波导(封闭腔结构)中,电磁场分量有Hy, Ex, Ez,传播方向为z方向。

三者可以这样记忆:横电磁波就是电和磁都是横着的,横电波只有电场是横的,横磁波就只有磁场是横的而所谓横,就是与电磁波传播方向向量k是垂直的,可以想象一个单簇的光线就是一根直线的水管,在水管横截面上的就是与水流方向垂直的,所谓横,就是这个意思了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在上面讨论的几种模式中,辐射模的传播常数最小,因此辐射模的相速度最大,称为“快波”,而表面模的传播常数最大,因此表面模的相速度最小称为“慢波”。
11.给出平板波导的标量亥姆霍兹方程的表达式,并阐述其在分析平板波导模式特性方面的重要性。
平板波导的标量亥姆霍兹方程的形式为
式中代表电磁场6个分量Ex、Ey、Ez、Hx、Hy、Hz中的任何一个分量。
14.平板波导TE模的电磁场分量的表达式为
试阐述它们之间的相互关系。
由上面公式可知,TE模电磁场的6个分量中有3个分量为零,另外3个分量不为零,即Ex0(x) = 0,Ez0(x) = 0,Hy0(x) = 0,Ey0(x)0,Hx0(x)0,Hz0(x)0。还可看出,只要知道Ey0(x)的表达式,Hx0(x)、Hz0(x)的表达式都可以用Ey0(x)表示出来。因此对于TE模我们只要求出Ey0(x)的表达式,则Hx0(x)和Hz0(x)的表达式亦可求出。
第1章波导的模式
1.简述光波导模式理论在优化设计和分析模拟光波导器件方面的重要性。
光波导是许多光电子器件的基本结构,如滤波器、波分复用器、路由器、波长变换器、调制器、开关、放大器、激光器等等,这些光电子器件在光通信网络中具有十分广泛的应用。在优化设计和分析模拟这些光电子器件时都要涉及到有关光波导模式的基本理论,因此了解和掌握光波导模式理论就显得十分重要。
(a)横截面图(b)非对称型1>2>3(c)对称型1>2=3
(3题图)三层平板波导的横截面及相对介电常数分布
4.对光波导模式特性的分析,可以采用那些方法?各有什么特点?
对光波导模式特性的分析,可以采用射线光学理论。射线光学理论的优点是对平板波导的分析过程简单直观,对某些物理概念能给出直观的物理意义,容易理解。缺点是对于其他结构更为复杂的波导,射线光学理论不便于应用,或只能得出粗糙的结果。
分析各种结构的波导的模式特性都是从亥姆霍兹方程出发,在一定边界条件下求其解,得到波导的特征方程和场分布函数,进一步数值求解特征方程则可得到波导的模有效折射率N和相应的模传播常数 。因此亥姆霍兹方程在分析平板波导模式特性方面具有十分重要性的意义。
12.什么是本征模?本征模的作用是什么?
在一定的电磁场边界条件下求解波导的横向亥姆霍兹方程,可得到其一系列特解:场函数 和传播常数 ,这些特解称为本征模。
(8题图)导模
9.什么是表面模?
导模的有效折射率N不可能大于波导芯的折射率n1,传播常数 不可能大于k0n1,但是对于某些特殊结构的波导,如金属包层型波导和非线性波导,会出现其有效折射率N大于波导芯折射率n1的情况。这种N>n1的模式称为表面模。
10.什么是“快波”?什么是“慢波”?
令真空中光波长为0,频率为f,角频率为,在波导中光波长为,则波导中模式传播的相速度为
光在本质上是一种电磁波。研究光在波导中传输的最基本的方法是采用电磁理论,亦即波动光学理论。这种方法是从麦克斯韦方程组出发导出波动方程和亥姆霍兹方程,在一定的边界条件下求其解。一般而言,若想全面、正确地分析各种结构波导的模式特性,必须采用电磁理论,才能够给出波导模式全面、正确的解析结果或数值结果。
5.什么是波导的模式?波导的模式类型有那些?并说明各种模式的入射角、有效折射率和传播常数的变化范围。
在平板波导中存在两种基本的本征模式,一种称为TE模,另一种称为TM模。而波导中其他形式的电磁场都可以按这两种基本模式进行傅里叶展开来表达。
13.简述平板波导中的两种基本模式TE模和TM模。
平板波导中存在两种基本的本征模式TE模和TM模,用光的电场和磁场的偏振方向来定义比较直观。选择电场只沿平行于波导界面的y方向偏振,此时电场垂直于光的传输方向z,是横向的,因而把这种模式称为横电模(Transverse Electric Mode),又称为TE模。选择磁场只沿平行于波导界面的y方向偏振,此时磁场垂直于光的传输方向z,是横向的,因而把这种模式称为横磁模(Transverse Magnetic Mode),又称为TM模。
(6题图)空间辐射模
7.什么是衬底辐射模?
如果入射角1增大到使光在上界面发生全反射但在下界面还没发生全反射,如图所示,此时光在传输过程中不断地有折射光进入下包层,即光能量不断地从下包层(有时也为衬底)中辐射出去,这种模式称为衬底辐射模。
(7题图)衬底辐射模
8.什么是导模?
如果入射角1增大到使光在上下两个界面上都发生全反射,此时上下包层中不再有折射光,如图所示。在这种情况下,光能量不再向包层中辐射,光被限制在波导芯中以锯齿波的形式沿z方向传输,这种模式称为导模。
2.光波导是怎样的一种器件?
我们知道,光束在介质中传输时,由于介质的吸收和散射而引起损耗,由于衍射而引起发散,这些情况都会导致光束中心部分的强度随传输距离的增大不断地衰减。光波导是这样一种器件,它能使光束的能量在横的方向上受到限制,从而能够引导光束沿特定的方向传输,并使损耗和噪声降到最小。光波导简称波导。
3.简述三层平板波导的基本结构。
结构最简单的波导是由三层均匀介质组成的,中间的介质层称为波导层或芯层,芯层两侧的介质层称为包层或限制层。芯层的折射率要比两侧包层的折射率大,使得光束能够集中在芯层中传输,从而起到导波的作用。
令1、2、3分别为波导芯、下包层和上包层的相对介电常数,n1、n2、n3分别为相应的折射率。当n1、n2、n3各自为常数时,称为陡变式折射率分布,或称为阶梯式折射率分布。为了分析方便,常令 。当 时,称为对称型三层平板波导,当 时,称为非对称型三层平板波导。三层平板波导的横截面及相对介电常数分布如图所示。
我们把波导中所能传输的电磁场型称为波导的模式。波导中的模式分为空间辐射模、衬底辐射模、导模和表面模等几大类。空间辐射模、衬底辐射模和导模的入射角1、效折射率N和传播常数的变化范围为
折射率分布模式类型1N
n1>n2>n3空间辐射模
Hale Waihona Puke 衬底辐射模导模.n1>n2=n3空间辐射模
导模
6.什么是空间辐射模?
光在三层平板波导中传输时,从射线的角度来看,要不断地在波导的两个界面上发生反射和折射,如图所示。当入射角1较小时,使得光在上下两个界面上都不发生全反射。在这种情况下,光在传输过程中不断地有折射光进入上下包层,即光能量不断地从上下包层中辐射出去,这种模式称为空间辐射模。
相关文档
最新文档