麦克斯韦速率分布函数资料教程
§2.3 麦克斯韦速率分布

f
(v)
d
v
4
π (
2
m π kT
)3/ 2
exp
mv2 2k T
v2
d
v
(三)理想气体分子的平均速率、方均根速率、 最概然速率
• (1) 平均速率
v
0
vf (v) d v
0
4
π
2
m πk
T
3
/
2
v3
exp
mv2 2kT
d
v
利用附录2-1中的公式可得
§2.3.2 麦克斯韦速率分布
• (一)气体分子速率分布不同于分子束 中分子的速率分布。
(二)麦克斯韦速率分布
• 早在1859年,英国物理学家麦克斯韦利用平衡态理想 气体分子在三个方向上做独立运动的假设导出了麦克 斯韦速率分布,其表达式如下:
f (v) d v 4 π(m)3/ 2来自mv2e 2kT
的概率.它等于曲线段下面的面积。
v2 v1
f (v) d v v2 v1
4
π ( 2
m π kT
)3/ 2
exp
mv2 2k T
v2
d
v
• 计算积分时,可利用教材中 附录2-1中的积分公式。
exp( ax2 ) x2 d x π a3/ 2
0
4
•整个曲线下的面积为
0
f (v) d v 0
• (4)概率密度取极大值时的速率称为最概然速率(也
称最可几速率),以 vp 表示。
• 我们只要记住麦克斯韦速率分布的函数形式为
Av2
exp
mv 2 2k T
5麦克斯韦速率分布

2.平均速率
v
气体分子在各种速率的都有,那么 平均速率是多大呢? 假设:速度为v1的分子有 N1 个, 速度为v2的分子有N 2 个, 平均速率为: v N1v1 N 2v2 N nvn N n
i 1
N i v i
N
§6. 麦克斯韦速率分布律/三.麦克斯韦速率分布律应用
N 解得:a 8v 0
a ( v 5 v 0 )dv N v0 NF ( v )
M
• 2)速率分布在2v03v0 间隔内的分子数N
N N FM ( v )dv
2 v0 3 v0 3 v0 2 v0
a
3 3adv 3av0 N 8
v0
v
§6. 麦克斯韦速率分布律/五.例题
§6. 麦克斯韦速率分布律/四.麦克斯韦速率分布律验证
例4:假想的气体分子,其速率分布如图 所示。当v>5v0时分子数为零。试求 1)根据N和v0,表示常数a的值; 2)速率在2v0到3v0间隔内的分子数; 3)分子的平均速率。
解:根据速率分布 曲线,速率分布可 表示为
NFM ( v )
3a 2a
§6. 麦克斯韦速率分布律/ 二、麦克斯韦速率分布规律
1865年春辞去教职回到家乡系统地总结他 的关于电磁学的研究成果,完成了电磁场理论的 经典巨著《论电和磁》,并于1873年出版。 1871年受聘为剑桥大学新设立的卡文迪什实验 物理学教授,负责筹建著名的卡文迪什实验室, 1874年建成后担任这个实验室的第一任主任, 直到1879年11月5日在剑桥逝世。
2kT vp m
T1 T2
T2 T1
曲线的峰值右移, 由于曲线下面积 为1不变,所以峰 值降低。 o
麦克斯韦速率分布

2. 朗缪尔实验装置 v L
N
(总分子数 )
3. 实验原理
N
(v ~vv的分子数)
由于凹槽有一定宽度,因而速度选择器选择的不是某一个
速率大小,而是某一个速率范围:v ~ v+∆v
令N表示单位时间内穿过第一个凹槽进入速度选择器的总分子数 ,
∆N表示速率在v ~ v+∆v 范围的分子数,
⑵ 曲线下的细窄条面积
f (v)dv dN N
表示了分子出现在v ~ v+dv 区间段的概率
⑶ 曲线下v1 ~ v2 区间的阴影面积为:
vv12
f
(v)dv
vv12 4
(
m
)
3 2
exp(
mv
2
)
v
2dv
2 kT
2kT
表示分子速率处于v1 ~ v2 区间的概率
⑷ 对全部分子可出现的速率求和,即f(v)曲线下总面积:
这是一本划时代巨著,它与牛顿时代的
19世纪伟大的英国 物理学家、数学家。 经典电磁理论的奠 基人,气体动理论 的创始人之一。
《自然哲学的数学原理》并驾齐驱,它 是人类探索电磁规律的一个里程碑。 •在气体动理论方面,他还提出气体分子
按速率分布的统计规律。
§2.3.1 分子射线束实验
用实验方法测定麦氏速率分布的实验有很多。 最早是德国物理 学家斯特恩于1920年做的银蒸气分子射线束实验。 后来不断改进, 包括1934年葛正权测定铋蒸汽分子速率分布,1955年精确验证麦氏 分布率的密勒·库士的铊蒸汽原子束实验。
dN dv N dv
例如,取 v 10m/s
ΔN /( NΔv) o
麦克斯韦速率分布函数

M
M
说明
(1) 一般三种速率用途各 不相同
f(v) T
·讨论速率分布一般用 v p ·讨论分子的碰撞次数用 v
·讨论分子的平均平动动 O
vp v
v
能用 v 2
v2
(2) 同一种气体分子的三种速率的大小关系: v 2 v v p
例 氦气的速率分布曲线如图所示.
求 (1) 试在图上画出同温度下氢气的速率分布曲线的大致情况, (2) 氢气在该温度时的最概然速率和方均根速率
1 f (v )dv
4π (
)3
/
§6-5 麦克斯韦速率分布律
一. 分布的概念
·问题的提出
气体系统是由大量分子组成, 而各分子的速率通过碰撞 不断地改变, 不可能逐个加以描述。
·分布的概念
例如学生人数按年龄的分布
年龄 人数按年龄的分布 人数比率按年龄的分布
15 ~16 2000 20%
17 ~18 3000 30%
19 ~20 4000 40%
1.381023 J/K
思考:
v 2 vf
v1
(v )dv
是否表示在v1
~v2 区间内的平均速率
?
2. 方均根速率
v 2
v
2
f
(v )dv
3kT
0
μ
3. 最概然速率
v2
3kT 1.73 RT
μ
M
df (v ) 0 dv v v p
vp
2kT μ
2RT 1.41 RT
2π kT
k = 1.38×10-23 J / K
式中μ为分子质量,T 为气体热力学温度, k 为玻耳兹曼常量
经典:第四讲-速度分布函数-麦克斯韦速率

f (v) dN Ndv
速率分布函数
理解分布函数的几个要点:
1.条件:一定温度(平衡态)和确定的气体系统,T和m是一定的; 2.范围:(速率v附近的)单位速率间隔,所以要除以dv;
3.数学形式:(分子数的)比例,局域分子数与总分子数之比。
8
物理意义:
速率在 v 附近,单位速率区间的分子数占总分子数
• dN/N 是 v 的函数; •当速率区间足够小时(宏观小,微观大), dN/N还应与
区间大小成正比。
为此,规定以单位速率间隔为比较标准,即 dN ,这样,比
Ndv
值 dN
Ndv
就反映出了分布随速率v的改变而改变。为此我们规定;
7
定义:处于一定温度下的气体,分布在速率v附近的
单位速率间隔内的分子数占总分子数的百分比只是
(2) 氢气在该温度时的最概然速率和方均根速率
解 (2)
vp
2RT
M
RT 2 103
1000
m/s
RT
f(v)
(v p )H2 103
1.41 103 m/s
( v 2 )H2
3RT M
1.73103 m/s
He H2
1000
v
29
例2 有N 个粒子,其速率分布函数为
f (v )
(2) 因为速率分布曲线下的面积代表一定速率区间内 的分子与总分子数的比率,所以
v v0 的分子数与总分子数的比率为
N
N
v0a
v0
2 3v 0
2 3
N 2 N
3
因此, v>v0 的分子数为 ( 2N/3 ) f (v )
麦克斯韦气体速率分布函数

设总粒子数为N,粒子速度在x,y,z三个方向的分量分别为v(x),v(y),v(z)。
(1)以dNv(x)表示速度分量v(x)在v(x)到v(x)+dv(x)之间的粒子数,则一个粒子在此dv(x)区间出现的概率为dNv(x)/N。
粒子在不同的v(x)附近区间dv(x)内出现的概率不同,用分布函数g(v(x))表示在单位v(x)区间粒子出现的概率,则应有dNv(x)/N=g(v(x))dv(x)系统处于平衡态时,容器内各处粒子数密度n相同,粒子朝任何方向运动的概率相等。
因此相应于速度分量v(y),v(z),也应有相同形式的分布函数g(v(y)),g(v(z)),使得相应的概率可表示为dNv(y)/N=g(v(y))dv(y)dNv(z)/N=g(v(z))dv(z)(2)假设上述三个概率是彼此独立的,又根据独立概率相乘的概率原理,得到粒子出现在v(x)到v(x)+dv(x),v(y)到v(y)+dv(y),v(z)到v(z)+dv(z)间的概率为dNv/N=g(v(x))g(v(y))g(v(z))dv(x)dv(y)dv(z)=Fdv(x)dv(y)dv(z)式中F=g(v(x))g(v(y))g(v(z)),即为速度分布函数。
(3)由于粒子向任何方向运动的概率相等,所以速度分布应与粒子的速度方向无关。
因而速度分布函数应只是速度大小v=√(v(x)²+v(y)²+v(z)²)的函数。
这样,速度分布函数就可以写成下面的形式:g(v(x))g(v(y))g(v(z))=F(v(x)²+v(y)²+v(z)²)要满足这一关系,函数g(v(x))应具有C*exp(A*v(x)^2)的形式。
因此可得F=C*exp(A*v(x)²)*C*exp(A*v(y)²)*C*exp(A*v(z)²)=C³exp(Av²)下面来定常数C及A。
麦克斯韦速率分布律.pptx

麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度,
说明下式的物理意义:
(1)nf (v)dv
f (v) dN , n N
Ndv
V
nf (v)dv
dN V
表示单位体积内分布在速率区间 v 内v的 dv
分子数。
第4页/共20页
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度, 说明下式的物理意义:
(2)Nf (v)dv
f (v) dN Ndv
Nf (v)dv dN
表示分布在速率区间 v v 内的dv分子数。
第5页/共20页
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度,
说明下式的物理意义:
(3)n v2 f (v)dv
v1
f (v)
dN
,n
N
Ndv
V
n v2 f (v)dv N N N
把这些量值代入,即得
W v= 1 v p 50
N=
N
4
99 100
2
e
99 100
2
1 50
1.66%
第19页/共20页
f (v ) p3
T1
T2
T1 T2 T3
温度越高,速率 大的分子数越多
T3
v v v O
p1 p 2 p3
v
第15页/共20页
气体的三种统计速率
同一温度下不同种气体速率分布比较
f (v)
m1
m1 m2 m3
m2
分子质量越小,速
率大的分子数越多
。
m3
O
v
第16页/共20页
04麦克斯韦速率分布律-PPT文档资料

9
讨论: 1)vP与温度T的关系
f (v )
T1
2kT vp m
T2
T v p
T 2 T 1
曲线的峰值右移,由 于曲线下面积为1不变, 所以峰值降低。
o
v p1
v p2
v
f (v )
m2
2)vP与分子质量m的关系
m1
m m vp m 2 1
曲线的峰值左移,由 于曲线下面积为1不变, 所以峰值升高。
N dN Nf ( v ) dv 在 v v2区间内的分子数为 1
N v2 f (v) dv 在 v v2有限区间内的概率为 1 v 1 N v 2 v dN Nvf ( v ) dv 在 v v 区间内的总速率 1 2 v
v 1 v 1
v 2
v 2
1
4
N dN Nf ( v ) dv 在 v v2区间内的分子数为 1
1.将速率从 0 分割成很多相等的速率区间。 例如速率间隔取10m/s , 整个速率分为0—10;10—20;…等区间。 在 v v v 区间内的 分子数为 N 2.总分子数为N,
N/ N 在 v v v 区间内的概率为
2
在 v v v 区间内的 分子数为 N 2.总分子数为N,
0
vf(v)dv 平均速率: v vf(v)dv f(v)dv m e vdv 4 kT 2
0
8kT v m
0
3 /2
2 mv 2 kT 3
0
8 kT m
11
8 RT 8kT 上下同乘N 有: RT v v 1.59 A M mol M mol m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(v)=41/2[m/(2kT)]3/2 exp[mv2/(2kT)]v2.
f(t)表示在时间 t 附近的dt间 隔内,平均每单位时间间隔内 质点在运动中所通过的路程。 有时为了叙述的简便,在不致 引起误解的前提下,常常就说 f(t)表示在时间 t 附近的单位时 间间隔内质点在运动中所通过 的路程。
时间分布函数给出了质点 在运动过程中所通过的路程 对于时间的分布情况的具体 图像。由此可见,f(t)其实就 是质点运动在t时刻的瞬时速 率,因而 f(t)-t 这条时间分 布曲线正是力学中熟知的速 率-时间曲线。
考虑到这种情况,就 可以用 f(v) 类比 f(t). 既 然 f(v) 表示在速率 v 附 近的dv间隔内,平均每 单位速率间隔内的分子 数占总分子数的比率,
那我们同样也不应该问速率恰 好等于特定值 v 的分子数占总 分子数的比率是多少,因为此 时速率间隔等于零;如果非要 问速率恰好等于 v 的分子数占 总分子数的比率有多少,那就 只能说这样的比率等于零。
看来,把热学中的速率分 布函数与力学中的速率-时 间函数(即质点在运动中所 通过的路程对于时间的分布 函数)进行类比,确实有助 于正确理解和掌握速率分布 函数的概念,应该可以收到 良好的效果。
应该注意,类比推理是 一种或然性的推理方法, 通过类比推理所得到的结 论正确与否,当然还必须 经过实践的检验和证明。 没有经过检验和证明的类 比推理只是合理的猜想。
为了描述质点在运动过程 中所通过的路程对于时间的 分布情况的具体图像,则可 以取时间为横坐标值,画出 在t至 t+t 间隔内质点运动 所通过的路程 S 的直方图 (条形统计图)。
条形的水平宽度为 t,条 形的面积为S,因此,条形 的竖直高度(纵坐标值)则 为 S/t,它就是质点在 t至 t+t间隔内的平均速率。显 然,此高度与条形所在处时 间的取值有关,是t的函数。
f(v)表示在速率v 附近的dv间 隔内,平均每单位速率间隔内 的分子数占总分子数的比率。 有时为了叙述的简便,在不致 引起误解的前提下,常常就说 f(v)表示在速率v 附近的单位速 率间隔内的分子数占总分子数 的比率。
速率分布函数给出了气 体分子数对于速率取值的 分布情况的具体图像。
与上述情况类似,质点 在运动过程中的各个相同 的时间间隔内所通过的路 程往往并不相同。
为了更精确地描述气体分子
的速率分布情况,令v 0,
此时直方图的上沿由折线变为
光滑连续曲线,而 N/(Nv)
dN/(Ndv),它当然仍是速率
v的函数,记为f(v),即
f(v) = dN/(Ndv).
(1)
这就是分子数对于速 率的分布函数,或者称 为速率分布函数;(1)式 的图像就是速率分布曲 线。
exp[mv2/(2kT)]v2dv
=41/2vp-3 exp(v2/vp2)v2dv.
f(v)dv=41/2x2 exp(x2)dx =F(x)dx.
但要特别注意: F(x)=41/2x2exp(x2)
f(v).
三、速率分布函 数类比质点运动 中的时间分布函 数
类比法是一种在物理学 研究中常用的逻辑推理方 法。使用类比法时,根据 两类对象之间在某些方面 的相似或相同,来推出它 们在其他方面也可能相似 或相同.
为了更精确地描述质点运
动的时间分布情况,令 t
0,此时直方图的上沿由折线
变为光滑连续曲线,而S/t
dS/dt,它当然仍是时间 t
的函数,记为f(t),即
f(t) = dS/dt.
(2)
这就是质点在运动中 所通过的路程对于时间 的分布函数,或者称为 时间分布函数; (2) 式 的图像就是时间分布曲 线。
前已指出,质点在t时 刻附近的t 间隔内运动 的平均速率为S/t,在 dt 间隔内运动的平均速 率(也就是t时刻的瞬时 速率)为dS/dt.
但是我们不应该问在 t 时 刻质点通过了多少路程,因 为质点只有在经历了一定的 时间间隔后才会通过一段路 程;如果非要问在 t 时刻质 点通过了多少路程,那只能 说它通过的路程等于零。
但是,在物理学的教学 中介绍早已被检验证明过 的科学知识时,直接使用 类比推理的方法却是好处 良多的。我们应该通过一 些实例来掌握这种行之有 效的逻辑推理方法。
四、随机事件 与概率
随机现象:有可 能出现多种结果的 现象。
随机事件:随机 现象的每一表现或 结果。
频率:某事件出 现次数对总次数的 比率。
通过以上的讨论可 以看出,热学中的速 率分布曲线与力学中 质点运动的速率-时 间曲线之间存在着颇 为相似的情况。
因此,如果在热学 中学习速率分布函数 时,类比力学中的速 率-时间函数,就能 够比较容易地认识到 其物理意义。
不仅如此,用 f(v) 类比 f(t),还利于正确理解为什 么说 “不应该问速率刚 好等于特定值 v 的分子有 多少个?如果非要这样问, 那这种分子其实一个都没 有。”
概率:某事件频 率在总次数趋于无 限大时的极限。
不可能事件 的概率为零。
必然事件的 概率为一。
概率加法定理: 互不相容(互斥) 事件出现的概率的 和等于出现其中任 一事件的概率。
概率乘法定理: 互相独立事件同时 出现的概率等于各 事件单独出现时概 率的积。
五、麦克斯韦速 率分布曲线出现 极大值的点的轨
麦克斯韦速 率分布函数
及其 约化形式
一、麦克斯韦 速率分布函数
f(v)=4[m/(2kT)]3/2 exp[mv2/(2kT)]v2 =4-1/2[m/(2kT)]3/2 exp[mv2/(2kT)]v2.
二、麦克斯韦 速率分布函数
的约化形式
令vp=(2kT/m)1/2, x=v/vp.
f(v)dv=41/2[m/(2kT)]3/2
为了描述处于平衡态下的气体 的分子数在不同的速率间隔内的 分布情况,可以取分子速率 v 为 横坐标值,画出速率取值在v至v +v间隔内的分子数 N 占总分 子数 N 的比率的直方图(条形统 计图)。
条形的水平宽度为v, 条形的面积为 N/N,因 此,条形的竖直高度(纵 坐标值)则为N/(Nv). 显然,此高度与条形所在 处速率的取值有关,是 v 的函数。