七年级数学下册第4章因式分解4.2提取公因式法练习新版浙教版
浙教版数学七年级下《4.2提取公因式法》同步练习含答案解析

浙教版七年级下册第4章 4.2提取公因式同步练习一、单选题(共12题;共24分)1、(3x+2)(﹣x4+3x5)+(3x+2)(﹣2x4+x5)+(x+1)(3x4﹣4x5)与下列哪一个式子相同()A、(3x4﹣4x5)(2x+1)B、﹣(3x4﹣4x5)(2x+3)C、(3x4﹣4x5)(2x+3)D、﹣(3x4﹣4x5)(2x+1)2、下列各式分解正确的是()A、12xyz﹣9x2y2=3xyz(4﹣3xy)B、3a2y﹣3ay+3y=3y(a2﹣a+1)C、﹣x2+xy﹣xz=﹣x(x+y﹣z)D、a2b+5ab﹣b=b(a2+5a)3、计算:22014﹣(﹣2)2015的结果是()A、24029B、3×22014C、﹣22014D、()20144、多项式﹣2x2﹣12xy2+8xy3的公因式是()A、2xyB、24x2y3C、﹣2xD、以上都不对5、将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是()A、3x﹣9yB、3x+9yC、a﹣bD、3(a﹣b)6、(﹣2)2014+3×(﹣2)2013的值为()A、﹣22013B、22013C、22014D、220147、下列各式的因式分解中正确的是()A、﹣a2+ab﹣ac=﹣a(a+b﹣c)B、9xyz﹣6x2y2=3xyz(3﹣2xy)C、3a2x﹣6bx+3x=3x(a2﹣ab)D、xy2+x2y=xy(x+y)8、若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为()A、aB、﹣3C、9a3b2D、3a9、分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A、(x﹣3)(b2+b)B、b(x﹣3)(b+1)C、(x﹣3)(b2﹣b)D、b(x﹣3)(b﹣1)10、若a+b=6,ab=3,则3a2b+3ab2的值是()A、9B、27C、19D、5411、下列多项式中,能用提取公因式法分解因式的是()A、x2﹣yB、x2+2xC、x2+y2D、x2﹣xy+y212、多项式(x+2)(2x﹣1)﹣2(x+2)可以因式分解成(x+m)(2x+n),则m﹣n的值是()A、2B、﹣2C、4D、5二、填空题(共6题;共6分)13、将多项式2x2y﹣6xy2分解因式,应提取的公因式是________14、把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是________.15、已知:m+n=5,mn=4,则:m2n+mn2=________ .16、将3x(a﹣b)﹣9y(b﹣a)分解因式,应提取的公因式是________ .17、给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是________ (填上序号).18、夏老师发现,两位同学将一个二次三项式分解因式时,聪聪同学因看错了一次项而分解成3(x﹣1)(x﹣9),江江同学因看错了常数项而分解成3(x﹣2)(x﹣4),那么,聪明的你,通过以上信息可以知道,原多项式应该是被因式分解为________ .三、解答题(共5题;共25分)19、分解因式:(2a+b)(2a﹣b)+b(4a+2b)20、将x(x+y)(x﹣y)﹣x(x+y)2进行因式分解,并求当x+y=1,时此式的值.21、先分解因式,再求值:2(x﹣5)2﹣6(5﹣x),其中x=7.22、化简:(3x+2y+1)2﹣(3x+2y﹣1)(3x+2y+1)23、给出三个单项式:a2,b2,2ab.(1)在上面三个单项式中任选两个相减,并进行因式分解;(2)当a=2010,b=2009时,求代数式a2+b2﹣2ab的值.四、综合题(共1题;共10分)24、先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.答案解析部分一、单选题1、【答案】D【考点】同类项、合并同类项,公因式,因式分解-提公因式法【解析】解:(3x+2)(﹣x4+3x5)+(3x+2)(﹣2x4+x5)+(x+1)(3x4﹣4x5)=(3x+2)[(﹣x4+3x5)+(﹣2x4+x5)]+(x+1)(3x4﹣4x5)=(3x+2)(﹣3x4+4x5)+(x+1)(3x4﹣4x5)=﹣(3x4﹣4x5)(2x+1).故选:D.【分析】首先将前两部分提取公因式(3x+2),进而合并同类项提取公因式(3x4﹣4x5),得出即可.2、【答案】B【考点】公因式,因式分解-提公因式法【解析】【解答】解:A、应为12xyz﹣9x2y2=3xy(4z﹣3xy);故本选项错误.B、3a2y﹣3ay+3y=3y(a2﹣a+1);正确.C、应为﹣x2+xy﹣xz=﹣x(x﹣y+z);故本选项错误.D、应为a2b+5ab﹣b=b(a2+5a﹣1);故本选项错误.故选B.【分析】用提取公因式法分解因式,首先要正确确定公因式;其次,要注意提取公因式后代数式的形式和符号.3、【答案】B【考点】公因式,因式分解-提公因式法,因式分解的应用【解析】解:22014﹣(﹣2)2015=22014×(1+2)=3×22014.故选:B.【分析】直接提取公因式22014,进而求出即可.4、【答案】C【考点】公因式【解析】【解答】解:多项式﹣2x2﹣12xy2+8xy3各项的公因式是:﹣2x.故选:C.【分析】根据公因式的定义,找出数字的最大公约数,找出相同字母的最低次数,直接找出每一项中公共部分即可.5、【答案】C【考点】公因式,因式分解-提公因式法【解析】【解答】解:将3x(a﹣b)﹣9y(b﹣a)=3x(a﹣b)+9y(a﹣b)因式分解,应提的公因式是a ﹣b.故选C【分析】原式变形后,找出公因式即可.6、【答案】A【考点】公因式,因式分解-提公因式法【解析】【解答】解:原式=(﹣2)2013(﹣2+3)=(﹣2)2013=﹣22013,故选:A.【分析】直接提取公因式(﹣2)2013,进而分解因式得出即可.7、【答案】D【考点】公因式,因式分解-提公因式法【解析】【解答】解:A、﹣a2+ab﹣ac=﹣a(a﹣b+c),故此选项错误;B、9xyz﹣6x2y2=3xy(3z﹣2xy),故此选项错误;C、3a2x﹣6bx+3x=3x(a2﹣ab+1),故此选项错误;D、xy2+x2y=xy(x+y),故此选项正确.故选:D.【分析】直接找出公因式,进而提取公因式判断得出即可.8、【答案】D【考点】公因式,因式分解-提公因式法【解析】【解答】解:A﹣B=9a2+3a,A﹣B的值与﹣9a3b2的公因式为3a,故选:D.【分析】根据合并同类项,可化简整式,根据公因式是每項都含有的因式,可得答案.9、【答案】B【考点】公因式,因式分解-提公因式法【解析】【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选B.【分析】确定公因式是b(x﹣3),然后提取公因式即可.10、【答案】D【考点】代数式求值,公因式,因式分解-提公因式法【解析】【解答】解:∵a+b=6,ab=3,∴3a2b+3ab2=3ab(a+b)=3×3×6=54.故选:D.【分析】首先提取公因式3ab,进而代入求出即可.11、【答案】B【考点】因式分解-提公因式法【解析】【解答】解:A、不符合要求,没有公因式可提,故本选项错误;B、x2+2x可以提取公因式x,正确;C、不符合要求,没有公因式可提,故本选项错误;D、不符合要求,没有公因式可提,故本选项错误;故选B.【分析】根据找公因式的要点提公因式分解因式.12、【答案】D【考点】因式分解-提公因式法【解析】【解答】解:∵(x+2)(2x﹣1)﹣2(x+2)=(x+2)(2x﹣1﹣2)=(x+2)(2x﹣3),∴m=2,n=﹣3.∴m﹣n=2﹣(﹣3)=5.故选D.【分析】首先提取公因式(x+2),即可将原多项式因式分解,继而求得m与n的值,则可求得答案.二、填空题13、【答案】2xy【考点】公因式【解析】【解答】解:2x2y﹣6xy2=2xy(x﹣3y),多项式2x2y﹣6xy2分解因式,应提取的公因式是2xy,故答案为:2xy.【分析】根据分解因式,可得公因式.14、【答案】2x﹣5y【考点】因式分解-提公因式法【解析】【解答】解:﹣16x3+40x2y =﹣8x2•2x+(﹣8x2)•(﹣5y)=﹣8x2(2x﹣5y),所以另一个因式为2x﹣5y.故答案为:2x﹣5y.【分析】根据提公因式法分解因式解答即可.15、【答案】20【考点】代数式求值,公因式,因式分解-提公因式法【解析】【解答】解:∵m+n=5,mn=4,∴m2n+mn2=mn(m+n)=4×5=20.故答案为:20.【分析】将原式提取公因式分解因式,进而代入求出即可.16、【答案】3(a﹣b)【考点】公因式,因式分解-提公因式法【解析】解:原式=3x(a﹣b)+9y(a﹣b),应提取的公因式为3(a﹣b).故答案为:3(a﹣b).【分析】原式变形后,找出公因式即可.17、【答案】②③④⑤⑥【考点】因式分解的意义,因式分解-提公因式法,因式分解-运用公式法【解析】解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.18、【答案】3(x﹣3)2【考点】多项式乘多项式,完全平方公式,因式分解-提公因式法,因式分解-运用公式法【解析】解:∵3(x﹣1)(x﹣9)=3x2﹣30x+27;3(x﹣2)(x﹣4)=3x2﹣18x+24;∴原多项式为3x2﹣18x+27,因式分解后为:3(x﹣3)2.故答案为:3(x﹣3)2.【分析】根据多项式的乘法将3(x﹣1)(x﹣9)展开得到二次项、常数项;将3(x﹣2)(x﹣4)展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式3后利用完全平方公式分解因式.三、解答题19、【答案】解:(2a+b)(2a﹣b)+b(4a+2b),=(2a+b)(2a﹣b)+2b(2a+b),=(2a+b)2.【考点】公因式,因式分解-提公因式法【解析】【分析】运用提取公因式法进行因式分解即可.20、【答案】解:x(x+y)(x﹣y)﹣x(x+y)2=x(x+y)[(x﹣y)﹣(x+y)]=﹣2xy(x+y).当x+y=1,xy=﹣时,原式=﹣2×(﹣)×1=1.【考点】代数式求值,公因式,因式分解-提公因式法【解析】【分析】提公因式x(x+y),合并,再代值计算.21、【答案】解:原式=2(x﹣5)2+6(x﹣5)=2(x﹣5)(x﹣5+3)=2(x﹣5)(x﹣2).故原式=2×(7﹣5)×(7﹣2)=20.【考点】代数式求值,公因式,因式分解-提公因式法【解析】【分析】直接利用提取公因式法分解因式得出即可.22、【答案】解:原式=(3x+2y+1)[3x+2y+1﹣(3x+2y﹣1)]=(3x+2y+1)[1﹣(﹣1)]=2(3x+2y+1).【考点】公因式,因式分解-提公因式法【解析】【分析】此题用提公因式法求解,把3x+2y+1提出来,进行化简计算.23、【答案】解:(1)a2﹣b2=(a+b)(a﹣b),b2﹣a2=(b+a)(b﹣a),a2﹣2ab=a(a﹣2b),2ab﹣a2=a(2b﹣a),b2﹣2ab+b(b﹣2a),2ab﹣b2=b(2a﹣b);(2)a2+b2﹣2ab=(a﹣b)2,当a=2010,b=2009时,原式=(a﹣b)2=(2010﹣2009)2=1.【考点】代数式求值,公因式,因式分解-提公因式法【解析】【分析】本题要灵活运用整式的加减运算、平方差公式和完全平方公式.四、综合题24、【答案】(1)解:原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8 (2)解:原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15【考点】因式分解-提公因式法【解析】【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.。
浙教版七年级下册数学第4章42提取公因式法测试

4.2 提取公因式法一、选择题1.下列各组代数式中,没有公因式的是( )A. ax+y和x+yB. 2x和4yC. a-b和b-aD. -x2+xy和y-x【答案】A【解析】【分析】找公因式即一要找系数的最大公约数,二要找相同字母或相同因式的最低次幂.【详解】A.两个没有公因式,正确;B.显然有系数的最大公约数是2,故错误;C.只需把b﹣a=﹣(a﹣b),两个代数式有公因式,故错误;D.﹣x2+xy=x(y﹣x),显然有公因式y﹣x,故错误.故选A.【点睛】本题考查了公因式的确定,掌握找公因式的正确方法,注意互为相反数的式子,只需改变符号即可变成公因式.2.下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =)x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.3.下列各式由左到右的变形正确的是( )A. -x-y=-(x-y)B. -x2+2xy-y2=-(x2+2xy+y2)C. (y-x)2=(x-y)2D. (y-x)3=(x-y)3【答案】C【解析】【分析】提出-号即可.【详解】A.-x-y=-(x+y),故本选项错误;B.-x2+2xy-y2=-(x2-2xy+y2),故本选项错误;C.(y-x)2=[-(x-y)]2=(x-y)2,故本选项正确;D.(y-x)3=[-(x-y)]3=-(x-y)3,故本选项错误.故选C.【点睛】本题考查了提公因式法分解因式,提出负号后,括号内的每一项都要变号.4.把10a2(x+y)2-5a(x+y)3因式分解时,应提取的公因式是( )A. 5aB. (x+y)2C. 5(x+y)2D. 5a(x+y)2【答案】D【解析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.5.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( )A. m+1B. 2mC. 2D. m+2【答案】D【解析】试题分析:先提取公因式(m﹣1)后,得出余下的部分.解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.考点:因式分解-提公因式法.点评:先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.6.已知(2x-10)(x-2)-(x-2)(x-13)可分解为(x+a)(x+b),则a b=( )A. 8或-B. -8或-C. 8或D. -8或【答案】D【解析】【分析】首先利用提取公因式法分解因式进而得出a,b的值即可得出答案.【详解】(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)=(x﹣2)[(2x﹣10)﹣(x﹣13)]=(x﹣2)(x+3).∵(2x﹣10)(x﹣2)﹣(x﹣2)(x﹣13)可分解因式为(x+a)(x+b),∴a=﹣2,b=3或a=3,b=﹣2,则a b的值是:(﹣2)3=﹣8或3﹣2.故选D.【点睛】本题考查了提取公因式法分解因式,正确分类讨论是解题的关键.二、填空题7.分解因式:a2-5a =________)【答案】a)a-5)【解析】分析: 利用提公因式法,将各项的公因式a提出,将各项剩下的商式写在一起,作为因式.详解: 原式=a(a-5)故答案为:a(a-5).点睛: 本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.写出下列各式分解因式时应提取的公因式:(1)ax-ay应提取的公因式是________;(2)3mx-6nx2应提取的公因式是__________;(3)-x2+xy-xz应提取的公因式是___________.【答案】(1). a(2). 3x(3). -x【解析】【分析】根据分解因式,可得公因式.【详解】(1)原式=a(x-y),应提取的公因式是a;(2)原式=3x(m-2nx),应提取的公因式是3x;(3)原式=-x(x-y+z),应提取的公因式是-x.故答案为:a;3x;-x.【点睛】本题考查了公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.9.在括号前面添上“+”或“-”号:(1)x-y=__________(y-x);(2)(x-y)2=_________(y-x)2;(3)(3-x)(5-x)=___________(x-3)(x-5);(4)(a-b)3=__________(b-a)3;(5)-x2+8x-16=____________(x2-8x+16).【答案】(1). -(2). +(3). +(4). -(5). -【解析】【分析】看等号两边的符号是否相同,相同的前面加正号,符号相反的前面加负号.【详解】(1)x-y=-(y-x);(2)(x-y)2=+(y-x)2;(3)(3-x)(5-x)=+(x-3)(x-5);(4)(a-b)3=-(b-a)3;(5)-x2+8x-16=-(x2-8x+16).故答案为:-,+,+,-,-.【点睛】本题考查了符号的变化.注意互为相反数的两个数的平方相等,还要注意负负得正的应用.10.若a-b=6,ab=7,则ab2-a2b的值为___________.【答案】-42【解析】【分析】先提公因式ab,再代入数据计算即可.【详解】当a﹣b=6,ab=7时,ab2﹣a2b=ab(b﹣a)=7×(﹣6)=﹣42.故答案为:﹣42.【点睛】本题考查了提公因式法分解因式,整理成已知条件的形式,再运用整体代入法求解是解题的关键.11.因式分解:(a-b)2-(b-a)=___________.【答案】)a)b))a)b+1)【解析】【分析】先提取后边项的负号,再提取公因式(a-b)即可.【详解】解:(a﹣b)2﹣(b﹣a)=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1).故答案为:(a﹣b)(a﹣b+1).【点睛】本题主要考查了因式分解这一知识点,其步骤为:有公因式的先提公因式,没有公因式的考虑运用公式法,分解因式必须分解到每一步都不能再分解为止.三、解答题12.把下列各式分解因式:(1)4x3-6x2;(2)2a2b+5ab+b;(3)6p(p+q)-4q(p+q);(4)(x-1)2-x+1;(5)-3a2b+6ab2-3ab.【答案】(1)2x2(2x-3);(2)b(2a2+5a+1);(3)2(p+q)(3p-2q);(4)(x-1)(x-2);(5)-3ab(a-2b+1). 【解析】【分析】(1)直接利用提取公因式法,提取公因式2x2,进而分解因式得出答案;(2)直接利用提取公因式法,提取公因式b,进而分解因式得出答案;(3)直接利用提取公因式法,提取公因式2(p+q),进而分解因式得出答案;(4)直接利用提取公因式法,提取公因式(x﹣1),进而分解因式得出答案.(5)直接利用提取公因式法,提取公因式﹣3ab,进而分解因式得出答案.【详解】(1)原式==;(2)原式= b•2a2+ b•5a+ b•1=b(2a2+5a+1);(3)原式=2(p+q)•3p-2(p+q)•2q=2(p+q)(3p-2q);(4)原式=(x-1)2-(x-1)=(x-1)(x-1-1)= (x-1)(x-2);(5)原式=-3ab•a+(-3ab)•(-2b)+(-3ab)•1=-3ab(a-2b+1).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.13.利用因式分解进行计算:(1)2003×99-27×11;×+×-×.【答案】(1)198000;(2)17.【解析】【分析】(1)根据提公因式法可以解答本题;(2)根据提公因式法可以解答本题.【详解】(1)原式=2003×99-3×99=99×(2003-3)=99×2000=198000;(2)原式=+-2.5)=×31=17.【点睛】本题考查了因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.14.如图,操场的两端为半圆形,中间是一个长方形.已知半圆的半径为r,直跑道的长为l,请用关于r,l的多项式表示这个操场的面积.这个多项式能分解因式吗?若能,请把它分解因式,并计算当r=40m,l=30πm时操场的面积(结果保留π);若不能,请说明理由.【答案】πr2+2rl;能分解因式;πr2+2rl=r(πr+2l);当r=40m,l=30πm时,操场的面积=4000π(m2).【解析】【分析】根据操场面积=圆的面积+长方形面积列式即可,然后提公因式分解,最后代入求值.【详解】操场面积=圆的面积+长方形面积=πr2+2rl= r(πr+2l).当r=40m,l=30πm时,操场的面积=40×(40π+2×30π)=4000π(m2).【点睛】本题考查了因式分解的应用.正确列代数式是解题的关键.15.小华认为在多项式2x2+3x+1中一定有因式(x+1),他是这样想的:2x2+3x+1=2x2+2x+x+1=2x(x+1)+(x+1)=(x+1)(2x+1).你认为他这样做有道理吗?如果你认为有道理,试着看看x2+3x+2中有没有因式(x+1);如果你认为没有道理,试说出其中的错误所在.【答案】有道理,x2+3x+2中有因式(x+1).【解析】【分析】根据材料提供的例子,把3x拆成2x+x,将原式变形,再提公因式分解即可.【详解】有道理.理由如下:x2+3x+2=(x2+2x)+(x+2)=x(x+2)+(x+2)=(x+2)(x+1)∴x2+3x+2中有因式(x+1).【点睛】本题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解答本题的关键.16.计算(-2)2019+(-2)2018的结果.【答案】-22018【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】(﹣2)2019+(﹣2)2018=(﹣2)2018×(﹣2+1)=﹣22018.【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.17.利用因式分解计算或说理:(1)523-521能被120整除吗?(2)817-279-913能被45整除吗?【答案】(1)523-521能被120整除;(2)817-279-913能被45整除.【解析】【分析】(1)先提取520,整理即可得出结论.(2)观察817、279、913这三个数,都可以写成底数为3的数:328、327、326,提取公因式326,整理即可得出结论.【详解】(1)中可以先提取520,则523-521=520(53-5)=520×120,故能被120整除;(2)∵45可以分解为5×3×3,∴只需说明817-279-913能分解为5×3×3即可.∵817-279-913=(34)7-(33)9-(32)13=328-327-326=326×(32-3-1)=326×5=324×32×5=324×45.∴817-279-913能被45整除.【点睛】本题考查了因式分解的实际运用,掌握提取公因式法的方法和同底数幂的乘法是解决问题的关键.18.阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是________,共应用了________次;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2018,则需应用上述方法______次,结果是________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【答案】(1)提取公因式法;2;(2)2018;(x+1)2019;(3)(1+x)n+1.【解析】【分析】本题由特殊推广到一般,要善于观察思考,注意结果和指数之间的关系.【详解】(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2018次,结果是(x+1)2019.(3)原式=(1+x)[1+x+x(x+1)]+x(x+1)3+…+x(x+1)n=(1+x)2(1+x)+x(x+1)3+…+x(x+1)n=(1+x)3+x(x+1)3+…+x(x+1)n=(x+1)n+x(x+1)n=(1+x)n(1+x)=(1+x)n+1.【点睛】本题考查了提公因式法分解因式的推广,要认真观察已知所给的过程,弄清每一步的理由,就可进一步推广.。
浙教版七年级下册数学第4章4.2提取公因式法习题课件

整合方法·提升练
13 如图,相邻两边长分别为a,b的长方形的周长为10, 面积为6,求a3b2+a2b3的值. 解:根据题意, 可得a+b=5,ab=6, ∴ a3b2 + a2b3 = a2b2(a + b) = (ab)2(a+b)=36×5=180.
整合方法·提升练
14 如图,把R1,R2,R3三个电阻串联起来,若线路AB上 的电流为I(单位:A),电压为U(单位:V),则U=IR1 +IR2+IR3.当R1=19.7 Ω,R2=32.4 Ω,R3=35.9 Ω, I=2.5 A时,求U的值.
夯实基础·逐点练
3 【绍兴期末】计算 22 021-22 022 的值是( C )
1 A.2
B.-12
C.-22 021
D.-2
夯实基础·逐点练
4 【2021·杭州期中】下列因式分解正确的是( D ) A.2a2-a=2a(a-1) B.-a2-2ab=-a(a-2b) C.-3a+3b=-3(a+b) D.a2+3ab=a(a+3b)
培优探究·拓展练
16 已知a,b,c满足ab+a+b=bc+b+c=ca+c+a=3, 求(a+1)(b+1)(c+1)的值(a,b,c均为正数). 解:由题意,得ab+a+b=3, ∴(a+1)(b+1)=4. 同理可得(b+1)(c+1)=4,(a+1)(c+1)=4. ∴[(a+1)(b+1)(c+1)]2=4×4×4=64. ∵a,b,c均为正数,∴(a+1)(b+1)(c+1)=8.
夯实基础·逐点练
5 若mn=-2,m+n=3,则代数式m2n+mn2的值是 ( A) A.-6 B.-5 C.1 D.6
ቤተ መጻሕፍቲ ባይዱ
夯实基础·逐点练
6 多项式x2y(a-b)-y(b-a)提公因式后,余下的部分是 ( A) A.x2+1 B.x-1 C.x2-1 D.x2y+y
七年级数学下册4.2提取公因式法 练习新版浙教版

第4章因式分解4.2提取公因式法知识点1多项式的公因式一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.1.多项式-6m3n-3m2n2+12m2n3的公因式为( )A.3mn B.-3m2nC.3mn2D.-3m2n2知识点2提取公因式法分解因式如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解.这种分解因式的方法,叫做提取公因式法.[注意] 当多项式的某项恰为公因式时,提公因式后,另一个因式中不要漏掉“+1”或“-1”.2.把下列各式分解因式:(1)x2-5x;(2)2x2y2-4y3z;(3)-5a2+25a;(4)14x2y-21xy2+7xy.知识点3添括号法则括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都变号.3.添括号:1-2a=+(________);-a2+2ab-b2=-(____________).一用提取公因式法处理较复杂的因式分解题教材例2变式题分解因式:(1)x2(y-2)-x(2-y);(2)2(a-3)2-a+3.[归纳总结] 提取公因式法分解因式的关键是确定多项式中各项的公因式,尤其需要注意的是公因式可以是数,也可以是单项式和多项式.二提取公因式法的简单应用教材补充题523-521能被120整除吗?[反思] 分解因式:-6ab2+9a2b-3b.解:-6ab2+9a2b-3b=-(6ab2-9a2b+3b)①=-(3b·2ab-3b·3a2+3b)②=-3b(2ab-3a2).③(1)找错:从第________步开始出现错误;(2)纠错:一、选择题1.2015·武汉把a 2-2a 分解因式,正确的是( ) A .a(a -2) B .a(a +2) C .a(a 2-2) D .a(2-a)2.在把多项式5xy 2-25x 2y 提取公因式时,被提取的公因式为( ) A .5 B .5x C .5xy D .25xy3.下列多项式中,能用提取公因式法进行因式分解的是( ) A .x 2-y B .x 2+2xC .x 2+y 2D .x 2-xy +y 24.下列各式用提公因式因式分解正确的是( ) A .a 2b +7ab -b =b(a 2+7a)B .3x 2y -3xy +6y =3y(x 2-x +2)C .4x 4-2x 3y =x 3(4x -2y)D .-2a 2+4ab -6ac =-2a(a -2b -3c)5.若m -n =-1,则(m -n)2-2m +2n 的值是( ) A .3 B .2 C .1 D .-16.()-82018+(-8)2017能被下列数整除的是( )A .3B .5C .7D .9二、填空题7.2016·丽水分解因式:am -3a =____________. 8.在括号前面添上“+”或“-”号或在括号内填空. (1)-a +b =________(a -b);(2)-m 2-2m +5=-(______________);(3)(x -y)3=________(y -x)3.9.因式分解:m(x -y)+n(x -y)=________.10.已知x +y =6,xy =-3,则x 2y +xy 2=________.11.计算22016+(-2)2017的结果为________.12.已知(2x -21)(3x -7)-(3x -7)(x -13)可分解因式为(3x +a)(x +b),其中a ,b 均为整数,则a +3b =____________.三、解答题13.用提取公因式法将下列各式分解因式:(1)6xyz -3xz 2;(2)x 4y -x 3z ;(3)x(m-x)(m-y)-m(x-m)(y-m).14.边长分别为a,b的长方形,它的周长为14,面积为10,求a2b+ab2的值.15.已知2x+y=6,x-3y=1,求7y(x-3y)2-2(3y-x)3的值.16.试说明:对于任意自然数n,2n+4-2n都能被5整除.17.如图4-2-1,长方形的长为a,宽为b,试说明:长方形中带有阴影的三角形的面积之和等于该长方形面积的一半.图4-2-118.三角形ABC的三边长分别为a,b,c,且a+2ab=c+2bc,请判断三角形ABC的形状,并说明理由.阅读下列因式分解的过程,解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是________,共应用了________次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2017,则需要应用上述方法________次,结果是________.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).详解详析【预习效果检测】1.[解析] B 因为首项系数为负,各项系数的最大公约数是3,字母m的最低次幂是2,字母n的最低次幂是1,所以公因式是-3m2n.2.[解析] 在用提取公因式法分解因式时,关键是确定公因式,然后用多项式除以这个公因式,所得的商即为另一个因式.解:(1)x2-5x=x(x-5).(2)2x2y2-4y3z=2y2(x2-2yz).(3)-5a2+25a=-5a(a-5).(4)14x2y-21xy2+7xy=7xy(2x-3y+1).3.1-2a a2-2ab+b2【重难互动探究】例1[解析] (1)显然只需将2-y变形后,即可提取公因式x(y-2).(2)首先把2(a -3)2-a+3变为2(a-3)2-(a-3),再将a-3看成整体提取公因式即可.解:(1)原式=x2(y-2)+x(y-2)=x(y-2)(x+1).(2)原式=2(a-3)2-(a-3)=(a-3)(2a-7).例2解:∵原式=520×(53-5)=520×120,∴523-521能被120整除.【课堂总结反思】[反思] (1)③(2)-6ab2+9a2b-3b=-(6ab2-9a2b+3b)=-(3b·2ab-3b·3a2+3b)=-3b(2ab-3a2+1).【作业高效训练】[课堂达标]1.A 2.C 3.B4.[解析] B A选项括号内的多项式的项数漏掉了一项.C选项括号内的多项式中仍有公因式.D选项提取负号后括号里有一项没有改变符号.5.A6.[解析] C原式=82018-82017=82017×(8-1)=82017×7.故能被7整除.7.[答案] a(m-3)8.[答案] (1)-(2)m2+2m-5 (3)-9.[答案] (x-y)(m+n)10.[答案] -1811.[答案] -22016[解析] 22016+(-2)2017=22016-2×22016=22016×(1-2)=-22016.12.[答案] -3113.[解析] (1)(2)题直接提取公因式分解因式即可,(3)题要进行适当地变形后再运用提取公因式法分解因式.解:(1)6xyz-3xz2=3xz(2y-z).(2)x4y-x3z=x3(xy-z).(3)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).14.[解析] 先可得ab和a+b的值,然后将a2b+ab2分解因式即可得到答案.解:由题意得ab=10,a+b=7,所以a 2b +ab 2=ab(a +b)=10×7=70.15.[解析] 先提取公因式分解因式,然后代入求值.解:原式=7y(x -3y)2+2(x -3y)3=(x -3y)2[7y +2(x -3y)]=(x -3y)2(2x +y)=12×6 =6.16.解:∵2n +4-2n =2n (24-1)=2n ×15=2n×3×5,∴2n +4-2n一定能被5整除.17.解:S 阴影=12a 1b +12a 2b +12a 3b +12a 4b=12b(a 1+a 2+a 3+a 4) =12ab =12S 长方形. 即长方形中带有阴影的三角形的面积之和等于该长方形面积的一半. 18.解:三角形ABC 是等腰三角形.理由:∵a+2ab =c +2bc , ∴(a -c)+2b(a -c)=0,∴(a -c)(1+2b)=0. 故a =c 或1+2b =0,显然b≠-12,故a =c.∴三角形ABC 为等腰三角形. [数学活动]解:(1)上述分解因式的方法是提公因式法,共应用了2次.(2)需应用上述方法2017次,结果是(1+x)2018.(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3] = …=(1+x)n(1+x)=(1+x)n +1.。
2019年精选数学七年级下册第四章 因式分解4.2 提取公因式浙教版习题精选【含答案解析】五十

D、x^3-8=(x-2)(x^2+2x+4)
【答案】:
【解析】:
分解因式8m^2n+2mn^2时,提出的公因式是______.
A、2mn
【答案】:
【解析】:
分解因式:有误______.
【答案】:
【解析】:
①6m^2n与2mn^2的公因式是______;
2019年精选数学七年级下册第四章因式分解4.2提取公因式浙教版习题精选【含答案解析】五十
若多项式x^2+2ax+4能用完全平方公式进行因式分解,则a值为( )
A、2
B、﹣2
C、±2
D、±4
【答案】:
【解析】:
不改变代数式a-(b-3c)的值,把代数式括号前的“-”号变成“+”号,结果应是( )
②2a(m﹣n)与36(n﹣m)的公因式是___答案】:
【解析】:
因式分解:2a^2﹣4a=______
【答案】:
【解析】:
把多项式﹣16x^3+40x^2y提出一个公因式﹣8x^2后,另一个因式是______.
A、2x﹣5y
【答案】:
【解析】:
多项式24m^2n^2+18n各项的公因式是______.
A、a+(b-3c)
B、a+(-b-3c)
C、a+(b+3c)
D、a+(-b+3c)
【答案】:
【解析】:
多项式3x+x^3的公因式是( )
A、3
B、x
C、3x
D、x^3
【答案】:
浙教版数学七年级下册4.2(同步练习)《提取公因式法》

《提取公因式法》同步练习1. 一个多项式若能因式分解,则这个多项式被其任一因式除所得余式为0。
( )2. 因式分解:-x 4y 5+x 2y 2-xy=-xy(x 3y 4-xy)。
( )3. 下列变形中,属于因式分解的是 [ ]A.(a+b)(a-b)=a 2-b 2B.x 2-y 2+4y-4=(x+y)(x-y)+4(y-1)C.a 3-b 3=(a-b)(a+ab+b)D.a 2-10a+10=a(a-10)+10 4. 计算(-2)11+(-2)10的结果是 [ ]A.(-2)21B.210C.-210D.-2 5. a 2x+ay-a 3xy 在分解因式时,应提取的公因式是 [ ]A.a 2B.aC.axD.ay6. 多项式-5xy+5x 分解因式的结果是 [ ]A.-5x(y+1)B.-5x(y-1)C.5x(y+1)D.5x(y-1) 7. 49x 3yz 3+14x 2y 2z 2-21xy 2z 2在分解因式时应提取的公因式是 [ ]A.7x 3yz 3B.7x 2y 2z 2C.7xy 2z 2D.7xyz 28. (-a)m+a(-a)m-1的值是 [ ]A.1B.-1C.0D.(-1)x+1答案和解析一.判断题1.√;解析:2.×解析:因式分解错误,应为-xy(x3y4-xy+1)。
二.选择题3.C;解析:直接应用三个数的和的平方公式的逆用即可得a3-b3=(a-b)(a+ab+b)。
4.C;解析:(-2)11+(-2)10提公因式再计算即可得-210。
5. B;解析:a2x+ay-a3xy中选取各项系数的最大公约数,相同字母的最低次幂即可确定公因式为a。
6.B;解析:-5xy+5x提公因式可得-5x(y-1)。
7.D;解析: 49x3yz3+14x2y2z2-21xy2z2中选取各项系数的最大公约数,相同字母的最低次幂即可确定公因式为7xyz2。
8.C;解析:(-a)m+a(-a)m-提公因式再计算即可得0。
【新浙教版】七年级数学下册第四章因式分解4.2提取公因式练习

4.2 提取公因式A组1.在括号前面添上“+”或“-”:(1)x-y=-(y-x).(2)2(m+n)2-m-n=2(m+n)2-(m+n).(3)(a-b)3=-(b-a)3.(4)(3-x)(5-x)=+(x-3)(x-5).(5)-x2+8x-16=-(x2-8x+16).2.分解因式:ab-b2=__b(a-b)__.3.把多项式x2-3x分解因式,结果是x(x-3).4.(1)把-x3+x2+x分解因式,结果正确的是(D)A. -x(x2+x)B. -x(x2-x)C. -x(x2+x+1)D. -x(x2-x-1)(2)多项式a2bc+4a5b2+6a3bc2的公因式是(D)A. a2bcB. 12a5b3c2C. 12a2bcD. a2b(3)把多项式m(a-2)-3(2-a)分解因式,结果正确的是(B)A. (a-2)(m-3)B. (a-2)(m+3)C. (a+2)(m-3)D. (a+2)(m+3)5.(1)已知b-a=-6,ab=7,求a2b-ab2的值.【解】∵b-a=-6,∴a-b=6.又∵ab=7,∴a2b-ab2=ab(a-b)=7×6=42.(2)若x+y=3,xy=-4,求2x2y+2xy2的值.【解】∵x+y=3,xy=-4,∴2x2y+2xy2=2xy(x+y)=-8×3=-24.6.用简便方法计算:(1)77+77+77+77+77+77+77.【解】原式=77(1+1+1+1+1+1+1)=77×7=78.(2)21×3.14+6.2×31.4+170×0.314.【解】原式=21×3.14+62×3.14+17×3.14=3.14×(21+62+17)=3.14×100=314.(3)22018-22017.【解】原式=22017×2-22017×1=22017(2-1)=22017.7.分解因式:(1)2xy2-6y.【解】原式=2y(xy-3).(2)-3a2b+6ab2-3ab.【解】原式=-3ab(a-2b+1).(3)5x(x-y)+2y(y-x).【解】原式=5x(x-y)-2y(x-y)=(x-y)(5x-2y).(4)(x-3y)2-x+3y.【解】原式=(x-3y)2-(x-3y)=(x-3y)[(x-3y)-1]=(x-3y)(x-3y-1).(5)x(x+y)(x-y)-x(x+y)2.【解】原式=x(x+y)[(x-y)-(x+y)]=x(x+y)·(-2y)=-2xy(x+y).B组8.下列选项中,能整除(-8)2018+(-8)2017的是(C) A. 3 B. 5C. 7D. 9【解】∵(-8)2018+(-8)2017=(-8)2017×(-8)+(-8)2017×1=(-8)2017×(-8+1)=(-8)2017×(-7)=-82017×(-7)=82017×7,∴能整除(-8)2018+(-8)2017的是7.9.若ab 2+1=0,则-ab (a 2b 5-ab 3-b )的值为__1__.【解】 ∵ab 2+1=0,∴ab 2=-1.∴原式=-ab 2(a 2b 4-ab 2-1)=-(-1)[(ab 2)2+1-1]=(ab 2)2=(-1)2=1.10.已知a 2+a +1=0,则1+a +a 2+a 3+…+a 8的值为__0__.【解】 1+a +a 2+a 3+…+a 8=(1+a +a 2)+a 3(1+a +a 2)+a 6(1+a +a 2)=(1+a +a 2)(1+a 3+a 6)=0·(1+a 3+a 6)=0.11.已知(2x -y -1)2+|xy -2|=0,求4x 2y -2xy 2+x 2y 2的值.【解】 由题意,得⎩⎪⎨⎪⎧2x -y -1=0,xy -2=0,即⎩⎪⎨⎪⎧2x -y =1,xy =2,∴4x 2y -2xy 2+x 2y 2=xy (4x -2y +xy )=2×(2×1+2)=8.12.解方程:(45x +30)(33x +15)-(45x +30)(33x +16)=0.【解】 (45x +30)[(33x +15)-(33x +16)]=0,(45x +30)(33x +15-33x -16)=0,-(45x +30)=0,解得x =-23. 数学乐园13.阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是提取公因式法,共应用了__2__次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2017,则需应用上述方法__2017__次,结果是(x+1)2018.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【解】(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x +1)n-1]=(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=…=(1+x)n(1+x)=(1+x)n+1.。
201x-201x学年七年级数学下册 第四章 因式分解 4.2 提取公因式练习 浙教版

4.2 提取公因式A组1.在括号前面添上“+”或“-”:(1)x-y=-(y-x).(2)2(m+n)2-m-n=2(m+n)2-(m+n).(3)(a-b)3=-(b-a)3.(4)(3-x)(5-x)=+(x-3)(x-5).(5)-x2+8x-16=-(x2-8x+16).2.分解因式:ab-b2=__b(a-b)__.3.把多项式x2-3x分解因式,结果是x(x-3).4.(1)把-x3+x2+x分解因式,结果正确的是(D)A. -x(x2+x)B. -x(x2-x)C. -x(x2+x+1)D. -x(x2-x-1)(2)多项式a2bc+4a5b2+6a3bc2的公因式是(D)A. a2bcB. 12a5b3c2C. 12a2bcD. a2b(3)把多项式m(a-2)-3(2-a)分解因式,结果正确的是(B)A. (a-2)(m-3)B. (a-2)(m+3)C. (a+2)(m-3)D. (a+2)(m+3)5.(1)已知b-a=-6,ab=7,求a2b-ab2的值.【解】∵b-a=-6,∴a-b=6.又∵ab=7,∴a2b-ab2=ab(a-b)=7×6=42.(2)若x+y=3,xy=-4,求2x2y+2xy2的值.【解】∵x+y=3,xy=-4,∴2x2y+2xy2=2xy(x+y)=-8×3=-24.6.用简便方法计算:(1)77+77+77+77+77+77+77.【解】原式=77(1+1+1+1+1+1+1)=77×7=78.(2)21×3.14+6.2×31.4+170×0.314.【解】原式=21×3.14+62×3.14+17×3.14=3.14×(21+62+17)=3.14×100=314.(3)2xx-2xx.【解】原式=2xx×2-2xx×1=2xx(2-1)=2xx.7.分解因式:(1)2xy2-6y.【解】原式=2y(xy-3).(2)-3a2b+6ab2-3ab.【解】 原式=-3ab (a -2b +1).(3)5x (x -y )+2y (y -x ).【解】 原式=5x (x -y )-2y (x -y )=(x -y )(5x -2y ).(4)(x -3y )2-x +3y .【解】 原式=(x -3y )2-(x -3y )=(x -3y )[(x -3y )-1]=(x -3y )(x -3y -1).(5)x (x +y )(x -y )-x (x +y )2.【解】 原式=x (x +y )[(x -y )-(x +y )]=x (x +y )·(-2y )=-2xy (x +y ).B 组8.下列选项中,能整除(-8)xx +(-8)xx 的是(C )A. 3B. 5C. 7D. 9【解】 ∵(-8)xx +(-8)xx=(-8)xx ×(-8)+(-8)xx ×1=(-8)xx ×(-8+1)=(-8)xx ×(-7)=-8xx ×(-7)=8xx ×7,∴能整除(-8)xx +(-8)xx 的是7.9.若ab 2+1=0,则-ab (a 2b 5-ab 3-b )的值为__1__.【解】 ∵ab 2+1=0,∴ab 2=-1.∴原式=-ab 2(a 2b 4-ab 2-1)=-(-1)[(ab 2)2+1-1]=(ab 2)2=(-1)2=1.10.已知a 2+a +1=0,则1+a +a 2+a 3+…+a 8的值为__0__.【解】 1+a +a 2+a 3+…+a 8=(1+a +a 2)+a 3(1+a +a 2)+a 6(1+a +a 2)=(1+a +a 2)(1+a 3+a 6)=0·(1+a 3+a 6)=0.11.已知(2x -y -1)2+|xy -2|=0,求4x 2y -2xy 2+x 2y 2的值.【解】 由题意,得⎩⎨⎧2x -y -1=0,xy -2=0,即⎩⎨⎧2x -y =1,xy =2, ∴4x 2y -2xy 2+x 2y 2=xy (4x -2y +xy )=2×(2×1+2)=8.12.解方程:(45x +30)(33x +15)-(45x +30)(33x +16)=0.【解】 (45x +30)[(33x +15)-(33x +16)]=0,(45x +30)(33x +15-33x -16)=0,-(45x +30)=0,解得x =-23.数学乐园13.阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是提取公因式法,共应用了__2__次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)xx,则需应用上述方法__xx__次,结果是(x+1)xx.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【解】(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-1]=(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=…=(1+x)n(1+x)=(1+x)n+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章因式分解4.2提取公因式法知识点1多项式的公因式一般地、一个多项式中每一项都含有的相同的因式、叫做这个多项式各项的公因式.1.多项式-6m3n-3m2n2+12m2n3的公因式为( )A.3mn B.-3m2nC.3mn2D.-3m2n2知识点2提取公因式法分解因式如果一个多项式的各项含有公因式、那么可把该公因式提取出来进行因式分解.这种分解因式的方法、叫做提取公因式法.[注意] 当多项式的某项恰为公因式时、提公因式后、另一个因式中不要漏掉“+1”或“-1”.2.把下列各式分解因式:(1)x2-5x;(2)2x2y2-4y3z;(3)-5a2+25a;(4)14x2y-21xy2+7xy.知识点3添括号法则括号前面是“+”号、括到括号里的各项都不变号;括号前面是“-”号、括到括号里的各项都变号.3.添括号:1-2a=+(________);-a2+2ab-b2=-(____________).一用提取公因式法处理较复杂的因式分解题教材例2变式题分解因式:(1)x2(y-2)-x(2-y);(2)2(a-3)2-a+3.[归纳总结] 提取公因式法分解因式的关键是确定多项式中各项的公因式、尤其需要注意的是公因式可以是数、也可以是单项式和多项式.二提取公因式法的简单应用教材补充题523-521能被120整除吗?[反思] 分解因式:-6ab2+9a2b-3b.解:-6ab2+9a2b-3b=-(6ab2-9a2b+3b)①=-(3b·2ab-3b·3a2+3b)②=-3b(2ab-3a2).③(1)找错:从第________步开始出现错误;(2)纠错:一、选择题1.2015·武汉把a 2-2a 分解因式、正确的是( ) A .a(a -2) B .a(a +2) C .a(a 2-2) D .a(2-a)2.在把多项式5xy 2-25x 2y 提取公因式时、被提取的公因式为( ) A .5 B .5x C .5xy D .25xy3.下列多项式中、能用提取公因式法进行因式分解的是( ) A .x 2-y B .x 2+2xC .x 2+y 2D .x 2-xy +y 24.下列各式用提公因式因式分解正确的是( ) A .a 2b +7ab -b =b(a 2+7a)B .3x 2y -3xy +6y =3y(x 2-x +2)C .4x 4-2x 3y =x 3(4x -2y)D .-2a 2+4ab -6ac =-2a(a -2b -3c)5.若m -n =-1、则(m -n)2-2m +2n 的值是( ) A .3 B .2 C .1 D .-16.()-82018+(-8)2017能被下列数整除的是( )A .3B .5C .7D .9二、填空题7.2016·丽水分解因式:am -3a =____________. 8.在括号前面添上“+”或“-”号或在括号内填空. (1)-a +b =________(a -b);(2)-m 2-2m +5=-(______________);(3)(x -y)3=________(y -x)3.9.因式分解:m(x -y)+n(x -y)=________.10.已知x +y =6、xy =-3、则x 2y +xy 2=________.11.计算22016+(-2)2017的结果为________.12.已知(2x -21)(3x -7)-(3x -7)(x -13)可分解因式为(3x +a)(x +b)、其中a 、b 均为整数、则a +3b =____________.三、解答题13.用提取公因式法将下列各式分解因式:(1)6xyz -3xz 2;(2)x 4y -x 3z ;(3)x(m-x)(m-y)-m(x-m)(y-m).14.边长分别为a、b的长方形、它的周长为14、面积为10、求a2b+ab2的值.15.已知2x+y=6、x-3y=1、求7y(x-3y)2-2(3y-x)3的值.16.试说明:对于任意自然数n、2n+4-2n都能被5整除.17.如图4-2-1、长方形的长为a、宽为b、试说明:长方形中带有阴影的三角形的面积之和等于该长方形面积的一半.图4-2-118.三角形ABC的三边长分别为a、b、c、且a+2ab=c+2bc、请判断三角形ABC的形状、并说明理由.阅读下列因式分解的过程、解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是________、共应用了________次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2017、则需要应用上述方法________次、结果是________.(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).详解详析【预习效果检测】1.[解析] B 因为首项系数为负、各项系数的最大公约数是3、字母m的最低次幂是2、字母n的最低次幂是1、所以公因式是-3m2n.2.[解析] 在用提取公因式法分解因式时、关键是确定公因式、然后用多项式除以这个公因式、所得的商即为另一个因式.解:(1)x2-5x=x(x-5).(2)2x2y2-4y3z=2y2(x2-2yz).(3)-5a2+25a=-5a(a-5).(4)14x2y-21xy2+7xy=7xy(2x-3y+1).3.1-2a a2-2ab+b2【重难互动探究】例1[解析] (1)显然只需将2-y变形后、即可提取公因式x(y-2).(2)首先把2(a -3)2-a+3变为2(a-3)2-(a-3)、再将a-3看成整体提取公因式即可.解:(1)原式=x2(y-2)+x(y-2)=x(y-2)(x+1).(2)原式=2(a-3)2-(a-3)=(a-3)(2a-7).例2解:∵原式=520×(53-5)=520×120、∴523-521能被120整除.【课堂总结反思】[反思] (1)③(2)-6ab2+9a2b-3b=-(6ab2-9a2b+3b)=-(3b·2ab-3b·3a2+3b)=-3b(2ab-3a2+1).【作业高效训练】 [课堂达标] 1.A 2.C 3.B4.[解析] B A 选项括号内的多项式的项数漏掉了一项.C 选项括号内的多项式中仍有公因式.D 选项提取负号后括号里有一项没有改变符号.5.A6.[解析] C 原式=82018-82017=82017×(8-1)=82017×7.故能被7整除. 7.[答案] a(m -3)8.[答案] (1)- (2)m 2+2m -5 (3)- 9.[答案] (x -y)(m +n) 10.[答案] -1811.[答案] -22016[解析] 22016+(-2)2017=22016-2×22016=22016×(1-2)=-22016. 12.[答案] -3113.[解析] (1)(2)题直接提取公因式分解因式即可、(3)题要进行适当地变形后再运用提取公因式法分解因式.解:(1)6xyz -3xz 2=3xz(2y -z).(2)x 4y -x 3z =x 3(xy -z).(3)x(m -x)(m -y)-m(x -m)(y -m) =x(m -x)(m -y)-m(m -x)(m -y)=(m -x)(m -y)(x -m)=-(m -x)2(m -y).14.[解析] 先可得ab 和a +b 的值、然后将a 2b +ab 2分解因式即可得到答案. 解:由题意得ab =10、a +b =7、所以a 2b +ab 2=ab(a +b)=10×7=70.15.[解析] 先提取公因式分解因式、然后代入求值.解:原式=7y(x -3y)2+2(x -3y)3=(x -3y)2[7y +2(x -3y)]=(x -3y)2(2x +y)=12×6 =6.16.解:∵2n +4-2n =2n (24-1)=2n ×15=2n×3×5、∴2n +4-2n一定能被5整除.17.解:S 阴影=12a 1b +12a 2b +12a 3b +12a 4b=12b(a 1+a 2+a 3+a 4) =12ab =12S 长方形. 即长方形中带有阴影的三角形的面积之和等于该长方形面积的一半. 18.解:三角形ABC 是等腰三角形.理由:∵a+2ab =c +2bc 、 ∴(a -c)+2b(a -c)=0、∴(a -c)(1+2b)=0. 故a =c 或1+2b =0、显然b≠-12、故a =c.∴三角形ABC 为等腰三角形.[数学活动]解:(1)上述分解因式的方法是提公因式法、共应用了2次.(2)需应用上述方法2017次、结果是(1+x)2018.(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-1] =(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=(1+x)3[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-3]=…=(1+x)n(1+x)=(1+x)n+1.。