包装防伪与数字水印
(完整word版)数字水印

摘要随着计算机通信技术的迅速发展,传播数字多媒体信息也越来越方便快捷,迅速兴起的互联网以电子印刷出版、电子广告、数字仓库和数字图书馆、网络视频和音频、电子商务等新的服务和运作方式为商业、科研、娱乐等带来了许多机会。
然而,随之而来的盗版和侵权行为也越来越猖獗,对数字产品的保护和信息安全的迫切需求使得数字水印技术成为多媒体信息安全研究领域的一个热点问题.数字水印可以标识作者、所有者、发行者、使用者等并携带有版权保护信息和认证信息,保护数字产品的合法拷贝和传播.数字水印技术近年来得到了较大的发展,基于变换域的水印技术是目前研究的热点。
数字水印是利用数字作品中普遍存在的冗余数据和随机性,把标识版权的水印信息嵌入到数字作品中,从而可以起到保护数字作品的版权或其完整性的一种技术.本文首先介绍了数字水印的背景、意义以及目前国内外的研究现状等基本问题,接着介绍了数字水印的基本特征、原理,随后介绍了数字水印的基本框架和数字水印的分类,为数字水印算法的提出、实现及测试提供了理论依据。
介绍了一种基于DCT的数字水印嵌入算法以及一种基于小波变换的数字水印嵌入算法,使用MATLAB设计了实验方案。
关键字:数字水印Matlab DCT 小波变换AbstractWith the rapid development of computer communication technology, the spreadof digital multimedia information more and more convenient, rapid rise of Internet publishing electronic printing,electronic advertising, digital storage and digital libraries, online video and audio, e-commerce and other new servicesmany opportunities for commercial,research,entertainment,and mode of operation。
包装材料的防伪技术与应用分析

包装材料的防伪技术与应用分析包装材料在商品的销售和物流运输中起着非常重要的作用。
然而,随着假冒伪劣商品和偷盗行为的增多,如何保障包装的完整性和真实性成为了一个亟待解决的问题。
为了应对这一挑战,防伪技术在包装行业得到了广泛的应用。
本文将着重分析包装材料的防伪技术及其应用,旨在探讨其对商品安全和消费者权益的保护。
一、包装材料的防伪技术概述包装材料的防伪技术是指通过在包装材料上加入一些特定的防伪措施,以识别真伪和保护商品安全。
目前,常见的包装材料防伪技术主要包括以下几种:1. 条形码和二维码技术:条形码和二维码是最常见的防伪技术之一。
通过在包装上印刷独特的码,可以方便地追踪和验证商品的真伪。
消费者可通过扫描码上的信息,了解商品的详细资料和生产过程。
2. 电子射频识别(RFID)技术:RFID技术是近年来快速发展的一种防伪技术。
通过在包装材料中嵌入微型芯片和天线,可以实现对商品的追踪和防伪。
RFID技术具有高速度、高精度和大容量的特点,被广泛应用于物流运输和仓储管理。
3. 光学变色防伪技术:光学变色防伪技术是基于特定材料的物理性质,通过改变材料的光学性能而实现的。
如荧光墨水、光变墨水和隐形墨水等,这些墨水在特定条件下会出现颜色变化,从而验证商品的真伪。
4. 隐形防伪技术:隐形防伪技术是指使用特定材料或某些特殊工艺,使商品包装在普通条件下无法识别,仅在特定条件下才能显现出来。
如近红外墨水、红外墨水和磁性墨水等,这些墨水需要使用特定设备或工具才能检测到。
二、包装材料防伪技术的应用分析包装材料的防伪技术在各个领域得到了广泛的应用,其应用效果也日益显现。
下面将从商品行业和物流行业两个方面,对包装材料防伪技术的应用进行分析。
1. 商品行业中的应用分析在商品行业中,包装材料的防伪技术对于保护商品安全和品牌形象具有重要意义。
通过应用防伪技术,可以有效防止假冒伪劣商品的流入市场,降低消费者因购买到假货而受到的损失。
首先,条形码和二维码技术在商品行业中得到了广泛应用。
浅谈防伪印刷之数字水印技术

而 基 于 图 像 内容 、文 本 、矢 量 图 、动 画 等 设 计 的 水 印 系
统 则 具 有 更 高 的 安 全 性 , 因 此对 该 高 层 信 息 级 别 的水 印
系统 进 行 开 发 具 有 较 为 重 要 的意 义 。
性 、 安 全 性 等 做 进 一 步 的 研 究 分 析 ,寻 找 其 。
② 对 公 钥 数 字 水 印 系 统 进 行 研 究 。 公 钥 数 字 水 印 系 统 是 指 用 一 个 专 有 的 密 钥 来 对 水 印 信 号 进 行 叠 加 ,通 过 一 个 公 开 的 密 钥 可 以 对 水 印信 号 进 行 检 测 ,但 若 想 通
过公开密钥 对专有密钥进行 推导或去除 则绝非易事 。
① Re tit d Us ( 限 制 的 ) rc e e 有 s :选 择 该 选 项 ,表 示
该 版 权 已 经 所 有 ,可 以 限 制 其 他 用 户 对 该 图 像 的 使 用
权。
③ 对 数 字 水 印 代 理 技 术 进 行 开 发 。它 的 核 心 思 想 是
充 分 考 虑 到 图 像 颜 色 变 化 、图 像 像 素 数 量 以 及 工作 流 程
l单击 R g t 按钮, eie sr 通过 I e t n me找到 Dg ac b的网 t ii r We m
等 ,以 防 产 生 负 面 的 效 果 。
3 展 望 数 字 水 印 发 展 方 向 .
l
页申 请一个由用户专用的许可证号 I u b ) ( N m e D r
数 字 水 印技 术 发 展 至 今 仍 然 存 在 有 许 多 未 触 及 的 课
用于防伪印刷的数字水印技术

( 可证明性 2)
隐藏 的水印信息应能 为所 要保护的产 品的归 属提供可靠的证据。好的水印算法应该能够将必要 的信息 ( 如产 品标志或有意义的文字等 ) 嵌入到被 保护的对象中,并在需要的时候将这些信息提取出 来,作为没有争议的证据来对产品进行鉴定。
料和设备,不增加印刷成本 ,已经越来越多地被应 用到现代防伪印刷中,并且取得 了不错的效果。
数 字 水 印技 术 的 防伪 作 用
1数字水 印技术概念 .
数字水印技术是一种信息 隐藏 技术 ,指用信 号处理的方法通过一定的算法 ,将一些标志性的信 息嵌入到图片、语音、视频等多媒体 内容中,但不 影响原内容 ,而且不被人类的觉察或者注意到 ,只
机 内,这其中包括 非线性 的量化失真
和 空间 混叠 。
( 4)安全可 靠性
数字 水 印 的加
图2 数 字水 印 的提取 过 程
入和加入的内容具 有随机性 ,这样 的随机性和变化特征使伪造者难 以
仿 冒伪 造 。
可抵抗 印刷图像复制过程 中的各种攻击。考虑到图 像的离散余弦变换 ( C 系数在 ̄ E/ D T) T P扫描前后的 变化在形状上是相似 的 ,因而本 文采 用D T C 算法。 图1 为一个水印信息的嵌入流程。 嵌入 到印刷图像 中的水印信息只有被特定的设 备或软件检测 出来 ,并恢复为原始的水印图像 ,才
( 鲁棒性 3)
隐藏的水印信息不因印刷品经过的各种地点和
人 员 而变 异 ,在 这些 环节 上 没有 泄 露 、扩散 和 恶意
破坏的可能性。所设计的数字水 印算法实现软件必 须能抵抗AD D/转换 ,即通过计算机加入数字水 / ̄ A D 印,并通过打 印机将含有水印的图像进行打 印或印 刷输 出。经过流通后 图像经过光 电检测输入 到计算
防造假知识点总结

防造假知识点总结引言随着科技的发展和商品制造工艺的不断进步,各种产品的仿冒、造假现象变得越来越普遍。
从食品、药品到奢侈品、电子产品,几乎所有行业都面临着造假的问题。
为了维护消费者的权益和市场经济的正常秩序,各国政府和企业都在积极采取措施,加强对产品的防伪和防造假工作。
在这个背景下,了解防造假的知识点显得尤为重要。
本文将从技术手段、法律政策和企业自身管理等方面,总结防造假的知识点,帮助读者更好地了解和防范造假行为。
一、技术手段1.条形码和二维码条形码和二维码是常见的防伪技术手段。
通过扫描条形码或者二维码,消费者可以了解产品的详细信息,包括生产日期、生产地点、批次号等。
一些产品还会在二维码中嵌入防伪信息,以确保产品的真伪。
2.防伪标签防伪标签是一种专门设计的标签,通常包括特殊的材料和印刷工艺,能够通过肉眼或者专用仪器识别真伪。
一些防伪标签还具有一次性、易毁坏的特点,避免二次使用。
3.芯片和RFID技术芯片和RFID技术可以嵌入到产品内部,实现产品的追溯和防伪。
通过专用设备扫描芯片或者RFID标签,可以获取产品的生产流程、物流轨迹等信息,从而辅助验证产品的真伪。
4.防伪包装精心设计的包装可以提高产品的防伪性。
一些企业会在包装上添加特殊的标识、图案或者材料,以确保消费者在购买时能够辨别真伪。
5.数字水印和纳米标记数字水印和纳米标记是一种微型化的防伪技术手段,通过将特殊的标记或者图案嵌入到产品表面或者包装中,以实现产品的追溯和防伪。
以上是常见的防伪技术手段,但在实际应用中,不同产品和行业可能会采取不同的防伪方式,读者可以根据具体情况选择适合的防伪技术。
二、法律政策1.法律法规各国政府都颁布了相关的法律法规,规定了产品的标识、防伪和侵权行为的法律责任。
消费者和企业可以依据这些法律法规,保护自己的权益和合法利益。
2.知识产权保护知识产权包括专利、商标、著作权等,是企业创新和竞争力的重要保障。
政府会通过扶持创新、加强执法等方式,保护知识产权,打击产品仿冒和侵权行为。
数字水印在印刷包装中的应用

数字水印在印刷包装中的应用现在的印刷品非常多,如证书、证件、邮票、磁卡、出版物、音像制品封面、货币有值票券、入场券、单据、广告、挂历台历、名片、护照等,数字水印都可以应用到这些产品的印刷包装防伪中,但是每一种防伪方案的设计会有所不同。
下面印刷耗材行业网就举例介绍一下数字水印在酒产品印刷包装中的应用方案,其他印刷品的防伪方案可以参考。
首先来了解一下数字水印,数字水印(Digital Watermarking)技术是将一些标识信息(即数字水印)直接嵌入数字载体(包括多媒体、文档、软件等)当中,但不影响原载体的使用价值,也不容易被人的知觉系统(如视觉或听觉系统)觉察或注意到。
通过这些隐藏在载体中的信息,可以达到确认内容创建者、购买者、传送隐秘信息或者判断载体是否被篡改等目的。
1、在内、外包装盒上分别制作离散与非离散,可见、不可见的数字水印防伪电子标贴,这样既不改变生产工艺流程,又可有效防止造假者大规模仿制造假同时方便广大消费者和物流环节工作人员的直观识别和工具检测,也利于市场管理人员打假检测。
2、制作数字水印防伪标贴。
将其贴于包装封口处、瓶盖开启处、瓶盖与瓶颈结合处,这主要是为防止小规模造假者回收旧包装翻新重复使用。
技术方案是在商标或适当位皿分别加入内容各不相同的不可见非离散数宇水印和不可见离散数字水印防伪信息分别供厂家主管、销售部门、配送流通等环节掌握实现防伪信息的分级管理。
非离散水印消费者或管理者可以通过配送给销售网点的数字水印专用检测工具方便地辨别产品的真伪:离散水印僻通过专用的数字水印提取设备或软件提取水印鉴别真伪。
3、在内、外包装上使用非离散的、隐含区域标示的不可见数字水印可以实现定向生产和定向销售。
防止区域窜货。
4、如果厂家需要还可在防伪标签或标贴上制作并提供“数宇编码计算机物流管理系统“将防伪与物流管理系统有机地结合起来.提高厂家的计算机管理效率。
水印防伪技术原理

水印防伪技术原理
1.光学原理:水印防伪技术的一种常见方法是利用折射、反射、透射
等光学现象,通过改变物体的光学性质来实现防伪目的。
例如,使用局部
斜纹或镂空的方式制作水印,当光线照射到水印上时,会产生明暗变化的
效果,通过观察这些变化可以判断物品的真伪。
2.材料特性原理:水印防伪技术还可以利用材料本身的特性来实现防
伪效果。
例如,通过利用材料的荧光性质,在特定波长的光照下,荧光物
质会发出特殊的光线,从而辨别真伪。
此外,还可以使用特殊材料或颜料,使其具有特定的电导性、磁性或热敏性,以实现防伪效果。
3.图像处理原理:水印防伪技术还可以利用图像处理的方法来完成。
通过对图像进行处理,添加特定的图案、标记或信息,使其具有一定的隐
蔽性和高度的复杂性,从而实现防伪目的。
例如,可以利用图像的变换、
叠加、隐藏等技术,将水印信息嵌入到产品图像中,只有通过特定的解码
器才能识别出水印。
4.数字技术原理:随着数字技术的发展,水印防伪技术也逐渐引入了
数字水印的概念。
数字水印是一种嵌入在数字媒体(如图像、音频、视频等)中的一种特殊信息,它可以隐藏在宿主媒体中,不影响媒体的质量,
并且可以通过专门的解码器进行提取。
数字水印技术具有良好的鲁棒性和
安全性,可以有效地防伪。
总的来说,水印防伪技术的原理是通过利用光学、材料、图像处理和
数字技术等多种方法,对物体进行特殊处理或添加特殊标记,使其具有独
特的特征和隐蔽性,以实现防伪效果。
水印防伪技术已经广泛应用于各个
领域,如货币、证件、商品包装等,对于保护知识产权和防止假货流入市场起到了重要作用。
基于数字水印技术的防伪溯源系统研究

基于数字水印技术的防伪溯源系统研究随着科学技术的不断发展和社会经济的不断进步,伪劣产品的问题日益凸显。
可以说,伪劣产品是一个全球性、长期性、复杂性和严重性的社会问题。
解决这个问题是保障人民生命健康和财产安全的重要任务。
为了保障消费者权益,防止恶意制假、欺骗消费者,制定一系列法律法规是必不可少的。
但是,单纯的法律制约往往存在许多弊端。
因此,在现代社会,数字水印技术的应用引起了广泛关注。
数字水印技术是一种基于数字信号处理和信息隐藏的技术。
它不仅可以保护信息的安全,而且可以实现信息的保密性、完整性和追踪性。
数字水印技术在商业保密、版权保护、特殊品质保护、奖励机制等领域都有广泛应用。
在防伪溯源领域,数字水印技术同样是一种有效的手段。
利用数字水印技术,可以在产品生产过程中为产品识别码、批次号、生产日期等信息嵌入数字水印,并将其记录在对应产品的防伪码中。
消费者在购买产品时,可以通过扫描防伪码获取产品的信息,从而了解产品的生产信息和真伪情况。
数字水印技术的防伪溯源系统具体实现步骤如下:一、数字水印技术嵌入数字水印技术嵌入是指将产品信息嵌入数字水印图像中。
该过程是在产品生产过程中完成的。
具体步骤如下:1. 选取信号载体信号载体可以选取产品原材料、成品外包装等信息共载体。
选取信号载体时需要考虑数据嵌入的容量和嵌入的稳定性。
2. 内容加密在嵌入的数字水印中,包含了产品的信息。
为了确保该信息不被他人轻易破解,需要对该信息进行加密处理。
将加密后的信息与数字水印模板结合,嵌入到信号载体中。
3. 数字水印检测在数字水印嵌入完成后,需要对数字水印进行检测。
检测的目的是确保数字水印的完整性和可读性。
同时,为了避免数字水印的假冒和欺骗,需要对数字水印进行签名验证。
二、防伪溯源系统实现防伪溯源系统是数字水印技术的核心应用。
它通过数字防伪码的嵌入、存储和检索,实现对产品真伪情况的查询。
具体的实现步骤如下:1. 防伪码生成防伪码是唯一的,与每个产品对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Publicly Verifiable Copyright-Proving SchemeResistant to Malicious AttacksTzung-Her Chen,Gwoboa Horng,Member,IEEE,and Wei-Bin Lee,Member,IEEEAbstract—A wavelet-based copyright-proving scheme that does not require the original image for logo verification is proposed in this paper.The scheme is strong enough to resist malicious ma-nipulations of an image including blurring,JPEG compression, noising,sharpening,scaling,rotation,cropping,scaling-cropping, and print–photocopy–scan attacks.The proposed scheme is also re-sistant to StirMark and unZign attacks and it is not only a robust method but also a lossless one.Experiments are conducted to show the robustness of this method.Moreover,cryptographic tools,such as digital signature and timestamp,are introduced to make copy-right proving publicly verifiable.Index Terms—Copyright protection,digital signature,digital timestamp,digital watermarking,discrete wavelet transform.I.I NTRODUCTIONT HERE is no doubt that the progress of networking tech-nology has enabled much faster and easier distribution of digital documents.Moreover,duplicating digital documents has become as simple as clicking a button.Accordingly,the issue of copyright protection has become more imperative than ever. Furthermore,the current problems with copyright protection ob-struct the rapid evolution of computer and communication net-works[1].Hence,the enhancement and further development of digital copyright protection is central to the development of fu-ture communication networks.The current cryptographic techniques,such as encryption, digital signature,and digital timestamp,[2]while suitable for text documents,are not suitable for protecting multimedia data such as images,audio,and video directly.Firstly,thefile size is much greater than that of text.Hence,more time is needed to encrypt/sign them.Secondly,no distortion is allowed in en-crypted/signed text.However,this requirement is not always necessary for the multimedia data.Recently,digital watermarking techniques have received considerable attention,since they have high commercial poten-tial for copyright protection and authentication for multimedia data.A digital watermarking technique embeds a watermark, including a signature or a copyright message,such as a trade logo,a seal,or a sequence number,into an image.Subsequently, the watermark can be extracted/detected from the watermarked image and be adopted to verify the ownership.Manuscript received August22,2002;revised December26,2003.Abstract published on the Internet November10,2004.T.-H.Chen and G.Horng are with the Institute of Computer Science, National Chung Hsing University,Taichung402,Taiwan,R.O.C.(e-mail: phd9007@.tw;gbhorng@.tw).W.-B.Lee is with the Department of Information Engineering,Feng Chia University,Taichung407,Taiwan,R.O.C.(e-mail:lwb@.tw). Digital Object Identifier10.1109/TIE.2004.841083With copyright protection in mind,a watermarking scheme must satisfy six essential properties.First,a watermark must have transparency.That is to say,the embedded watermark must be perceptually invisible.In other words,the embedding process should not distort the image from the human visual aspect.The second is robustness.The embedded watermark must be strong enough to resist against attacks intending to remove the water-mark.These attacks include:image processing(blurring,JPEG compression,noising,and sharpening)and geometric distortions (scaling,rotation,cropping,and print–photocopy–scan).The third property is unambiguity.A watermarking technique must identify the owner of an image without ambiguity.The fourth property is security.According to Kerckhoff’s principle,the security of a cryptosystem should not depend on keeping the cryptographic algorithm secret[2].Security depends only on keeping the key secret.For the same reason,the security of the watermark should not depend upon the assumption that the pirate does not know the watermarking algorithm.The watermarking algorithm must be public while the embedded watermark is undeletable.Thefifth property is blindness.In the watermark verification phase,it is not necessary to use the original image in identifying the embedded watermark.That is,the copyright owners need no extra disk space to preserve the original image. The sixth andfinal essential property it must be able to have is multiple watermarking.In a multiple watermarking scheme, more recent watermarks(for legal distributors and users)must not interfere with the original watermarks.Copyright protection is limited today because almost all pro-posed watermarking technology cannot simultaneously meet all of these properties.One of the most cited watermarking schemes is proposed by Cox et al.in[3].The authors embed the water-mark sequence into the highest magnitude discrete cosine trans-form coefficients.Since the watermark is cast into the most per-ceptually significant regions of the original image,it is tough enough to resist common signal processing and geometric dis-tortions.In[4]and[5],the authors propose the discrete co-sine/wavelet transform schemes to embed watermarks by mod-ifying the middle-frequency coefficients.Unfortunately,their schemes are sensitive to simple geometric distortions.In[6], cocktail watermarking is proposed by Lu and Liao.They si-multaneously insert two complementary watermarks into the original image incorporating a modulation strategy.One em-bedded watermark is based on a positive modulation rule,used to increasingly modulate the selected wavelet coefficients of the original image and the other a negative modulation rule,used to decreasingly modulate the selected wavelet coefficients of the original image.Thus,no matter what kind of attack is encoun-tered,at least one watermark will survive.Although many at-0278-0046/$20.00©2005IEEEtacks,including StirMark[7],are conducted to prove robust-ness,several geometric distortions,such as small-angel rota-tion,cropping,and print–photocopy–scan,are not addressed. The common weakness in[3]–[6]is requiring the original image to detect/extract the watermark.This is another reason their schemes are not suitable for multiple watermarking.Tsai et al.proposes a blind wavelet-based watermarking scheme[8].After permuting the visually recognizable water-mark by torus automorphisms,the transformed watermark is then embedded into the coefficients selected within the wavelet-trans-formed components.Their scheme does not require the original image to extract the embedded watermark.However,this scheme is weak against geometric distortion attacks.Moreover,the scheme is not suitable for multiple watermarking.In[9],a blind watermarking scheme based on discrete wavelet transformation(DWT)and the human visual system model is proposed.The scheme embeds the watermark,a binary pseudo-random sequence,into the three highest frequency components.While this scheme is shown to be resistant against compression,cropping,and morphing in their experiments,it has a major weakness.An attacker can easily remove the embedded watermark by discarding the highest frequency components in the DWT domain without distorting the watermarked image seriously.In the current literature,the proposed watermarking tech-niques tend to focus on improving robustness.However, Katzenbeisser argues,“watermarking alone is not sufficient to resolve rightful ownership of digital data;a protocol relying on the existing public-key infrastructure,which is also used for digital signatures,is necessary.”[10].In the following,we discuss the challenges of copyright protection issues in depth.1)Benchmark attacks:It is well known that StirMark andunZ‘ign are two powerful benchmarks to evaluate the ro-bustness of watermarking schemes[7],[11].In general,a copyright-protection scheme is easy to break if it cannot resist StirMark and unZign attacks.2)Malicious attacks:For copyright protection purposes,ro-bustness is a necessary but not completely sufficient prop-erty to guarantee security[12].A watermarking scheme should also be able to resist counterfeit[13],[14],and copy attacks[14].a)Counterfeit attacks:An attacker can confuse the own-ership by simply embedding another watermark into an already watermarked image.Hence,there are two different watermarks in the watermarked image.This problem of multiple claims of ownership is also called the deadlock problem,invertibility attack,IBM attack,etc.[12].b)Copy attacks:The copy attack copies a watermarkfrom a watermarked image to another image without knowing the secret parameters[14].3)Blind pattern matching(BPM)attacks:The BPM attackis a new breed of attack against generic watermarking techniques[15].BPM attacks make watermark detec-tion/extraction nearly impossible.The attack consists of three stages:a)dividing the watermarked image into overlappinglow-granularity blocks;b)identifying and classifying subsets of perceptuallysimilar blocks;c)pseudo-randomly permuting their locations in theimage.Hence,the large percentage of the watermarked image will be disturbed or replaced such that the watermark de-tection/extraction will fail.Almost all of the proposed watermarking schemes do not ad-dress the malicious attacks mentioned above.BPM attacks are especially lethal for the current schemes.Recently,Chang et al.[13],[16]proposed a novel scheme to protect image copyright.The authors introduced a timestamp technique to rout counterfeit attacks.The main advantages of their methods are:1)the protected image is the same as the original,i.e.,the copyright-protection scheme is lossless;2)the original image is not required to extract the logo;3)a mul-tiple watermarking technique is possible;and4)counterfeit and copy attacks will not succeed.Unfortunately,simple geometric distortions,such as rotation and print–photocopy–scan,are still problematic.Lee and Chen also have proposed a publicly ver-ifiable copy protection scheme based on digital signature and timestamp[17].It is worthwhile to note that their scheme can meet all of the aforementioned properties for copyright protec-tion(with the exception of BPM attacks).Unfortunately,their scheme is only suitable for gray-level logos not binary ones. In this paper,we propose a novel wavelet-based copy-right-proving scheme(different from conventional water-marking techniques),which meets all of the above requirements of copyright protection and does not alter the original image. In contrast to current watermarking approaches,the proposed method is resistant to image processing and geometric distor-tion attacks simultaneously.To demonstrate the feasibility of the scheme,several attacks,including StirMark and unZign attacks,are conducted in our experiments.The only accepted way to protect intellectual property and offer indisputable proof of ownership is through product regis-tration to a trusted authority[18].This kind of watermark can be used for automatic monitoring and discovery of illegally dis-tributed objects through two cryptographic tools—digital sig-nature and timestamp.These tools are included in our scheme to avoid the counterfeit/copy attacks and to make public veri-fication possible.Even though the BPM attack is powerful and effective against all proposed watermarking schemes in the lit-erature,our copyright-protection scheme is still resistant against this kind of attack.This paper is organized as follows.In Section2,we briefly introduce DWT and the concept of digital signature and time-stamp.In Section3,we propose a highly robust method to pro-tect the copyright of digital images.Experimental results and discussions are given in Section4.Conclusions are provided in Section5.II.D ISCRETE W A VELET T RANSFORMATION,D IGITALS IGNATURE,AND T IMESTAMPWavelet is a mathematical tool for decomposing functions [19],[20].In the DWT,an image isfirst decomposed into foursubbands,,and(eachhas size of theCHEN et al.:PUBLICLY VERIFIABLE COPYRIGHT-PROVING SCHEME RESISTANT TO MALICIOUS ATTACKS329Fig.1.The original image is divided into seven subbands through two-scale level wavelet transformation.original image,see Fig.1).The subbands labeledas ,andcontain high frequency detail information.The sub-bandis the low-frequency component,which contains most of the energy in the image.The wavelet transformation can beapplied again by further decomposing thesubbandinto thesubbands,and .If the process is repeated times,called -level wavelet transformation,we can obtain thesubband.Generally speaking,a digital signature operation signs a message using a private key of a public key cryptosystem.Subsequently,anyone can verify the origin and integrity of the message using the corresponding public key.Nevertheless,how to ascertain who really owns the public key is very important issue.A well-accepted solution is to rely on a trusted party,called a certi fication authority,to issue a certi ficate to a user.The certi ficate binds a user ’s identify and his public key.Based on the certi ficate,anyone can ascertain that a public key belongs to a particular person.Alternatively,a digital timestamp operation is used to ascertain whenaparticulareventtookplace.Forexample,whendigitaldata wascreated,adigitalmessagewassentorreceived,adigitalsigna-ture was generated or a signature key was revoked.Since the date andtimeonacomputercanbeeasilymanipulated,atimestamping authority(TSA)hasbeenstandardizedbytheInternetEngineering Task Force.“A typical approach to secure digital signatures as ev-idence relies on the existence of an on-line trusted time stamping authority,”writes Zhou and Lam.“Each newly generated digital signature has to be time-stamped by a TSA so that the trusted time of signature generation can be identi fied.”[21].Digital signature and timestamp may be very useful for as-certaining certain information but alone they are limited in their ability to protect digital copyright.Digital images can be easily duplicated with little perceivable loss.An attacker could utilize these characteristics to modify original images and claim own-ership of the images.These reasonable distortions,while unper-ceivable to the human eye,would still fail to pass the security veri fication mechanisms:digital signature and timestamp.They are sensitive to the bit stream rather than the content.III.P ROPOSED S CHEMEThe human eye is more sensitive to low-frequency compo-nents than the high-frequency components.However,it is gen-erally the low-frequency components that survive with little lossunder signi ficant attack.Also,thesubbandof the original image is very similar to the new subband of the altered image.Based on these observations,our proposed scheme is lossless yet robust in its copyright-proving ability.A.Certificate Generation AlgorithmAssume that the original image is a gray-level image with 8b/pixel,and the digital logo is a binary image.The originalimage and the logoimageare de fined asfollows.(1)whereandis the width and heightof,respectively.(2)whereand are the width and heightof ,respectively.Step 1)Wavelet transforming of the original image :Theoriginal image is decomposed by performing -levelwavelet transform to obtain thesubband.The size ofsubbandisby .If the sizeof is smallerthan ,anew must be constructed by tilingthe repeatedly until the new size ofthe is the sameas .For simplicity,assumethat is the same size as thelogo .Without losing the generality,letand be power of 2.Thus,wehave(3)(4)Here,is de finedas(5)Step 2)Permuting the logo :To guard against geometricdistortions,thelogois permutated based on a two-dimension pseudorandom permutation [4],[5]generated byseed .The permutedlogo is de-fined asfollows:(6)wheredenotes the permutation function usingseed .Step 3)Constructing the polarity table :The averagevalueof all pixelsin is calculated.Then polaritytable is constructed asfollows:(7)330IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,VOL.52,NO.1,FEBRUARY2005whereStep4)Generating the verification key:After obtainingthe polaritytable,the verificationkey,usedto retrieve the logo,can be computed as the bitwiseexclusive–ORofand(8)Note that the security of our scheme is based on theparametersand.Step5)Signing and timestamping the parameters:Inthis step,the security parameters are signed by theowner based on the digital signaturetechnique.(9)where is a digital signature functionusing the owner’s private key OSK.Subsequently,the owner sends the signature DS tothe trusted party TSA.TSA creates a timestamp TSby appending the date and the time receivedas(10)where is a timestamp function usingTSA’s private key TPSK.After receiving TS,TS andDS are incorporated with the originalimage.If adispute arises,the TS and DS can be used to verifythe copyright logo corresponding to the test image.B.Logo Verification AlgorithmLogo verification does not require presence of the originalimage.In order to verify the exact copyright of an image,anyonecan use the TSA public key to verify the timestamp TS and usethe owner’s public key to verify the signature DS and to checkthe validation of the securityparameters:,and.If successful,the verification will be‘verified’,otherwise the al-gorithm returns‘fail’and stops.The verification steps are similarto the certificate generation steps and are described as follows.Step1)Wavelet transforming of the test image:The testimage is processed by a-level wavelet transforma-tion to obtain thesubband.Step2)Constructing the new polarity table:Using thesame method in step3of the certificate generation,the new polaritytable is calculatedfrom.Step3)Extracting the logo with verification key:The ex-tractedlogo is obtainedby(11)Step4)Inversely permuting the logo:Finally,the retrievedlogo isobtainedbyinversingthepermutationin(6)according to theparameter asfollows:(12)where denotes the inversing permuta-tion function using theseed.IV.E XPERIMENTAL R ESULTS AND D ISCUSSIONSA.Experimental ResultsTo demonstrate the feasibility of our robust copy-right-proving scheme,some experiments are conducted.Fig.2shows a“classical”image Lena as the originalimageand a binary image as thelogo.The original image is a256gray-level image of size512512pixels and the logo isa visual recognizable binary image of size6464pixels.TheLena image is three-level wavelet transformed and thesubbandof size6464is obtained.We use the peak signal-to-noise ratio(PSNR)to evaluate thequality between the attacked image and the original image.ThePSNR formula is defined asfollows:whereand are the height and width of theimage.isthe original value of thecoordinateand is the alteredvalue of thecoordinate.is the largest energy of theimage pixels(e.g.,for8b/pixel).The logo retrievalrate is defined to be the percentage ofthe accurate pixels recovered,whichisThe experimental results show that the retrieved logos are stillrecognizable despite the image being seriously distorted.Table Ishows the experimental results under various attacks.The at-tacks are described as follows.Exp.1Image blurring:We blur Lena such that the PSNRvalue is reduced to29dB.Exp.2Image JPEG compression:The JPEG compres-sion version of Lena is obtained with parameters of10%quality and0%smoothing.Exp.3Image noising:Gaussian noise is added to Lenasuch that the PSNR value is reduced to30dB.Exp.4Image sharpening:We sharpen Lena until thePSNR value is reduced to28dB.Exp.5Image sealing:We reduce Lena from512512to128128pixels and then rescale back to512512pixels.Exp.6Image rotation:Lena is rotated2and then resizedto512512pixels.Exp.7Image print–photocopy–scan:We print Lenausing a1200dpi laser printer.The image is thenphotocopied and further scanned at a300dpi and256gray-level scanner.Finally,the image is resizedto512512pixels.Exp.8Image cropping:The left-top corner of Lena is dis-carded.The PSNR value is reduced to11dB.Exp.9Image scaling-cropping:We apply cropping andscaling attacks together.First,Lena is scaling from512512to560560pixels.Second,we cut theCHEN et al.:PUBLICLY VERIFIABLE COPYRIGHT-PROVING SCHEME RESISTANT TO MALICIOUS ATTACKS331Fig.2.(a)The original image:Lena ,(b)the logo,and (c)peppers.edge area of the resized Lena to form the size of512512pixels.The PSNR value is thus reduced to 16dB.Exp.10StirMark attack:We apply the StirMark attackto Lena one time with the default parameters.The PSNR value is thus reduced to 18dB;however,Lena is not severely distorted.Exp.11unZign attack:We apply the unZign attack to Lenaone time with the default parameters.The PSNR value is thus reduced to 25dB;however,Lena is not severely distorted.Exp.12StirMark and unZign attacks:We apply the Stir-Mark and unZign attacks one time,respectively.The PSNR value is thus reduced to 20dB;however,Lena is not severely distorted.Exp.13BPM attack:In this experiment,we perform thefollowing operations:(a)divide Lena into the blocks of44pixels;(b)retrieve 256codewords from Peppers [as shown in Fig.2(c)]by LBG algorithm [22];and (c)repeatedly replace each block of Lena with the closest codeword to form a perceptually similar Lena.The PSNR value is reduced to 30dB.B.DiscussionsIn our scheme,exact ownership is ascertained if the retrieved logo image is meaningful to the veri fier.Our experiments show that our copyright-protection scheme possesses the six essential properties of transparency,robustness,security,unambiguous,blindness ,and it handles multiple logos .Our scheme has trans-parency because it is lossless.For medical images,for example,lossless is a very important property.It is also robust.In the worst case situation there still was a high retrieved ratio (up to 80.3%).This is especially important as many watermarking schemes in the current literature are vulnerable to rotation and print –photocopy –scan attacks.It is secure.The security of this copyright-protection technique is based on the same as the digital signature and timestamp techniques.It is unambiguous.Based on the experiment results,the retrieval ratios were very high.Obviously,all logos are recognizable and thus do con-vince a veri fier of the existence of logos without ambiguity.Our scheme has blindness.The certi ficate-veri fication phase does not require the original image.In practice,this is an essential property of the copyright-protection stly,our scheme can handle multiple logos.Because the original image is not modi fied,this scheme allows the existence of multiple logo embedding.The owner can just cast another logo by generating the corresponding veri fication key,and save all of the veri fication keys to verify the ownership of his digital image in the future.Our scheme is resistant to copy attacks because it does not modify the original image.The integrity of the veri ficationkeysand is guaranteed by the digital signature and timestamp mechanisms.Hence,our scheme is resistant to counterfeit at-tacks.Exp.13demonstrates that our scheme is resistant to BPM attacks.Our scheme is also resistant to StirMark and unZign at-tacks.In addition,owners do not have to keep the veri fication keys.To verify the ownership of the test image,one only needs the public keys of the owner and TSA.The advantages are:1)to reduce the overhead of veri fication by the owner,and the storage space and managements of the veri fication keys for each image;332IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,VOL.52,NO.1,FEBRUARY 2005TABLE IT HE A TTACKED I MAGES ,THE C ORRESPONDING PSNR V ALUES ,THE R ETRIEVED L OGOS,AND THE C ORRESPONDING R ATIO V ALUES(%)2)to avoid revealing the secret keys when verifying in a private watermarking system.Not only can a binary logo but a gray-level logo can also be treated as a logo in our scheme.A gray-level logo must be di-vided into several binary images.For instance,a 256-gray logo can be decomposed into eight bitplanes.Each bitplane is re-garded as a binary logo.To see is to believe.People are pleased to use a meaningful and visually recognizable pattern as their copyright logo.It seems to us that an extractable scheme is better than a detectable one.This is because the latter cannot completely satisfactory.In detectable schemes,a detector is used to detect whether the copyright watermark has been embedded into the image and then yields a “yes ”or “no ”.If the similarity is greater than a predetermined threshold value,we say that the watermark is indeed embedded into the image,and vice versa.However,how to decide a proper threshold value is very dif ficult.A small threshold will presume the existence of a watermark if not so.Oppositely,a larger threshold will reject the existence of a watermark although it is indeed embedded.Alternatively,the extraction of the embedded visually recognizable logo convinces us of its existence.Because the veri fication key depends on the protected image and has robustness features against several malicious distortions,“who ”and “when ”become two important key points to provide copyright protection.In the proposed scheme,the veri fication key binds with DS and TS tightly,where DS is used to verify who generated the veri fication key and TS is used to ascertain when the veri fication key and DS were generated.Hence,even if an adversary creates a “veri fication ”key,the dispute can be resolved according to the evidences of “who ”and “when ”.In fact,the intellectual property rights box,de fined to provide security services,in an JPEG 2000file format has shown a trend that an image format should provide a field for security services.It is reasonable to assume that DS and TS is included in the image format;otherwise,a doubtful image without DS and TS is possible to set the proposed scheme into some unpredictable problems.To demonstrate the effectiveness of our scheme,a comparison of our scheme with several conventional watermarking schemes is shown in Table II.Further,the comparison of our scheme with two copyright-protection schemes,which are also lossless,is summarized in Table III.CHEN et al.:PUBLICLY VERIFIABLE COPYRIGHT-PROVING SCHEME RESISTANT TO MALICIOUS ATTACKS 333TABLE IIC OMPARISONS OF THE P ROPOSED S CHEME AND S EVERAL C ONVENTIONAL W ATERMARKING SCHEMESTABLE IIIC OMPARISONS OF THE P ROPOSED S CHEME AND S EVERAL C OPYRIGHT -P ROTECTION SCHEMESV .C ONCLUSIONAlthough cryptographic techniques alone are not suitable to protect the copyright of digital images,we have shown that the security and reliability of copyright protection can bene fit from a combination of cryptography and watermarking.We have in-tegrated wavelet transform,digital signature,and digital time-stamp into a copyright-protection scheme.Without modifying the lowest frequency components of DWT,our scheme is loss-less.Experimental results demonstrate that our scheme is robust against common image processing attacks and simple geometric distortions.Furthermore,our scheme is also resistant to the fol-334IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,VOL.52,NO.1,FEBRUARY2005lowing attacks:1)StirMark,unZign,and StirMark–unZign;2) multiple logos;and3)counterfeit,copy,and BPM,while almost all robust copyright-protection schemes are vulnerable to these attacks.Finally,the application of digital signature and time-stamp make public verification possible.R EFERENCES[1]G.V oyatzis and I.Pitas,“Protecting digital-image copyrights:A frame-work,”IEEE Comput.Graph.Appl.,vol.19,no.1,pp.18–24,Jan./Feb.1999.[2] B.Schneier,Applied Cryptography,2nd ed.New York:Wiley,1996.[3]I.J.Cox,J.Kilian,F.T.Leighton,and T.Shamoon,“Secure spreadspectrum watermarking for multimedia,”IEEE Trans.Image Process., vol.6,no.12,pp.1673–1687,Dec.1997.[4] C.T.Hsu and J.L.Wu,“Multiresolution watermarking for digital im-ages,”IEEE Trans.Circuits Syst.II,Analog Digit.Signal Process.,vol.45,no.8,pp.1097–1101,Aug.1998.[5],“Hidden digital watermarks in images,”IEEE Trans.ImageProcess.,vol.8,no.1,pp.58–68,Jan.1999.[6] C.S.Lu and H.Y.M.Liao,“Cocktail watermarking for digital imageprotection,”IEEE Trans.Multimedia,vol.2,no.4,pp.209–224,Dec.2000.[7] F.A.Petitcolas,R.J.Anderson,and M.G.Kuhn,“Information hiding–Asurvey,”Proc.IEEE,vol.87,no.7,pp.1062–1078,Jul.1999.[8]M.J.Tsai,K.Y.Yu,and Y.Z.Chen,“Joint wavelet and spatial transfor-mation for digital watermarking,”IEEE Trans.Consum.Electron.,vol.46,no.1,pp.241–245,Feb.2000.[9]M.Barni,F.Bartolini,and A.Piva,“Improved wavelet-based water-marking through pixel-wise masking,”IEEE Trans.Image Process.,vol.10,no.5,pp.783–791,May2001.[10]S.Katzenbeisser,“On the design of copyright protection protocols formultimedia distribution using symmetric and public-key watermarking,”in Proc.12th Int.Workshop Database and Expert Systems Applications, 5th Int.Query Processing and Multimedia Issues Distributed Systems Workshop,2001,pp.815–819.[11]unZign Watermark Removal Software(1997).[Online].Available:/watermark[12]S.Craver,B.L.Yeo,and M.Yeung,“Technical trials and legal tribula-tions,”Commun.ACM,vol.41,no.7,pp.45–54,Jul.1998.[13] C.C.Chang,K.F.Hwang,and M.S.Hwang,“Robust authentica-tion scheme for protecting copyrights of images and graphics,”IEE Proc.—Vis.Image Signal Proc.,vol.149,no.1,pp.43–50,2002. [14]M.Kutter,S.V oloshynovskiy,and A.Herrigel,“The watermark copyattack,”in Proc.SPIE,Security and Watermarking Multimedia Contents II,vol.3971,San Jose,CA,2000,pp.371–380.[15] F.A.Petitcolas and D.Kirovski,“The blind pattern matching attack onwatermark systems,”in Proc.IEEE Int.Conf.Acoustics,Speech,and Signal Processing,vol.4,2002,pp.3740–3743.[16] C.C.Chang and J.C.Chuang,“An image intellectual property protec-tion scheme for gray-level images using visual secret sharing strategy,”Pattern Recognit.Lett.,vol.23,pp.931–941,2002.[17]W.B.Lee and T.H.Chen,“A public verifiable copy protection techniquefor still images,”J.Syst.Softw.,vol.62,pp.195–204,Jun.2002. [18] C.Fornaro and A.Sanna,“Public key watermarking for authenticationof CSG models,”Comput.Aided Des.,vol.32,pp.727–735,Oct.2000.[19]J.M.Shapiro,“Embedded image coding using zerotrees of wavelet co-efficients,”IEEE Trans.Signal Process.,vol.41,no.12,pp.3445–3462, Dec.1993.[20] E.J.Stollnitz,T.D.DeRose,and D.H.Salesin,“Wavelets for computergraphics:A primer.1,”IEEE Comput.Graph.Appl.,vol.15,no.3,pp.76–84,May1995.[21]J.Zhou and m,“Securing digital signatures for nonrepudiation,”mun.,vol.22,pp.710–716,May1999.[22]Y.Linde,A.Buzo,and R.M.Gray,“An algorithm for vector quantizerdesign,”IEEE mun.,-28,no.1,pp.84–95,Jan.1980.Tzung-Her Chen received the B.S.degree fromthe Department of Information and Computer Edu-cation,National Taiwan Normal University,Taipei,Taiwan,R.O.C.,in1991,and the M.S.degree fromthe Department of Information Engineering,FengChia University,Taichung,Taiwan,R.O.C.,in2001.He is currently working toward the Ph.D.degree atthe Institute of Computer Science,National ChungHsing University,Taichung,Taiwan,R.O.C.His research interests include cryptography,infor-mation hiding,and digitalwatermarking.Gwoboa Horng(M’96)received the B.S.degree inelectrical engineering from National Taiwan Univer-sity,Taipei,Taiwan,R.O.C.,in1981,and the M.S.and Ph.D.degrees in computer science from the Uni-versity of Southern California,Los Angeles,in1987and1992,respectively.Since1992,he has been a faculty member at theInstitute of Computer Science,National Chung HsingUniversity,Taichung,Taiwan,R.O.C.His current re-search interests include artificial intelligence,cryp-tography,and informationsecurity.Wei-Bin Lee(M’03)received the B.S.degree fromthe Department of Information and Computer Engi-neering,Chung Yuan Christian University,Chungli,Taiwan,R.O.C.,in1991,and the M.S.degree incomputer science and information engineeringand the Ph.D.degree from National Chung ChengUniversity,Chiayi,Taiwan,R.O.C.,in1993and1997,respectively.Since1999,he has been with the Departmentof Information Engineering,Feng Chia University,Taichung,Taiwan,R.O.C.,where he is currently an Associate Professor.His research interests currently include cryptography, information security management,steganography,and network security.Dr.Lee is an Honorary Member of the Phi Tau Phi.。