如何进行电路板的可靠性设计
电路板设计规范

电路板设计规范引言:电路板(Printed Circuit Board, PCB)作为电子产品的重要组成部分,对于产品的性能和可靠性具有重要影响。
因此,制定一套科学、合理的电路板设计规范,对于提高产品的品质和可靠性具有重要意义。
本文将从电路板的布局、封装、走线等方面,详细阐述电路板设计中的规范要求。
一、电路板布局规范电路板的布局是整个设计过程的起点,合理的布局对于电路的性能和抗干扰能力有着重要的影响。
在进行电路板布局时,需要遵守以下规范:1. 尽量保持电路板的紧凑布局,减少线长,提高信号传输速度和稳定性;2. 分隔相互干扰的电路模块,减少信号串扰;3. 注重重要信号线和电源线的规划,使其路径短且减少穿越其他信号线的可能性;4. 合理安排电路板上各个元器件的位置,避免相邻元器件之间出现干扰。
二、电路板封装规范电路板上的元器件封装选择和布局设计对于产品的可维护性和性能具有重要影响。
在进行封装规范时,需要遵守以下原则:1. 选择合适的元器件封装规格,保证元器件能够完整地焊接在电路板上;2. 尽量使用标准化封装,方便元器件的替换和维修;3. 对于重要的元器件,采用固定方式进行加固,以防止在振动环境下发生松动或脱落。
三、电路板走线规范电路板的走线是保证信号传输质量和良好可靠性的重要环节。
在进行电路板走线时,需要遵守以下规范:1. 选择合适的走线层次,避免过多的层次转换导致信号传输的不稳定;2. 合理规划信号线的走向,避免交叉和迂回,减少信号串扰;3. 采用星型走线方式,将地线作为刚性连接;4. 为高速信号线提供必要的终端阻抗匹配;5. 适当增加地线密度,减少电磁干扰。
四、电路板线宽、线距规范电路板的线宽和线距直接影响到电路板的电气性能和外部环境的干扰。
在进行线宽、线距规范时,需要遵守以下原则:1. 根据信号的类型和重要性,合理选择线宽和线距,保证信号完整传递;2. 对于高速信号线,应增加线宽和线距,提高信号的可靠性;3. 对于外部环境的辐射干扰较大的区域,应增加线距,提高抗干扰能力。
电路板设计与制作标准与规范

电路板设计与制作标准与规范引言在现代科技发展中,电路板在各行各业中都扮演着重要的角色。
它作为电子设备的核心组成部分,影响着产品的性能和可靠性。
为了确保电路板的设计和制作质量,一系列的标准与规范被制定出来。
本文将重点探讨电路板设计与制作的标准与规范,以提高电子产品的质量和可靠性。
一、电路板设计标准与规范1. 尺寸和布局电路板的尺寸和布局对于电子产品的性能和可靠性至关重要。
设计师应根据电路的功能和布线的需求,合理确定电路板的尺寸和布局。
在设计过程中,要遵循以下几个方面的标准与规范:- 底板尺寸:根据电子产品的需求,确定电路板的底板尺寸,确保电路板能够适应产品的尺寸要求。
- 元器件布局:合理布置各元器件的位置,避免相互之间的干扰和冲突,提高电路的可靠性和性能。
- 热管理:对于需要散热的元器件,要合理布局散热装置,确保电路板在工作过程中能够有效散热。
2. 线路布线和走线规范电路的线路布线和走线对于电路板的性能和可靠性有着重要影响。
设计师应根据以下标准与规范进行线路布线和走线:- 信号完整性:对于高频信号和模拟信号,要避免走线过长和走线路径交叉,减少信号的噪声和干扰。
- 电源线和地线:电源线和地线的布线要合理,避免电源线和地线之间的干扰,提高电路的稳定性和可靠性。
- 差分信号:对于差分信号的走线,要保持差分对的平衡,减少互相之间的串扰。
3. 元器件的选择与布局电路板中的元器件选择和布局对于电路的性能和可靠性有着直接影响。
在选择和布局过程中,设计师应遵循以下方面的标准与规范: - 元器件的可获得性和可替代性:选择市场上容易获得且有替代品的元器件,以提高生产的可持续性和成本控制。
- 元器件的热耦合和热分布:布局元器件时要注意热耦合和热分布,避免元器件之间的过热和热量集中。
4. 层间布局与层间连接多层电路板在实际设计和制作中应注意以下几个方面的标准与规范: - 层间绝缘性能:确保层间绝缘性能符合规范,避免因层间绝缘不足而影响电路板的可靠性。
PCB线路板设计规范

PCB线路板设计规范PCB线路板设计规范是为了确保电路板的性能、可靠性和可制造性而制定的一系列规则和要求。
遵循这些规范可以提高电路板的质量,减少故障率,优化设计和制造过程,使电路板能够更好地满足设计要求。
以下是PCB线路板设计规范的一些主要方面:1.外形尺寸和形状:电路板的外形尺寸和形状应符合设计要求,并适合安装在相应的应用设备中。
在设计过程中应注意尺寸的准确性和稳定性,避免设计过大或过小的尺寸。
2.电路板层布局:电路板的层布局应根据电路设计要求来确定。
在布局过程中,应将元件、信号线和电源线等布置在合适的层中,以避免互相干扰。
同时,还应根据电路的复杂程度和频率要求来确定电路板的层数。
3.电路布线规则:电路板的布线应遵循一定的规则,如信号线与电源线的间距、信号线的阻抗控制等。
布线规则的遵循可以减少信号串扰和噪音干扰,提高信号质量和抗干扰能力。
4.元件布置规则:电路板上各个元件的布置应符合一定的规则,如元件之间的间距、元件与边界的距离等。
元件布置规则的遵循可以方便焊接和维修,避免元件之间的相互干扰和短路等问题。
5.焊盘和焊接规则:电路板上焊接点的设计应符合一定的规则,如焊盘大小、已焊盘的间距等。
焊盘的设计合理与否直接影响到焊接质量和可靠性。
同时,还应注意焊接工艺的要求,如正确选择焊接材料、焊接温度和焊接时间等。
6.电源布局和分离规则:电路板上各个电源的布局应合理,避免互相干扰。
同时,还应根据电路的功耗和电流要求来确定电源的容量和类型,保证供电的稳定性和可靠性。
7.防护和绝缘规则:电路板的防护和绝缘要求是确保电路板安全运行的关键。
设计时应注意电路板的防尘、防潮、防静电等问题,并采取必要的安全措施,如绝缘层的加工、防火阻燃材料的选择等。
8.环境适应性和可靠性要求:电路板的环境适应性和可靠性要求是根据实际应用环境和可靠性要求来制定的。
设计时应考虑电路板的工作温度范围、振动和冲击等因素,并采取必要的措施,如选择适应性材料和加强电路板的结构,以提高电路板的可靠性。
电路设计中的可靠性

电路设计中的可靠性电路设计中的可靠性电路设计中的可靠性是指电路在使用寿命内能够稳定、可靠地工作的能力。
随着技术的不断发展和应用范围的扩大,对电路设计的可靠性要求也越来越高。
在电子产品中,例如手机、电脑、汽车等,在电路设计中的可靠性问题直接关系到产品的性能、质量和寿命,因此非常重要。
首先,电路设计中的可靠性涉及到设计阶段和制造阶段两个方面。
在设计阶段,设计工程师需要合理地选择和配置电子元器件,以确保电路可以稳定地工作。
例如,在选择电容器时,需要考虑其耐压和容量等参数,以适应电路的工作环境。
此外,还需要合理地选择和配置电源、保护电路和散热器等,以提高电路的稳定性和可靠性。
在制造阶段,需要注意的是电路的布局和连接方式。
例如,在制作电路板时,需要保证线路的精确连接和电子元器件的正常焊接,避免因接触不良、高温等导致电路出现故障或失效。
其次,电路设计中的可靠性还与材料的选择和质量有关。
电子元器件的材料质量直接影响电路的可靠性。
在电路设计中,需要选择可靠的、高质量的电子元器件。
例如,在选择集成电路时,需要注意其耐高温、耐电磁干扰、抗震动等性能,以适应工作环境的需求。
另外,还需要考虑电子元器件的寿命和可靠度等参数,以确保电路的长期稳定工作。
此外,电路设计中的可靠性还需要考虑一些特殊的因素。
例如,温度对电路的可靠性有着重要影响。
过高或过低的温度都会降低电路的可靠性。
因此,在设计阶段,需要合理地安排散热器和通风孔,以保持电路的正常工作温度。
另外,还需要注意电路对电磁干扰的抵抗能力。
在电磁环境复杂的场合,需要采取一些电磁屏蔽措施,避免电路因电磁干扰而发生故障。
最后,电路设计中的可靠性还需要进行可靠性分析和测试。
可靠性分析可以通过模拟和计算等方法,预测电路的可靠性,找出潜在的问题和风险。
可靠性测试则是通过现场实测的方式,验证电路的可靠性。
在电路设计过程中,需要进行成本与可靠性的平衡。
对于一些高可靠性要求的电子产品,例如航天器、医疗设备等,可以采用冗余设计、备份系统等方法来提高电路的可靠性。
电路板级可靠性设计

电路板级可靠性设计首先,单板级可靠性设计主要涉及以下几个方面:1.PCB设计:PCB布局布线时需要考虑信号的传输延迟、阻抗匹配、信号干扰等问题。
合理地规划电路板上各部件的位置,减少信号路径长度,避免信号的串扰和时钟偏移。
2.信号完整性:考虑信号电平、噪声容限、抗干扰能力等因素,选择合适的信号传输方式和阻抗匹配方式,确保信号在电路板上的可靠传输。
3.温度控制:电路板在工作时会产生一定的热量,如果温度过高,会加速电子元器件老化和损坏。
因此,设计时需要考虑散热问题,合理配置散热器件和散热结构,以确保电路板的工作温度在可接受的范围内。
4.电源稳定性:电路板的正常工作需要稳定的电源供应,对电源进行合理设计和滤波,确保电压、电流的稳定性和纹波小,避免因电源问题导致的系统故障。
其次,元器件级可靠性设计主要考虑以下几个方面:1.元器件可靠性选型:根据产品的设计要求和使用环境条件,选择具有高可靠性的元器件。
对于关键元器件,选择经过认证的品牌和供应商,以确保其质量和可靠性。
2.元器件布局:在元器件布局时,避免高功耗元器件过度集中,均匀分布在电路板上,以均衡热量和电磁辐射,提高整体的可靠性。
3.元器件寿命评估:通过对元器件的寿命特性进行评估和测试,了解元器件的寿命和可靠性,从而判断其使用寿命是否能满足产品的需求。
4.环境适应性测试:通过对元器件进行环境适应性测试,检测其在不同的温度、湿度、震动等环境条件下的可靠性和稳定性,判断其在实际使用中的可靠性。
总的来说,电路板级可靠性设计需要从单板和元器件两个层面进行综合考虑。
通过合理的PCB设计、信号完整性的保证、温度控制和电源稳定性的优化,以及元器件的可靠性选型、布局和寿命评估等策略,可以提高电路板的可靠性,确保产品的质量和可靠性,满足用户的需求。
高可靠性电路设计与测试方法

高可靠性电路设计与测试方法随着现代科技的不断发展,电子设备在各行各业中的应用越来越广泛。
而在各种电子设备中,电路是最核心的部分之一。
因此,如何保证电路的高可靠性,已成为电子工程师不可忽视的一个问题。
本文将探讨高可靠性电路设计与测试方法,以期对电子工程师进行一定的指导和帮助。
一、高可靠性电路设计方法1.合理的电路架构设计电路架构是整个电路的骨架,直接决定着电路的性能和可靠性。
因此,电路架构的设计要非常重视。
首先要对整个电路进行分析和研究,确定电路的关键节点,结合实际应用情况,制定合理的电路架构。
此外,也要注意电路中的各个模块之间的兼容性,尽量保证各个模块之间没有冲突。
2.合适的元器件选型在电路设计中,元器件的选型至关重要。
一款元器件的质量直接影响到电路的可靠性和性能。
因此,在选型时,要考虑元器件的品牌、质量、工作范围及使用寿命等因素。
同时,也要注重选择符合电路性能要求的元器件,按照电路要求选择合适的元器件,尽可能保证元器件与整个电路的匹配性。
3.路由布局的合理设计路由布局设计是保证电路正常运行的关键,它直接影响到信号传输的质量和速度。
因此,路由布局的设计要尽量精细,电路板上的元器件应该按照电路设计方案进行布局,在保证布局合理的前提下尽量进行细节优化,减少电路中存在的潜在隐患。
二、高可靠性电路测试方法1.性能测试性能测试主要是检测电路的各项性能指标是否符合设计要求。
在进行性能测试时,需要参考电路设计方案,根据设计要求对电路进行测试。
测试的结果应该与电路设计时的性能指标相匹配,如有异常情况,需要及时排查原因并对电路进行修改。
2.稳定性测试在电路运行的过程中,电路是否稳定是非常关键的一个问题。
稳定性测试主要是模拟电路在长时间运行中的变化情况,对零部件和线路的长时间耐久性进行测试。
在测试时,需要对电路进行长时间运行,记录电路运行期间的各项数据,如果数据稳定,则表明电路运行正常,若出现异常情况,则需要进行修复或更换部件。
PCB可靠性设计规范

PCB可靠性设计规范PCB(Printed Circuit Board,印刷电路板)是电子产品上实现电路连接和组件安装的重要组成部分。
在现代电子产品中,PCB设计的可靠性是至关重要的,它直接关系到产品的质量、寿命和用户的满意度。
为了确保PCB的可靠性,设计规范起到了重要的作用。
本文将介绍一些常见的PCB可靠性设计规范。
首先,良好的PCB布局是确保可靠性的基础。
在布局设计中,应尽量减小信号与电源、驱动和干扰源之间的距离,以降低信号线路上的电磁干扰。
此外,还应避免与高功率和高速信号线路的交叉,以减少串扰。
要注意避开可能引起电容耦合和互感耦合的元件和线路,并采用地线等电气隔离方法,以降低共模噪声。
其次,良好的电源设计对确保PCB可靠性至关重要。
电源应具有稳定的输出电压和电流,以确保电子元件工作在其额定电压和电流下。
电源的稳定性可以通过合理选择电源配置和滤波电路来实现。
此外,还应为高功率元件和敏感电子元件提供单独的电源,以减少互相干扰。
第三,适当的散热设计可以提高PCB的可靠性。
当电子元件工作时,会产生大量的热量,如果不能及时散热,将导致元件过热,甚至损坏。
为了确保散热效果,应合理选择散热器的尺寸和材料,并将其安装在需要散热的元件附近。
此外,还应考虑到通风条件,尽量使空气流通,以提高散热效果。
第四,电子元件的正确安装也是提高PCB可靠性的重要因素。
在元件的安装过程中,应遵循正确的焊接规范,确保焊接点牢固可靠。
焊接时使用合适的焊接温度和时间,避免产生过多的热量和应力,以减少焊接引起的损坏。
此外,还应合理选择元件的安装位置和方式,减少机械应力和振动对元件的影响。
第五,合理选择材料和元器件也是PCB可靠性设计的关键。
在PCB设计中,应选择具有高耐热、低膨胀系数和稳定性好的材料。
对于元器件,应选择有资质认证和质量可靠的供应商提供的元器件,以确保其质量和可靠性。
最后,良好的PCB维护和检测也是确保其可靠性的重点。
电路中的电路板设计布线与布局的优化方法

电路中的电路板设计布线与布局的优化方法在电子设备中,电路板起着连接各个电子元件的重要作用。
良好的电路板设计布线与布局是保证电路性能稳定可靠的关键之一。
本文将介绍电路板设计布线与布局的优化方法,以提高电路板的性能和可靠性。
一、电路板设计布线的优化方法1. 确定信号和功耗路径:在进行电路板布线时,首先需要确定信号和功耗的主要路径。
对于高频信号,应尽量缩短信号传输路径,减少信号失真和干扰。
对于高功耗部分,需要合理规划供电路径,避免功耗过高导致线路过热。
2. 分离模拟和数字信号:在电路板布线时,应尽量将模拟和数字信号分开布线,避免相互干扰。
在设计过程中,可以利用分割地平面或添加屏蔽层等方法来分隔不同信号类型。
这样可以有效减少信号交叉耦合,提高电路的稳定性。
3. 控制信号传输长度:信号传输路径的长度对于高速电路设计至关重要。
较长的传输路径会引入传输延迟和信号失真。
因此,在布线过程中,应尽量缩短信号传输路径,合理控制线路长度,以提高信号传输速度和减少传输延迟。
4. 地平面设计:良好的地平面设计可以有效减少信号回路的干扰,提高电路的抗干扰能力。
在进行地平面设计时,应注意避免地分割和减少地开口,以确保地回路的完整性和连续性。
5. 考虑电磁兼容性:电磁兼容性是电路板设计中需要重视的一个方面。
在进行电路板布线时,应合理规划信号线和电源线的走向,避免信号线与电源线交叉或平行布线,减少电磁干扰的产生。
同时,可以采用屏蔽罩、层板隔离等方法来降低电磁辐射和敏感性。
二、电路板布局的优化方法1. 组件布局:在进行电路板布局时,应根据电路的功能和连接关系合理安排各个组件的位置。
对于高频部分和噪声敏感部分,应尽量远离噪声源和干扰源,以减少噪声干扰。
同时,还需考虑散热问题,将发热元件安排在通风良好的位置,以提高散热效果。
2. 尽量减少层板:使用多层板可以增加布线空间和连接通道,但同时也增加了制作成本和信号传输路径长度。
因此,在进行电路板布局时,应尽量减少层板的使用,选择合适的线路走向,以减少信号传输路径的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何进行电路板的可靠性设计
发表时间:2019-12-12T17:09:55.360Z 来源:《当代电力文化》2019年第16期作者:栗家言[导读] 抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能摘要:抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能,也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作。
因此提高系统的抗干扰能力也是该系统设计的一个重要环节。
一、系统抗干扰设计
抗干扰问题是现代电路设计中一个很重要的环节,它直接反映了整个系统的性能和工作的可靠性。
在飞轮储能系统的电力电子控制中,由于其高压和低压控制信号同时并存,而且功率晶体管的瞬时开关也产生很大的电磁干扰,因此提高系统的抗干扰能力也是该系统设计的一个重要环节。
二、形成干扰的主要原因有如下几点: 1)干扰源,是指产生干扰的元件、设各或信号,用数字语言描述是指du/dt、di/dt大的地方。
干扰按其来源可分为外部干扰和内部干扰:外部干扰是指那些与仪表的结构无关,由使用条件和外界环境因素决定的干扰,如雷电、交流供电、电机等;内部干扰是由仪表结构布局及生产工艺决定的,如多点接地选成的电位差引起的干扰、寄生振荡引起的干扰、尖峰或振铃噪声引起的干扰等。
2)敏感器件,指容易被干扰的对象,如微控制器、存贮器、A/D转换、弱信号处理电路等。
3)传播路径,是干扰从干扰源到敏感器件传播的媒介,典型的干扰传播路径是通过导线的传导、电磁感应、静电感应和空间的辐射。
抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能,也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作。
其设计一般遵循下列三个原则:抑制噪声源,直接消除干扰产生的原因;切断电磁干扰的传播途径,或者提高传递途径对电磁干扰的衰减作用,以消除噪声源和受扰设各之间的噪声耦合;加强受扰设各抵抗电磁干扰的能力,降低噪声敏感度。
目前,对系统的采用的抗干扰技术主要有硬件抗干扰技术和软件抗干扰技术。
1)硬件抗干扰技术的设计。
飞轮储能系统的逆变电路高达20kHz的载波信号决定了它会产生噪声,这样系统中电力电子装置所产生的噪声和谐波问题就成为主要的干扰,它们会对设备和附近的仪表产生影响,影响的程度与其控制系统和设各的抗干扰能力、接线环境、安装距离及接地方法等因素有关。
转换器产生的PWM信号是以高速通断DC电压来控制输出电压波形的。
急剧的上升或下降的输出电压波包含许多高频分量,这些高频分量就是产生噪声的根源。
虽然噪声和谐波都对电子设各运行产生不良影响,但是两者还是有区别的:谐波通常是指50次以下的高频分量,频率为2~3kHz;而噪声却为10kHz甚至更高的高频分量。
噪声一般要分为两大类:一类是由外部侵入到飞轮电池的电力电子装置,使其误动作:另一类是该装置本身由于高频载波产生的噪声,它对周围电子、电信设各产生不良影响。
减低噪声影响的一般办法有改善动力线和信号线的布线方式,控制信号用的信号线必须选用屏蔽线,屏蔽线外皮接地。
为防止外部噪声侵入,可以采取以下的措施:使该电力电子装置远离噪声源、信号线采取数字滤波和屏蔽线接地。
三、噪声的衰减技术有如下几点:
①电线噪声的衰减的方法:在交流输入端接入无线电噪声滤波器;在电源输入端和逆变器输出端接入线噪声滤波器,该滤波器可由铁心线圈构成;将无线电噪声滤波器和线噪声滤波器联合使用;在电源侧接人LC滤波器。
②逆变器至电机配线噪声辐射衰减,可采取金属导线管和金属箱通过接地来切断噪声辐射。
③飞轮电力电子装置的辐射噪声的衰减,通常其噪声辐射是很小的,但是如果周围的仪器对噪声很敏感,则应把该装置装入金属箱内屏蔽起来。
对于模拟电路干扰的抑制,由于电路中有要测量的电流、电压等模拟量,其输出信号都是微弱的模拟量信号,极易受干扰影响,在传输线附近有强磁场时,信号线将有较大的交流噪声。
可以通过在放大器的输入、输出之间并联一个电容,在输入端接入有源低通滤波器来有效地抑制交流噪声。
此外,在A/D变换时,数字地线和模拟电路地线分开,在输入端加入箝位二极管,防止异常过压信号。
而数字电路常见的干扰有电源噪声、地线噪声、串扰、反射和静电放电噪声。
为抑制噪声,应注意输入与输出线路的隔离,线路的选择、配线、器件的布局等问题。
输入信号的处理是抗干扰的重要环节,大量的干扰都是从此侵入的。
四、一般可以从以下几个方面采取措施:
①接点抖动干扰的抑制;多余的连接线路要尽量短,尽量用相互绞合的屏蔽线作输入线,以减少连线产生的杂散电容和电感;避免信号线与动力线、数据线与脉冲线接近。
②采用光电隔离技术,并且在隔离器件上加RC电路滤波。
③认真妥善处理好接地问题,如模拟电路地与数字电路地要分开,印制板上模拟电路与数字电路应分开,大电流地应单独引至接地点,印制板地线形成网格要足够宽等。
(1)软件抗干扰技术。
除了硬件上要采取一系列的抗干扰措施外,在软件上也要采取数字滤波、设置软件陷阱、利用看门狗程序冗余设计等措施使系统稳定可靠地运行。
特别地,当储能飞轮处于某一工作状态的时间较长时,在主循环中应不断地检测状态,重复执行相应的操作,也是增强可靠性的一个方法。
(2)电路板设计。
由于DSP控制器工作频率较高,即使电路原理图设计正确,若印制电路板设计不当,也会对DSP控制器的可靠性产生不利影响。
例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。
因此,在设计DSP控制器印制电路板时,应注意采用正确的方法。
1)地线设计。
在DSP电路中,接地是控制干扰的重要方法,如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。
在一块电路板上,DSP控制器同时集成了数字电路和模拟电路,设计电路板时,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。
尽量加粗接地线,同时将接地线构成闭环路。
2)配置去耦电容。
在直流电源回路中,负载的变化会引起电源噪声。
例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。
配置去耦电容可以抑制因负载变化而产生的噪声,是DSP电路板的可靠性设计的一种常规做法:电源输人端可跨接一个10~100μF的电解电容器;为每个集成电路芯片配置一个0.01 μF的陶瓷电容器;对于关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线和地线间直接接入去耦电容。
注意去耦电容的引线不能过长,特别是高频旁路电容不能带引线。
3)电路板器件的布置。
在器件布置方面与其他逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。
时钟发生器、晶振和CPU的时钟输人端都易产生噪声,这些器件要相互靠近些,同时远离模拟器件。