高等数学精品课教案

合集下载

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。

教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

高职高专高等数学教案

高职高专高等数学教案

高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,如单调性、奇偶性、周期性等。

教学内容:介绍函数的定义,讨论函数的性质,举例说明。

教学方法:通过讲解和示例,让学生掌握函数的基本概念和性质。

1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,如保号性、夹逼性等。

教学内容:介绍极限的定义,讨论极限的性质,举例说明。

教学方法:通过讲解和示例,让学生理解极限的概念和性质。

第二章:导数与微分2.1 导数的定义与计算教学目标:理解导数的定义,掌握基本函数的导数计算。

教学内容:介绍导数的定义,讲解基本函数的导数计算法则。

教学方法:通过讲解和练习,让学生掌握导数的定义和计算方法。

2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。

教学内容:介绍微分的定义,讲解微分的计算法则。

教学方法:通过讲解和练习,让学生理解微分的概念和计算方法。

第三章:积分与微分方程3.1 定积分的定义与计算教学目标:理解定积分的概念,掌握定积分的计算方法。

教学内容:介绍定积分的定义,讲解定积分的计算法则。

教学方法:通过讲解和练习,让学生掌握定积分的概念和计算方法。

3.2 微分方程的基本概念与解法教学目标:理解微分方程的概念,掌握基本的微分方程解法。

教学内容:介绍微分方程的定义,讲解常见的微分方程解法。

教学方法:通过讲解和练习,让学生理解微分方程的概念和解法。

第四章:级数与常微分方程4.1 数项级数的概念与收敛性教学目标:理解数项级数的概念,掌握级数的收敛性判断。

教学内容:介绍数项级数的定义,讲解级数的收敛性判断方法。

教学方法:通过讲解和练习,让学生掌握数项级数的概念和收敛性判断。

4.2 常微分方程的解法与应用教学目标:理解常微分方程的概念,掌握常见的解法及其应用。

教学内容:介绍常微分方程的定义,讲解常见的解法及其应用。

教学方法:通过讲解和练习,让学生理解常微分方程的概念和解法及其应用。

大学生数学优质课教案

大学生数学优质课教案

教案名称:大学生数学优质课——微积分在实际问题中的应用课程背景:微积分是大学生的一门重要课程,它不仅为学生提供了严密的数学思维方法,而且在生活中有着广泛的应用。

通过本节课的学习,使学生了解微积分在实际问题中的应用,提高学生学习微积分的兴趣,培养学生的实际问题解决能力。

教学目标:1. 了解微积分在实际问题中的应用;2. 掌握微积分解决实际问题的基本方法;3. 培养学生的数学思维能力和实际问题解决能力。

教学内容:1. 微积分在物理学中的应用;2. 微积分在经济学中的应用;3. 微积分在生物学中的应用;4. 微积分在工程学中的应用。

教学过程:一、导入(5分钟)教师通过展示一些实际问题,如物体运动、经济效益、生物种群增长等,引导学生思考微积分在这些问题中的应用。

二、微积分在物理学中的应用(15分钟)1. 教师简要介绍物理学中的一些基本概念,如速度、加速度等;2. 引导学生利用微积分解决物理学中的实际问题,如求解物体在某一时刻的位移。

三、微积分在经济学中的应用(15分钟)1. 教师简要介绍经济学中的一些基本概念,如边际效用、需求曲线等;2. 引导学生利用微积分解决经济学中的实际问题,如求解消费者的最优消费量。

四、微积分在生物学中的应用(15分钟)1. 教师简要介绍生物学中的一些基本概念,如种群增长、遗传变异等;2. 引导学生利用微积分解决生物学中的实际问题,如预测生物种群的增长趋势。

五、微积分在工程学中的应用(15分钟)1. 教师简要介绍工程学中的一些基本概念,如质点、刚体等;2. 引导学生利用微积分解决工程学中的实际问题,如求解桥梁的应力分布。

六、总结与展望(10分钟)教师对本节课的内容进行总结,强调微积分在实际问题中的应用,并引导学生思考微积分在未来社会发展中的重要作用。

教学评价:通过本节课的学习,学生能够了解微积分在实际问题中的应用,掌握微积分解决实际问题的基本方法,培养学生的数学思维能力和实际问题解决能力。

《高等数学》教案

《高等数学》教案

《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟数的分解。

>函数概念、性质(分段函数)—>基本初复合函数—>初等函数—>例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。

高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。

一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:)(x f y =(说明表达式的含义) (1)定义域:自变量的取值集合(D )。

(2)值 域:函数值的集合,即}),({D x x f y y ∈=。

例1、求函数)1ln(2x y -=的定义域?2、函数的图像:设函数)(x f y =的定义域为D ,则点集}),(),{(D x x f y y x ∈= 就构成函数的图像。

高数教学设计(共8篇)

高数教学设计(共8篇)

高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。

一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。

第一学时:自变量趋于有限值时函数的极限。

第二学时:自变量趋于无穷大时函数的极限。

〔本次教案主要说明第一学时的内容。

〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。

来扩展同学们的知识面,并易于承受新内容。

三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。

让你给同学们积极考虑、敢于提出自己的想法。

2、让同学们掌握一些本节教学中所涉及的技能技巧。

3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。

传达出数学的人文价值。

四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。

2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。

五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。

然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。

最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。

2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。

〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。

〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。

如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。

解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。

高等数学精品课教案

高等数学精品课教案

高等数学精品课教案选填,简要介绍文档的主要内容,方便文档被更多人浏览和下载。

课题:§4.1微分中值定理与洛必达法则教学目的:1.理解微分中值定理及其推论的内容2.理解未定式的概念及洛必达法则,能熟练运用法则求函数的极限教学重点:微分中值定理、洛必达法则及其应用教学难点:微分中值定理、洛必达法则及其应用课型:讲授课课时:2课时教学过程一、导入新课本章将介绍中值定理及导数的应用,其中中值定理在微分学中占有十分重要的地位,也称为微分中值定理,是导数应用的理论基础。

二、讲授新课(一)柯西中值定理定理1(柯西中值定理)如果函数满足下列条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)上可导;(3)F'(x)在(a,b)内的每一点均不为零,那么,在(a,b)内至少存在一点, 使几何解释:若将x看成是参数,则可将X=F(X),Y=f(x)看作是一条曲线的参数方程表示式,f(b) f(a)f ( ).g(b) g(a)g ( )f(b) f(a)f'( )F(b) F(a)表示连接曲线两端点A(F(a),f(a)),B(F(b),f(b))的弦的斜率,而F'( )则表示该曲线上某一点的斜率。

因此,其几何意义是:在连续且除端点外处处有不垂直于轴的切线的曲线弧上,至少存1 在一点C,在该处的切线平行于两端点的连线。

(二)洛必达法则把两个无穷小之比或者两个无穷大之比的极限称为“0 ”型或者“”型不定式(或未0定型)的极限,洛必达法则就是以导数为工具求不定式的极限的方法。

定理2(洛必达法则)若(1)x x0limf(x) 0,limg(x) 0x x0(2)f(x)与g(x)在x x0x0的某个邻域(点x0除外)可导,且g'(x) 0;lim(3)f'(x)Ag'(x)(A为有限数,也可为或)则limf(x)f'(x)lim Ag(x)x x0g'(x)x0x x0证:由于要讨论的是函数在点与g(x)在在点的极限,故与函数在该点x0的值无关,所以可补充f(x),则f(x)与g(x)在点连续,x0的定义,且对问题讨论没有影响。

《高等数学》精品课教案

《高等数学》精品课教案

《高等数学》精品课教案课 题:§1。

1函数及其性质教学目的:1。

理解函数、分段函数的概念,会求函数的定义域、表达式及函数值2。

了解函数的有界性、单调性、奇偶性、周期性及反函数的定义教学重点:初等函数的概念、图形及性质 教学难点:分段函数的概念 课 型: 讲授课 课 时:2课时 教学过程一、导入新课在自然界中,某一现象中的各种变量之间,通常并不都是独立变化的,它们之间存在着依赖关系,我们观察下面几个例子:例如:某种商品的销售单价为p 元,则其销售额L 与销售量x 之间存在这样的依赖关系:L =px又例如:圆的面积S 和半径r 之间存在这样的依赖关系:2r S π=不考虑上面两个例子中量的实际意义,它们都给出了两个变量之间的相互依赖关系,这种关系是一种对应法则,根据这一法则,当其中一个变量在其变化范围内任意取定一个数值时,另一个变量就有确定的值与之对应。

两个变量间的这种对应关系就是函数概念的实质。

二、讲授新课(一)函数的定义定义 设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f (x),x ∈D.其中x 叫自变量,y 叫因变量。

定义10(集合的观点)A ,B 为两个数集,对任意的x ∈D ,存在f ,在B 中有唯一确定的值与之对应。

记作:f:A →B函数两要素:对应法则、定义域(有的可直接看出,有的需计算),而函数的值域一般称为派生要素。

例1 f (x)=2x 2+3x-1就是一个特定的函数,f 确定的对应法则为:f ( )=2( )2+3( )-1 例10:设f(x+1)=2x 2+3x —1,求f (x )。

解:设x+1=t 得x=t —1,则f(t )=2(t —1)2+3(t —1)—1=2t 2—t-2 ∴f (x)=2x 2 – x – 2其对应法则:f( )=2( )2 - ( ) -2定义域:使函数有意义的自变量的集合.因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 ④y=x 0 (x ≠0 ) ⑤y=tanx (x ≠Z k k ∈+,2ππ)等。

《高等数学教案》课件

《高等数学教案》课件

《高等数学教案》PPT课件第一章:导数与微分1.1 导数的概念引入导数的定义解释导数的几何意义举例说明导数的计算方法1.2 基本函数的导数计算常数函数、幂函数、指数函数、对数函数的导数总结常用函数的导数公式1.3 微分的概念与应用引入微分的定义解释微分的几何意义举例说明微分的计算方法介绍微分在实际问题中的应用第二章:积分与微分方程2.1 积分的概念引入积分的定义解释积分的几何意义举例说明积分的计算方法2.2 基本函数的积分计算常数函数、幂函数、指数函数、对数函数的积分总结常用函数的积分公式2.3 微分方程的概念与解法引入微分方程的定义解释微分方程的意义举例说明微分方程的解法介绍微分方程在实际问题中的应用第三章:级数与极限3.1 级数的概念引入级数的定义解释级数的收敛性与发散性举例说明级数的计算方法3.2 幂级数的概念与应用引入幂级数的定义解释幂级数的收敛区间与收敛半径举例说明幂级数的计算方法介绍幂级数在实际问题中的应用3.3 极限的概念与性质引入极限的定义解释极限的意义举例说明极限的计算方法介绍极限在实际问题中的应用第四章:向量与矩阵4.1 向量的概念与运算解释向量的几何意义举例说明向量的运算方法4.2 矩阵的概念与运算引入矩阵的定义解释矩阵的意义举例说明矩阵的运算方法4.3 向量空间与线性变换引入向量空间的概念解释线性变换的意义举例说明线性变换的性质介绍向量空间与线性变换在实际问题中的应用第五章:概率与统计5.1 概率的基本概念引入概率的定义解释概率的意义举例说明概率的计算方法5.2 随机变量的概念与分布引入随机变量的定义解释随机变量的意义举例说明随机变量的分布方法5.3 统计的基本概念与方法解释统计的意义举例说明统计的计算方法介绍统计在实际问题中的应用第六章:多变量微积分6.1 多元函数的概念引入多元函数的定义解释多元函数的意义举例说明多元函数的计算方法6.2 偏导数与全微分引入偏导数的定义解释偏导数的意义举例说明偏导数的计算方法介绍全微分的概念与应用6.3 多重积分的概念与应用引入多重积分的定义解释多重积分的意义举例说明多重积分的计算方法介绍多重积分在实际问题中的应用第七章:常微分方程7.1 常微分方程的概念引入常微分方程的定义解释常微分方程的意义举例说明常微分方程的解法7.2 线性微分方程与非线性微分方程引入线性微分方程与非线性微分方程的定义解释线性微分方程与非线性微分方程的区别与联系举例说明线性微分方程与非线性微分方程的解法7.3 常微分方程的应用介绍常微分方程在物理、工程等领域的应用举例说明常微分方程解决实际问题的方法第八章:数值计算方法8.1 数值计算方法的概念引入数值计算方法的定义解释数值计算方法的意义举例说明数值计算方法的计算过程8.2 数值积分与数值微分引入数值积分与数值微分的定义解释数值积分与数值微分的意义举例说明数值积分与数值微分的计算方法8.3 常微分方程的数值解法引入常微分方程的数值解法的定义解释常微分方程的数值解法的意义举例说明常微分方程的数值解法第九章:概率与统计(续)9.1 描述统计与推断统计引入描述统计与推断统计的定义解释描述统计与推断统计的意义举例说明描述统计与推断统计的方法9.2 假设检验与置信区间引入假设检验与置信区间的定义解释假设检验与置信区间的意义举例说明假设检验与置信区间的计算方法9.3 回归分析与相关分析引入回归分析与相关分析的定义解释回归分析与相关分析的意义举例说明回归分析与相关分析的方法第十章:高等数学在实际问题中的应用10.1 高等数学在物理学中的应用介绍高等数学在经典力学、电磁学等物理学领域中的应用举例说明高等数学解决物理学问题的方法10.2 高等数学在工程学中的应用介绍高等数学在土木工程、机械工程等工程领域中的应用举例说明高等数学解决工程学问题的方法10.3 高等数学在经济学、生物学等领域的应用介绍高等数学在经济学、生物学等领域中的应用举例说明高等数学解决经济学、生物学等领域问题的方法重点解析第一章:导数与微分重点:理解导数和微分的定义及其几何意义,掌握基本函数的导数和微分计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学精品课教案摘要:一个量无论多么小,都不能是无穷小,零唯一例外.当...的导数的相关公式和运算法...设均可导,则(1);(2)(为常数);(3)30.复合函数的求导法则设,均可导,则复合...关键词:论,算法,导类别:专题技术来源:牛档搜索()本文系牛档搜索()根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。

不代表牛档搜索()赞成本文的内容或立场,牛档搜索()不对其付相应的法律责任!《高等数学》精品课教案课 题:§1.1函数及其性质教学目的:1.理解函数、分段函数的概念,会求函数的定义域、表达式及函数值2.了解函数的有界性、单调性、奇偶性、周期性及反函数的定义教学重点:初等函数的概念、图形及性质 教学难点:分段函数的概念 课 型: 讲授课 课 时:2课时 教学过程一、导入新课在自然界中,某一现象中的各种变量之间,通常并不都是独立变化的,它们之间存在着依赖关系,我们观察下面几个例子:例如:某种商品的销售单价为p 元,则其销售额L 与销售量x 之间存在这样的依赖关系:L =px又例如:圆的面积S 和半径r 之间存在这样的依赖关系:2r S π=不考虑上面两个例子中量的实际意义,它们都给出了两个变量之间的相互依赖关系,这种关系是一种对应法则,根据这一法则,当其中一个变量在其变化范围内任意取定一个数值时,另一个变量就有确定的值与之对应。

两个变量间的这种对应关系就是函数概念的实质。

二、讲授新课(一)函数的定义定义 设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

定义10(集合的观点)A ,B 为两个数集,对任意的x ∈D ,存在f ,在B 中有唯一确定的值与之对应。

记作:f :A →B函数两要素:对应法则、定义域(有的可直接看出,有的需计算),而函数的值域一般称为派生要素。

例1 f(x)=2x 2+31就是一个特定的函数,f 确定的对应法则为:f( )=2( )2+3( )-1 例10:设f(1)=2x 2+31,求f(x). 解:设1得1,则f(t)=2(1)2+3(1)-1=2t 22 ∴f(x)=2x 2 – x – 2其对应法则:f( )=2( )2 - ( ) -2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0 ④0 (x ≠0 ) ⑤(x ≠Z k k ∈+,2ππ)等.例2 求函数6—2x -x 712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ⇔ 4323≤≤--≤≥x x x 或⇔4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2] [3,4].小结:函数有两要素:定义域和对应法则,即只要这两样定了,函数就定了,所以我们判断两个函数是否是同一函数就有依据了。

例3 判断以下函数是否是同一函数,为什么? (1)2与2 (2)ω=u 与x解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数.函数的表示法:(1)解析法(或分析法、公式法)。

如:x y sin =、12+=x y ,这样的表达式亦为函数的解析式,这种表示法的主要优点是严密;(2)图示法:如用直角坐标(或极坐标等)平面的一条曲线表示,这种表示法的主要优点是直观;(3)表格法:如三角函数表、对数表、正态分布表等,这种表示法的主要优点是能进行函数值的查询。

分段函数若函数)(x f 在定义域不同的区间上用不同解析式来表示,则称函数)(x f 为分段函数.如=)(x f ,1,0,1+-x x 0,0,0>=<x x x(二)函数的几种特性要研究函数,首先函数必须要有意义,假设f(x)在区间D 上有定义。

1、 有界性若存在两个数A 和B ,对一切成立有B x f A D x f ≤≤∈)(,,则称为)(x f 有界函数.例如:x y sin =,x y cos =在全数轴上均有界,而xx 1)(=ϕ在(0,1)内无界. 思考:在定义域内,下列函数中哪些有界? 2、单调性对,若对任意两点时有,则称函数在D 上单调增加,区间D 称为单调增区间;反之,函数在D 上单减少,区间D 称为单调减区间.单调增区间或单调减区间统称为单调区间例如x y a y a xlog ,==在其定义域区间内均为单调函数。

3、奇偶性对,若成立,)()(x f x f -=-则称)(x f 为奇函数;若)()(x f x f =-成立,则称)(x f 为偶函数。

奇函数的几何图形关于原点对称,而偶函数的几何图形关于y 轴对称.例如:函数x x y cos 2=是偶函数。

例如:函数3x y =是奇函数。

例如:函数12+=x y 既不是奇函数也不是偶函数。

4、周期性对,若存在常数,对任何x ,满足则称为周期函数,的一个周期. 例如,函数x y sin =,x y cos =的周期均为π2,x y tan =的周期为π。

而c y =(是一个常数)是以任何正数为周期的周期函数,但它不存在基本周期,所以说,并不是所的周期函数都存在基本周期(最小周期)。

(三)反函数定义 函数(x),若把y 当作自变量,x 当作函数,则由关系式(x)所确定的函数x =φ(y)称为函数(x)的反函数,记作 -1(x).注:求函数的反函数的一般方法是将关系式)(x f y =经过一系列的变换,变成)(y x ϕ=的形式,最后再表示成)(x y ϕ=的形式。

三、课堂练习4P 思考题 5P 1、3四、小结理解函数、分段函数的概念,会求函数的定义域、表达式及函数值;了解函数的有界性、单调性、奇偶性、周期性及反函数的定义;掌握基本初等函数的图形和性质. 五、布置作业9P 习题一 1、2、4、5、7、8.选做:3、6课 题:§1.2函数及其性质教学目的:1.掌握基本初等函数的图形和性质2.理解复合函数的概念3.掌握复合函数的构成过程教学重点:复合函数的构成教学难点:复合函数的分解及反三角函数的图象 课 型: 讲授课 课 时:2课时 教学过程一、导入新课前面一节课讲了函数的定义,函数的性质、两要素和反函数,说到反函数有必要再讲讲反函数的图象,特别是反三角函数的图象。

1、什么样的函数才有反函数,为什么?答:一一对应的函数才有反函数,因为从函数的定义知,函数(x),对任意的x 有唯一 的y 与之对应。

反函数是自变量和因变量互换,所以对任意的y 也应有唯一确定的x 与之对应,函数 ϕ(y)才有意义。

所以只有一一对应的函数才有反函数。

2、问题出现:对正弦函数和余弦函数,不是一一对应的函数,为什么会有反函数? 答:取一个周期,取[ —2π ,2π], 原函数 ,x ∈[ —2π ,2π],y ∈[—1,1]反函数,x ∈[—1,1],y ∈[ —2π ,2π]二、讲授新课(一)基本初等函数常数函数:(c 为常数)幂函数: μx (μ为常数) 指数函数:xa (a>0,a ≠1,a 为常数) 对数函数:x a log (a>0,a ≠1,a 为常数) 三角函数: 反三角函数: (二)复合函数定义 设),(u f y =其)(x u ϕ=中,且)(x ϕ的值全部或部分落在)(u f 的定义域内,则称)]([x f y ϕ=为x 的复合函数,而u 称为中间变量.简单说:几个基本初等函数的组合 例1:若u ,u = ,则其复合而成的函数为x sin ,要求u 必须≥0,∴≥0,x ∈[2k π,π+2k π]例2:分析下列复合函数的结构 (1)2cotx (2)1sin2+x e解:(1)u ,,2x(2)u e ,,t ,21例3:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)](x 2)=(x 2)2=4x g[f(x)](2x )=22x注:此题用“整体代换”的思想. (三)初等函数由基本初等函数经过有限次四则运算及有限次复合步骤构成,且可用一个解析式表示的函数,叫做初等函数,否则就是非初等函数。

例:双曲正弦函数 = 2xx e e --双曲余弦函数 = 2xx e e -+双曲正切函数 =chxshx注:分段函数一般不是初等函数三、课堂练习6P 习作题 1、2 10P 9、10、11、17、25、26四、小结掌握基本初等函数的图形和性质,理解复合函数的概念,掌握复合函数的构成过程.五、布置作业10P 习题一 12、13、14、15、18、19、选做:24、29课 题:§2.1极限的概念教学目的:1.理解极限的概念,函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

2.熟练掌握∞→x 和0x x →时f(x)的极限存在的充要条件3.理解无穷大、无穷小的概念,4.掌握无穷大的判定方法和无穷小的概念及性质,会用无穷小量的性质求极限教学重点:函数极限与数列极限的概念;无穷大量与无穷小量的概念及性质. 教学难点:1.函数极限的定义及)0(0-x f 、)0(0+x f 的含义2.分段函数在0x x →时的极限的讨论方法3.无穷大量与无穷小量的概念和性质及其应用课 型: 讲授课 课 时:2课时 教学过程一、导入新课1.写出下列函数的复合过程 (1)5223+-=x x y (2) x y 2sin =思考:若111-+=x y ,当x 无限的靠近1时,y 值怎样变化? 二、讲授新课(一)函数的极限(1)定义 函数(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

规定:01 x 从x 0的左右两侧无限接近于x 0,记x →x 002 x 从x 0的左两侧无限接近于x 0,记x →x 0-03 x 从x 0的右两侧无限接近于x 0,记x →x 0+04 x 无限增大时,用记号x →+∞05 x 无限减小时,用记号x →—∞ 06 x 无限增大时,用记号x →∞(2)点x 的δ邻域N(x ,δ)=(x —δ,δ),其中很小的正数,X 的去心δ邻域N(xˆ,δ)=),(),(0000δδ+-x x x x . 1、 x →x 0时函数的极限举例说明:x →1时,函数无限接近于多少?观察:当:x →1时,f(x)1,无限接近2当:x →1时,g(x)=112--x x ,无限接近2f(x)在1有定义,g(x)在1处无定义定义 1 如果当x → x 0时,函数)(x f 无限趋近于一个确定的常数A , 则称A 为函数)(x f 当 x → x 0时的极限,记作0lim x x →f(x)或 A x f →)((当 x →x 0时).此时也称)(lim 0x f x x →存在。

相关文档
最新文档