高等数学(精品课程)阶段作业一
《高等数学(一)》作业参考答案

《高等数学(一)》作业参考答案一、求下列函数的定义域(1)[0,+∞];(2)(-1,∞+)。
(3)(,1)(1,)-∞-∞ ;二、用区间表示变量的变化范围:(1)(],6-∞(2)[]2,0 (3)[]3,5-三、求下列极限(1)[]3313)1(lim )1(lim e x x x x x x x =+=+∞→∞→; (2)hh xh h x h x h h 202202lim )(lim +=-+→→ =x h x h 2)2(lim 0=+→(3)lim 1n n n →∞== (4)2211lim 1lim 2lim 12(lim x x x x x x x x ∞→∞→∞→∞→+-=+- =2 (5)0lim 1=∞→x x , 且2arctan π≤x , 0arctan lim =∴∞→xx x (6)xx x x x x x x sin 2sin 2lim sin 22cos 1lim 200→→=- =1sin lim 0=→xx x ; (7))2)(1)(1(61lim 6)12)(2)(1(lim1213n n n n n n n n n +++=+++∞→∞→ =;31(8)00sin 555lim lim ;sin 222x x x x x x →→== (9))45)(1()45(lim 145lim 11x x x x x x x x x x +----=---→→ =2454lim 1=+-→x x x (10)31lim 3lim 13(lim 33=+=+∞→∞→∞→nn n n n ; (11);1lim sin )sin(lim 550550==→→xx x x x x (12)33lim 3tan lim 00==→→x x xx x x (13)32000sin 1cos sin 1lim lim lim 366x x x x x x x x x x →→→--=== (14)2222112211lim lim 134324x x x x x x x x x x →∞→∞+-+-==-+-+四、求下列函数的微分:(1)[])4sin(+=wt A d dy=)4sin(+wt Ad=)4()4cos(++wt d wt A=dt wt Aw )4cos(+(2)[])3cos(x e d dy x -=-=)3cos()3cos(x d e de x x x -+---=dx x e dx x e x x )3sin()3cos(-+----=[]dx x x e x )3cos()3sin(----五、求下列函数的导数 (1)463'2+-=x x y ;(2)x x x y 2sin cos sin 2'==;(3))'ln 1(ln 11'2221x x y +⋅+⋅= =x x xx x x221ln 1ln ln 12ln 2+=+⋅(4)'1sin '(cos )tan ;cos cos x y x x x x-===- (5);ln 1ln )ln ('221'xx x x x x x y x -=-⋅== (6)'2')21()21(1)211('x x x y +⋅+-=+= =2)21(2x +-; (7)4)7(5'+=x y ;(8) 221212)'1('x x xe x e y ++=+⋅=;(9)3.013.13.13.1'x x y ==-; (10)22212)'1(11'x x x x y +=+⋅+=; (11)313)52(8)52()52(4'+=+⋅+=x x x y (12)x x x x y ln 1)'(ln ln 1'==六、求下列函数的二阶导数(1)x y +=11', 2)1(1''x y +-=; (2)x x e x xe y 22222'+=x x x x e x xe xe e y 222224442''+++==)241(222x x e x ++(3),cos 'x y = ;sin ''x y -=七、求下列不定积分(1)12x dx c-==⎰; (2)dx x xdx ⎰⎰+=22cos 1cos 2 =c x x ++2sin 4121; (3)c x x dx ++=+⎰1ln 1; (4)⎰⎰-=x xd xdx cos sin sin 23=x d x cos )cos 1(2⎰-- =⎰⎰-x d x xd cos cos cos 2 =c x x +-cos cos 313; (5)⎰⎰--=-14)14(4114x x d x dx =c x +-14ln 41; (6)⎰⎰⎰+=+x dx xdx dx x x822(8=28ln x x c ++; (7)dx x dx x x ⎰⎰+-=+)111(1222 =c x x +-arctan ; (8);21ln 2121)21(2121c x x x d x dx +--=---=-⎰⎰ (9);cos ln cos cos cos sin tan c x x x d dx x x xdx +-=-==⎰⎰⎰(10)⎰⎰⎰-==x d x x x xdx xdx x ln 21ln 21ln 21ln 222 =⎰-xdx x x 21ln 212 =c x x x +-2241ln 21 (11) c x dx x xxdx +==⎰⎰3532353 (12)4222232223313(1)11(3)arctan 111x x x x dx dx x dx x x C x x x++++==+=+++++⎰⎰⎰ 八、求下列定积分:(1)[];2cos sin 00=-=⎰ππx xdx (2)[]11121arctan 1dx x x --=+⎰ =244)(πππ=--。
高等数学(1)(高起专)

(A)[2019年春季] 姓名学号学习中心 专业 年级 考试时间 高等数学(1)(高起专)阶段性作业1 总分: 100 分 得分: 6 分一、单选题 1. 若函数 ,则 。
(6分) (A) 0 (B) (C) 1 (D) 不存在参考答案:D 您的回答:D 正确 2. 下列变量中,是无穷小量的为 。
(6分) (A) (B) (C) (D) 参考答案:D 3. 当 时,2x+x 2sin 是x 的 。
(6分) (A) 等价无穷小 (B) 同阶但不等价的无穷小 (C) 高阶无穷小 (D) 低阶无穷小参考答案:B 4. f(x)在x 0处左:右极限存在并相等是f(x)在x 0处连续的 。
(5分) (A) 充分条件 (B) 必要条件 (C) 充分必要条件 (D) 前三者均不对参考答案:B 5. 设函数 在 处可导, ,则当 时,必有 。
(6分) (A) 是 的等价无穷小; (B) 是 的高阶无穷小; (C) 是比 高阶的无穷小; (D) 是 的同阶无穷小; 参考答案:C 6. 函数y= (a>0,a≠1)是 。
(6分)(A) 奇 函数 (B) 非奇非偶函数 (C) 偶 函数 (D) 奇偶性取决于a 的取值参考答案:C 7. 下列函数中,奇函数是 。
(5分) (A) (B) (C) (D)参考答案:B 8. = 。
(5分) (B) (C) 3 (D) 1参考答案:B 9. 下列极限正确的是 。
(5分) (A) (B) (C) (D)参考答案:A 10. 当 时,下列哪个是 的高阶无穷小? 。
(5分) (A) (B) (C) (D)参考答案:B 11. 设f(x)= 则x=1为f(x)的 参考答案:C 跳跃间断点 。
(5分).设(A) 是的高阶无穷小是的等价无穷小12. 设f(x)= , 则= 。
(5分)(A) 1 (B) 2 (C) -1(D) 不存在参考答案:A13参考答案:D ,则当时。
(5分)(A) 是的低阶无穷小(D) 与是同阶但非等价无穷小14. )=。
高数作业(一)(答案)

常微分方程第一节 微分方程的基本概念1、试指出下列方程是什么方程,并指出微分方程的阶数..1ln )cos()4(;052)3(;42)2(;)1(32222+=+''=+⎪⎭⎫⎝⎛-+-⎪⎭⎫⎝⎛+=x y y xy dx dy dx y d xx dx dy dx dy x y x dxdy解 (1)是一阶线性微分方程,因方程中含有的dxdy和y 都是一次. (2) 是一阶非线性微分方程,因方程中含有的dxdy的平方项. (3) 是二阶非线性微分方程,因方程中含有的dxdy的三次方. (4)是二阶非线性微分方程,因方程中含有非线性函数)cos(y ''和.ln y2、设一物体的温度为100℃, 将其放置在空气温度为20℃的环境中冷却. 根据冷却定律:物体温度的变化率与物体和当时空气温度之差成正比, 设物体的温度T 与时间t 的函数关系为),(t T T = 则可建立起函数)(t T 满足的微分方程)20(--=T k dtdT其中)0(>k k 为比例常数. 这就是物体冷却的数学模型. 根据题意, )(t T T =还需满足条件 .1000==t T3、设一质量为m 的物体只受重力的作用由静止开始自由垂直降落. 根据牛顿第二定律:物体所受的力F 等于物体的质量m 与物体运动的加速度α成正比,即αm F =,若取物体降落的铅垂线为x 轴,其正向朝下,物体下落的起点为原点,并设开始下落的时间是0=t ,物体下落的距离x 与时间t 的函数关系为)(t x x =,则可建立起函数)(t x 满足的微分方程g dtxd =22 其中g 为重力加速度常数. 这就是自由落体运动的数学模型.根据题意,)(t x x =还需满足条件.0,0)0(0===t dt dxx 4、验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π, .42π-=C 从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 第二节 一阶微分方程1、形如 的微分方程为可分离变量的微分方程;形如 的一阶微分方程称为齐次微分方程;形如 的方程称为一阶线性微分方程. 当 时, 这个方程称为一阶齐次线性方程,它的通解为 ;当 时, 这个方程称为一阶非齐次线性方程,它的通解为 . 解: 形如)()(y g x f dxdy=的微分方程为可分离变量的微分方程; 形如⎪⎭⎫⎝⎛=x y f dx dy 的一阶微分方程称为齐次微分方程; 形如)()(x Q y x P dxdy=+的方程称为一阶线性微分方程. 当,0)(≡x Q 这个方程称为一阶齐次线性方程,它的通解为.)(⎰-=dxx P Ce y 当,0)(≡x Q 这个方程称为一阶非齐次线性方程,它的通解为[]⎰-⎰+=⎰dx x P dx x P e C dx e x Q y )()()(. 2、求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得dx x dy y y 1112-=-两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 3 、已知,tan 2cos )(sin 22x x x f +=' 当10<<x 时, 求).(x f 解 设,sin 2x y =则,21sin 212cos 2y x x -=-=.1sin 1sin cos sin tan 22222y yxx x x x -=-== 所以原方程变为,121)(y y y y f -+-='即.112)(yy y f -+-=' 所以 =)(y f ⎪⎪⎭⎫ ⎝⎛-+-y y 112dy 2y -=,)1ln(C y +-- 故 C x x x f +-+-=)]1ln([)(2).10(<<x 4、求解微分方程x y x y dx dy tan +=满足初始条件61π==x y 的特解. 解 题设方程为齐次方程,设,xy u =则,dx dux u dx dy +=代入原方程得,tan u u dx du xu +=+分离变量得.1cot dx xudu = 两边积分得||ln ||ln |sin |ln C x u +=,,sin Cx u =将xy u =回代,则得到题设方程的通解为.sin Cx x y=利用初始条件,6/|1π==x y 得到.21=C 从而所求题设方程的特解为.21sin x x y =5、求解微分方程.22dxdy xy dx dy xy =+ 解 原方程变形为=-=22x xy y dx dy ,12-⎪⎭⎫⎝⎛xy x y (齐次方程) 令,xy u =则,ux y =,dx dux u dx dy +=故原方程变为,12-=+u u dx du x u 即.1-=u u dx du x 分离变量得⎪⎭⎫⎝⎛-u 11.x dx du =两边积分得||ln ||ln x C u u =+-或.||ln C u xu +=回代,xy u =便得所给方程的通解为 .||ln C x yy +=6、求方程xxy x y sin 1=+'的通解.解 ,1)(x x P =,s i n )(xx x Q =于是所求通解为 ⎪⎪⎭⎫ ⎝⎛+⋅=⎰⎰⎰-C dx e xx e y dx x dx x 11sin ⎪⎭⎫ ⎝⎛+⋅=⎰-C dx e xx e x x ln ln sin ).cos (1C x x+-= 7、求方程2/5)1(12+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应齐次方程的通解.由012=+-y x dx dy ⇒12+=x dx y dy ⇒C x y ln )1ln(2ln ++=⇒.)1(2+=x C y 用常数变易法,把C 换成,u 即令,)1(2+=x u y 则有),1(2)1(2+++'=x u x u dxdy代入所给非齐次方程得,)1(1/2+='x u 两端积分得,)1(322/3C x u ++= 回代即得所求方程的通解为.)1(32)1(2/32⎥⎦⎤⎢⎣⎡+++=C x x y第三节 可降阶的二阶微分方程1、求方程x e y x cos 2-=''满足1)0(,0)0(='=y y 的特解. 解 对所给方程接连积分二次,得,sin 2112C x e y x+-=' (1) ,cos 41212C x C x e y x +++= (2)在(1)中代入条件,1)0(='y 得,211=C 在(2)中代入条件,0)0(=y 得,452-=C 从而所求题设方程的特解为.4521cos 412-++=x x e y x2、求方程02)1(222=-+dx dyx dxy d x 的通解. 解 这是一个不显含有未知函数y 的方程.令),(x p dxdy=则,22dx dp dx y d =于是题设方程降阶为,02)1(2=-+px dxdpx 即.122dx x x p dp +=两边积分,得 |,|ln )1ln(||ln 12C x p ++=即)1(21x C p +=或).1(21x C dxdy+= 再积分得原方程的通解.3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=3、 求微分方程初值问题3,1,2)1(002='='=''+==x x y yy x y x 的特解.解 题设方程属),(y x f y '=''型.设,p y ='代入方程并分离变量后,有.122dx x xp dp += 两端积分,得,)1ln(||ln 2C x p ++=即)1(21x C y p +='=).(1c e C ±= 由条件,30='=x y 得,31=C 所以).1(32x y +='两端再积分,得.323C x x y ++=又由条件,10==x y 得,12=C 于是所求的特解为 .133++=x x y 4、求方程02='-''y y y 的通解. 解 设),(y p y ='则,dy dp py =''代入原方程得,02=-⋅p dy dpp y 即.0=⎪⎪⎭⎫⎝⎛-⋅p dy dp y p 由,0=-⋅p dy dp y 可得,1y C p =所以,1y C dxdy = 原方程通解为 .12x C e C y =5、 求微分方程)(22y y y y '-'=''满足初始条件,1)0(=y 2)0(='y 的特解. 解 令,p y ='由,dydppy =''代入方程并化简得 ).1(2-=p dydpy上式为可分离变量的一阶微分方程,解得,12+='=Cy y p 再分离变量,得,12dx Cy dy=+由初始条件,1)0(=y2)0(='y 定出,1=C 从而得,12dx y dy=+再两边积分,得1arctan C x y +=或),tan(1C x y += 由1)0(=y 定出,41arctan 1π==C 从而所求特解为).4tan(π+=x y第四节 ~ 第六节 二阶线性微分方程1、二阶线性微分方程的一般形式是 ,其中 是自变量x 的已知函数,当右端项 时, 方程成为 ,这个方程称为二阶齐次线性微分方程,相应地,右端项 时,原方程称为二阶非齐次线性微分方程.解 二阶线性微分方程的一般形式是)()()(22x f y x Q dx dyx P dx y d =++,其中)(x P 、)(x Q 及)(x f 是自变量x 的已知函数,当右端项0)(=x f 时, 方程成为0)()(22=++y x Q dx dyx P dxy d ,这个方程称为二阶齐次线性微分方程,相应地,右端项()0f x ≠时,原方程称为二阶非齐次线性微分方程.2、设*y 是方程二阶非齐次线性微分方程 的一个特解,而Y 是其对应的齐次方程 的通解,则 就是二阶非齐次线性微分方程的通解.解 设*y 是方程)()()(22x f y x Q dx dyx P dxy d =++的一个特解,而Y 是其对应的齐次方程0)()(22=++y x Q dx dyx P dxy d 的通解,则*+=y Y y 就是二阶非齐次线性微分方程的通解. 3、求方程032=-'-''y y y 的通解.解 所给微分方程的特征方程为,0322=--r r其根3,121=-=r r 是两个不相等的实根,因此所求通解为.321x x e C e C y +=-4、求方程044=+'+''y y y 的通解.解 特征方程为,0442=++r r 解得1r 2r =,2-=故所求通解为.)(221x e x C C y -+=5、求方程052=+'+''y y y 的通解.解 特征方程为,0522=++r r 解得2,1r ,21i ±-=故所求通解为).2sin 2cos (21x C x C e y x +=-6、下列方程具有什么样形式的特解?(1) ;653x e y y y =+'+'' (2) ;3652x xe y y y -=+'+'' (3) .)13(22x e x y y y -+-=+'+''解 (1) 因3=λ不是特征方程0652=++r r 的根,故方程具有特解形式:;30*x e b y = (2) 因2-=λ是特征方程0652=++r r 的单根,故方程具有特解形式:;)(210*x e b x b x y -+= (3) 因1-=λ是特征方程0122=++r r 的二重根,所以方程具有特解形式:.)(21202*x e b x b x b x y -++=7、求方程1332+=-'-''x y y y 的一个特解.解 题设方程右端的自由项为x m e x P x f λ)()(=型,其中,13)(+=x x P m .0=λ 对应的齐次方程的特征方程为,0322=--r r 特征根为,11-=r .32=r 由于0=λ不是特征方程的根,所以就设特解为.10*b x b y += 把它代入题设方程,得 ,13323100+=---x b b x b 比较系数得,13233100⎩⎨⎧=--=-b b b 解得.1110⎩⎨⎧=-=b b 于是,所求特解为.31*+-=x y8、求方程x y y sin 4=+''的通解.解 对应齐次方程的特征方程的特征根为,2,1i r ±=故对应齐次方程的通解.sin cos 21x C x C Y +=作辅助方程.4ix e y y =+''i =λ 是单根,故设.*ix Axe y =代入上式得42=Ai ⇒,2i A -=∴*y ix ixe 2-=),cos 2(sin 2x x i x x -=取虚部得所求非齐次方程特解为.cos 2*x x y -=从而题设方程的通解为.cos 2sin cos 21x x x C x C y -+=9、设函数)(x y 满足,1)0(,)](sin 6[1)(02=-+='⎰y dt t y t x y x求)(x y .解 将方程两端对x 求导,得微分方程 ,sin 62x y y =+''即),2cos 1(3x y y -=+'' 特征方程为,012=+r 特征根为,1i r =,2i r -=对应齐次方程的通解为,sin cos 21x C x C Y += 注意到方程的右端)(x f x 2cos 33-=),()(21x f x f +=且i i 2±=±βα不是特征根,根据非齐次方程解的叠加原理,可设特解*y *2*1y y +=,2sin 2cos x c x b a ++= 代入方程定出,0,1,3===c b a 从而原方程的通解为y .32cos sin cos 21+++=x x C x C又在原方程的两端令,0=x 得,1)0(=y ,1)0(='y 又在原方程的两端令,0=x 得,1)0(='y ,1)0(=y ,1)0(='y,1)0(='y定出,1,321=-=C C 从而所求函数为.32cos cos 3sin )(++-=x x x x y第八节 数学建模——微分方程的应用举例逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= 其中0>k 是比例常数. 这个方程为Logistic 方程. 请求解该方程. 解 分离变量得,)(kdt h H h dh =- 两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21k H t H C k H t e C e hH h==-+ 故所求通解为,11)(22kHtkHt kHt Ce H e C He C t h -+=+=其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数.向量代数与空间解析几何第一节 ~ 第三节 向量的基本概念与运算1、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解 由于平行四边形的对角线互相平分, 所以 a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ).又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、已知三点M (1,,、A (2,,和B (2,,,求∠AMB .解 从M 到A 的向量记为a , 从M 到B 的向量记为b , 则∠AMB 就是向量a 与b 的夹角. a ={1,,,b ={1,,.因为a ⋅b =1⨯1+1⨯0+0⨯1=1, 2011||222=++=a , 2101||222=++=b . 所以21221||||cos =⋅=⋅=∠b a b a AMB .从而3π=∠AMB .3、设}2,0,1{-=a ,}1,1,3{-=b ,求b a ⋅和b a ⨯. 解 51)2(10)3(1-=⨯-+⨯+-⨯=⋅b a .}1,5,2{52113201=++=--=⨯k j i kjib a4、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求: (1) 向量21P P 的坐标表示;(2) 向量21P P 的模;(3) 向量21P P 的方向余弦;(4)与向量21P P 方向一致的单位向量. 解 (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为BCD362cos ,cos ,cos 777αβγ=-==;(4) k j i k j i7276737263)(21++-=++-==P P.5、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b . 解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ,即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .6、已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c . 解 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kj i b a +-=-=⨯22011201, 31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即 }2,4,4{-=c 或}2,4,4{--=c .第四节 平面与空间直线1、求通过点)4,1,2(0-M 和z 轴的平面方程.解 因为z 轴的单位向量}1,0,0{=k 和1,4}{2,0-=OM 均在所求平面内,故可取该平面的一个法向量为}0,2,1{0=⨯=OM k n ,于是所求方程为0)4(0)1(2)2(1=-⨯+++-⨯z y x ,即 02=+y x .2、求满足下列条件的平面方程:(1) 过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2) 过x 轴且与平面025=++z y x 的夹角为π3. 解}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为 k j i kj i n 452131113121--=--=⨯=P P P P ,又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C '=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得 3='C 或13C '=-, 于是所求平面方程为03=+z y 或03=-z y .3、已知平面在x 轴上的截距为2,且过点)0,1,0(-和)3,1,2(,求此平面方程.解 设所求平面方程为 1=++cz b y a x ,由题设知 1,2-==b a ,平面过点)3,1,2(,所以131122=+-+c,得3=c .于是,所求平面方程为 1312=+-+z y x , 即 06263=-+-z y x .4、求过原点且垂直于平面022=+-z y 的直线.解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z y x -==20 . 5、求过点)0,1,0(0M 且垂直于平面023=+-y x 的直线方程.解 因所求直线的方向向量s 与已知平面的法向量同向,所以可取}0,1,3{-=s ,故所求方程为0113z y x =--=.6、求过点)1,1,2(,平行于直线122132--=+=-z y x 且垂直于平面0532=+-+z y x 的平面方程.解 用点法式.所给直线的方向向量}1,2,3{-=s ,所给平面的法向量}3,2,1{1-=n . 1321484123⨯=-=-++-i j k s n i j k , 由题设知,所求平面的法向量s n ⊥且1⊥n n ,取11()24=-⨯=--n s n i j k ,于是所求平面方程为 0)1()1(2)2(=-----z y x ,即 012=+--z y x7、求与两平面 x -4z =3和2x -y -5z =1的交线平行且过点(-3, 2, 5)的直线的方程.解平面x -4z =3和2x -y -5z =1的交线的方向向量就是所求直线的方向向量s ,因为 )34(512 401 )52()4(k j i k j i k j i k i s ++-=---=--⨯-=, 所以所求直线的方程为153243-=-=+z y x . 8、求直线241312-=-=-z y x 与平面2x +y +z -6=0的交点.解 所给直线的参数方程为x =2+t , y =3+t , z =4+2t ,代入平面方程中, 得2(2+t )+(3+t )+(4+2t )-6=0.解上列方程, 得t =-1. 将t =-1代入直线的参数方程, 得所求交点的坐标为 x =1, y =2, z =2.9、求过点(2, 1, 3)且与直线12131-=-=+z y x 垂直相交的直线的方程. 解 过点(2, 1, 3)与直线12131-=-=+z y x 垂直的平面为 3(x -2)+2(y -1)-(z -3)=0, 即3x +2y -z = 直线12131-=-=+z y x 与平面3x +2y -z =5的交点坐标为)73 ,713 ,72(-. 以点(2, 1, 3)为起点, 以点)73 ,713 ,72(-为终点的向量为 )4 ,1 ,2(76)373 ,1713 ,272(--=----. 所求直线的方程为431122-=--=-z y x .。
《高等数学1》第1阶段在线作业答案

一、单选题
答题要求 :
每题只有一个正确的选项。
1 (5.0分)
A) B) C) D)
参考答案: A
解析:无
2 (5.0分)
A) 充分条件 B) 必要条件 C) 充要条件 D) 既非充分又非必要条件
参考答案: B
解析:无
3 (5.0分)
A) B) C) D)
参考答案: B
解析:无
4 (5.0分)
参考答案: C
解析:无
20 (5.0分)
收起解析
5.0
收起解析
5.0
收起解析
5.0
收起解析
5.0
移动 端 反馈 建议
/
A) y=-1是曲线的渐进线 B) 曲线没有渐进线 C) y=0是曲线的渐进线 D) x=0及x=-1是曲线的渐进线
参考答案: C
解析:无
收起解析
移动 端 反馈 建议
/
A) B) C) D)
参考答案: C
解析:无
11 (5.0分)
A) f(x)是比g(x)高阶的无穷小 B) f(x)是比g(x)低阶的无穷小 C) f(x)与g(x)为同阶的无穷小 D) f(x)与g(x)为等价无穷小
参考答案: C
解析:无
12 (5.0分)
A) a=2,b=0 B) a=1,b=1
参考答案: C
解析:无
7 (5.0分)
A) B) C) D)
参考答案: A
解析:无
8 (5.0分)
A) 0 B) -6
收起解析
5.0
收起解析
5.0
收起解析
5.0
收起解析
5.0
移动 端 反馈 建议
高等数学作业题及参考答案

高等数学作业题(一)第一章 函数1、填空题(1)函数1142-+-=x x y 的定义域是 2、选择题(1)下列函数是初等函数的是( )。
A.3sin -=x y B.1sin -=x y C.⎪⎩⎪⎨⎧=≠--=1,01,112x x x x yD. ⎩⎨⎧≥<+=0,0,1x x x x y (2)xy 1sin =在定义域内是( )。
A. 单调函数 B. 周期函数 C. 无界函数 D. 有界函数3、求函数2)1ln(++-=x x y 的定义域4、设,1)(2+-=x x x f 计算xf x f ∆-∆+)2()2(5、要做一个容积为250立方米的无盖圆柱体蓄水池,已知池底单位造价为池壁单位造价的两倍,设池底单位造价为a 元,试将总造价表示为底半径的函数。
6、把一个圆形铁片,自中心处剪去中心角为α的一扇形后,围成一个无底圆锥,试将此圆锥体积表达成α的函数。
第二章 极限与连续1、填空题(1)32+=x y 的间断点是 (2)0=x 是函数x x y +=1的第 类间断点。
(3)若极限a x f x =∞→)(lim 存在,则称直线a y =为曲线=y ()x f 的 渐近线。
(4)有界函数与无穷小的乘积是(5)当0→x ,函数x 3sin 与x 是 无穷小。
(6)xx x 1)21(lim 0+→= (7)若一个数列{}n x ,当n 时,无限接近于某一个常数a ,则称a 为数列{}n x 的极限。
(8)若存在实数0>M ,使得对于任何的R x ∈,都有()M x f <,且()0lim 0=→x g x , 则()()=→x g x f x 0lim (9)设x y 3sin =,则=''y(10) x x x)211(lim -∞→=2、选择题(1)xx x sin lim 0→的值为( )。
A.1 B.∞ C.不存在 D.0 (2)当x →0时,与3100x x +等价的无穷小量是( )。
北京邮电大学网络教育学院 高等数学---阶段作业一

一、单项选择题(共20道小题,共100.0分)1.是_____D_______.A.单调函数B.周期函数C.有界函数D.奇函数2.下列函数中为奇函数的是_______B___.A.B.C.D.3.设(为常数),则___B________.A.B.C.D.4.设,则___C_______.A.B.C.D.5.函数的定义域为____B________.A.B.C.D.6.设与分别是同一变化过程中的两个无穷大量,则是_______D_____.A.无穷大量B.无穷小量C.常数D.不能确定7.(错误)下列函数中当时与无穷小相比是高阶无穷小的是_________.A.B.C.D.知识点: 第二章函数的极限学生答案:[C;]得分: [0] 试题分值:5.0提示:8.(错误)_____________.A.0B. 1C. 2D.知识点: 第二章函数的极限学生答案:[D;]得分: [0] 试题分值:5.0提示:9.______B_____.A.0B.C.D. 110.下列变量在给定的变化过程中为无穷小量的是_______A______.A.B.C.D.11.设在处连续,且时,,则__B_______.A.0B.8C. 4D. 212.设函数,则的连续区间为______D________.A.B.C.D.13.函数的连续区间为_____C______.A.B.C.D.14.设在处连续,则_____B____.A.0B. 1C. 2D.15.设且可导,则( D)A.B.C.D.16.设,则(D )A.B.C.D.17.设则( B)A.B.C.D.18.设,则(D )A.B.C.D.19.曲线在点(0,1)处的切线方程为( C )A.B.C.D.20.设,且存在,则等于( B )A.B.C.D.。
高等数学作业1参考答案

作业一一、填空题:1.23e - 2.253.充要 4.2(34)x + 5.(0,)+∞ 二、选择题:1.B 2.D 3.B 4.B 5.B三、按要求计算:1.求.21lim 222⎪⎭⎫ ⎝⎛+++∞→n n n n n 解 本题考虑无穷多个无穷小之和.先变形再求极限.211121lim )1(21lim 21lim 21lim 22222=⎪⎭⎫ ⎝⎛+=+=+++=⎪⎭⎫ ⎝⎛+++∞→∞→∞→∞→n n n n n n n n n n n n n n2.求函数)1(sin 2x e y -=的导数.解法一 设中间变量, 令.1,sin ,,2x w w v v u e y u -====于是x w v u x w v u y y '⋅'⋅'⋅'=')1()(sin )()(2'-⋅'⋅'⋅'=x w v e u )1(cos 2-⋅⋅⋅=w v e u)1cos()1sin(2)1(sin 2x x e x --⋅-=-.)1(2sin )1(sin 2x e x -⋅--=解法二 不设中间变量.)1()1cos()1sin(2)1(sin2-⋅-⋅-⋅='-x x e y x .)1(2sin )1(sin 2x e x -⋅--=3.求不定积分⎰+dx x x 241. 解 ⎰+dx x x 241⎰++-=dx x x 24111⎰+-+=dx x x x 2221)1)(1(dx x x ⎰⎪⎭⎫ ⎝⎛++-=22111 ⎰⎰⎰++-=dx x dx dx x 22111.arctan 33C x x x ++-=4.求定积分⎰--3/2/2cos 1ππdx x . 解 dx x ⎰--3/2/2cos 1ππdx x ⎰-=3/2/2sin ππdx x ⎰-=3/2/|sin |ππdx x xdx ⎰⎰+-=-3/002/sin sin ππ 3/002/cos cos ππx x -=-.23= 5.求微分方程xy dxdy 2=的通解.解 分离变量得xdx y dy 2=两端积分得⎰⎰=xdx y dy 2 ⇒ 12||ln C x y += 从而2211+=±=±⋅x C C x y e e e ,记,1C e C ±=则得到题设方程的通解 .2x Ce y = 四、证明方程01423=+-x x 在区间(0, 1)内至少有一个根. 证明: 令,14)(23++=x x x f 则)(x f 在]1,0[上连续 .又,01)0(>=f ,02)1(<-=f 由零点定理 , ,)1,0(∈∃ξ使,0)(=ξf 即.01423=+-ξξ ∴方程01423=+-x x 在)1,0(内至少有一个实根.ξ五 、解:抛物线21x y =+与直线x y +=1 的交点⎩⎨⎧+==+x y x y 112,解得交点:(-1,0);(2,3) 则:S=29)22131()11(2123212=++-=+-+--⎰x x x dx x x。
高等数学(专升本)作业1及作业2

平时作业11. (单选题) 设函数在点x=0 处连续,则= ()。
(本题2.0分)A、-1B、0C、 1D、e学生答案: C标准答案:C得分: 22. (单选题) 微分方程满足的特解是()(本题2.0分)A、B、C、D、学生答案: D标准答案:D得分: 23. (单选题)函数的定义域是()。
(本题2.0分)A、B、C、D、学生答案: B标准答案:B得分: 24. (单选题) 设,则()(本题2.0分)A、0B、C、 1D、学生答案: B标准答案:B得分: 25. (单选题) (). (本题2.0分)A、B、C、D、学生答案: D标准答案:D得分: 26. (单选题) 设方程确定了是的函数,则()(本题2.0分)A、B、C、D、标准答案:B得分: 27. (单选题) ()(本题2.0分)A、B、C、D、学生答案: D标准答案:D得分: 28. (单选题) (本题2.0分)A、0B、 1C、D、不存在标准答案:B得分: 29. (单选题) (本题2.0分)A、B、C、D、学生答案: D标准答案:D得分: 210. (单选题) 已知函数在点处连续,则(本题2.0分)A、0B、-1C、 1D、任意常数学生答案: C标准答案:C得分: 211. (单选题)设函数,则。
(本题2.0分)A、B、C、D、学生答案: D标准答案:D得分: 212. (单选题) 曲线在点处的切线方程为(本题2.0分)A、B、C、D、学生答案: B标准答案:B得分: 213. (单选题) 不定积分()(本题2.0分)A、B、C、D、学生答案: A标准答案:A得分: 214. (单选题)设函数在点x=0 处连续,则=()。
(本题2.0分)A、-1B、0C、 1D、 e学生答案: C标准答案:C得分: 215. (单选题)().(本题2.0分)A、B、C、 1D、-1学生答案: A标准答案:A得分: 216. (多选题) 下列结论正确的有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单项选择题(共20道小题,共100.0分)
1.若,,则___________.
A.
B.
C.
D.
知识点: 第一章函数
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
2. 设的定义域为则的定义域为___________.
A.
B.
C.
D.
知识点: 第一章函数
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
3. 函数的反函数是____________.
A.
B.
C.
D.
知识点: 第一章函数
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
4.函数的周期是___________.
A.
B.
C.
D.
知识点: 第一章函数
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
5. 设,则__________.
A.
B.
C.
D.
知识点: 第一章函数
学生答案: [C;] 标准答案: C;
得分: [5] 试题分值: 5.0
提示:
6. 函数的定义域为____________.
A.
B.
C.
D.
知识点: 第一章函数
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
7. 下列各对函数相同的是________.
A. 与
B. 与
C. 与
D. 与
知识点: 第一章函数
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
8. 设与分别是同一变化过程中的两个无穷大量,则是
____________.
A. 无穷大量
B. 无穷小量
C. 常数
D. 不能确定
知识点: 第二章函数的极限
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
9. 下列函数中当时与无穷小相比是高阶无穷小的是_________.
A.
B.
C.
D.
知识点: 第二章函数的极限
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
10. 时,与为等价无穷小,则__________.
A. 1
B. 0
C. 2
D.
知识点: 第二章函数的极限
学生答案: [C;] 标准答案: C;
得分: [5] 试题分值: 5.0
提示:
11. ____________.
A.
B.
C.
D. 1
知识点: 第二章函数的极限
学生答案: [A;] 标准答案: A;
得分: [5] 试题分值: 5.0
提示:
12. _________.
A. 0
B.
C.
D. 1
知识点: 第二章函数的极限
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
13. 函数的连续区间为___________.
A.
B.
C.
D.
知识点: 第三章函数的连续性
学生答案: [C;] 标准答案: C;
得分: [5] 试题分值: 5.0
提示:
14. 设则( )
A.
B.
C.
D.
知识点: 第四章导数与微分
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
15.设,且,则( )
A. 1
B.
C.
D.
知识点: 第四章导数与微分
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
16.设,则( )
A. 99
B.
C. 99!
D.
知识点: 第四章导数与微分
学生答案: [D;] 标准答案: D;
得分: [5] 试题分值: 5.0
提示:
17.曲线在点(0,1)处的切线方程为( )
A.
B.
C.
D.
知识点: 第四章导数与微分
学生答案: [C;] 标准答案: C;
得分: [5] 试题分值: 5.0
提示:
18.设曲线在点M处的切线斜率为3,则点M的坐标为()
A. (0,1)
B. (1,0)
C. (0,0)
D. (1,1)
知识点: 第四章导数与微分
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
19. 设,且存在,则等于()
A.
B.
C.
D.
知识点: 第四章导数与微分
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:
20. 设函数可导,则()
A.
B.
C.
D.
知识点: 第四章导数与微分
学生答案: [B;] 标准答案: B;
得分: [5] 试题分值: 5.0
提示:。