微分的定义公式

合集下载

微分概念及其计算

微分概念及其计算
y f (x0)x o(x) 当 x 很小时, 得近似等式:
y f (x0 x) f (x0) f (x0 )x f (x0 x) f (x0) f (x0)x
令 x x0 x f (x) f (x0) f (x0)(x x0 )
使用原则: 1) f (x0 ), f (x0 ) 好算 ; 2) x 与x0 靠近.
在点 可微 , 则
y f (x0 x) f (x0 ) Ax o(x)
lim y lim ( A o(x) ) A
x0 x x0
x

在点 的可导, 且
说明
由定理4.5,我们得到
dy f (x0 )x
当 y x 时,y' 1,dy dx 1 x x,
称x为自变量的微分, 记作 则有 dy f (x) dx
在点 的可导, 则
lim y x0 x
f (x0 )
y x
f (x0 )
( lim 0 ) x0
故Hale Waihona Puke y f (x0 )x x f(x0)x o(x)
即 dy f (x0 )x
线性主部
定理4.5 函数 在点
在点 可微的充要条件是
处可导, 且

dy f (x0 )x
证: “必要性”
已知
第四章 微商与微分
第二节 微分概念及其计算
一、微分的定义 二、微分的几何意义 三、基本微分公式与微分运算法则 四、微分在近似计算中的应用
导数的定义
定义 设函数f (x)在 U(x0) 有定义,且 x0+x U(x0).
如果极限 lim f (x0 x) f (x0 ) lim y a 存在,
说明: y f (x0 )x o(x) dy f (x0 )x

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

微积分的公式大全

微积分的公式大全

微积分的公式大全一、极限公式1.无穷小量定义:若当x→0时,Δx是x的函数之一,且满足Δx/x→0,则称Δx为x的一个无穷小量。

2.极限的基本性质:-函数f(x)的极限即为f(x)的左极限和右极限存在且相等的值。

-函数的极限与函数的值在有限点无关,只与趋向于该点的方式有关。

-函数有界,且极限存在,则函数必定有极大值和极小值。

3.基本极限:-极限的四则运算规则:设x→x0时有f(x)→A,g(x)→B,则f(x)±g(x)→A±B,f(x)g(x)→AB,f(x)/g(x)→A/B。

- 幂函数极限:若m是正整数,则lim(x→a) (x^m) = a^m。

- e 的指数函数极限:lim(x→∞) (1+1/x)^x = e。

- 自然对数函数极限:lim(x→0) (ln(1+x)/x) = 1-三角函数极限:- lim(x→0) (sinx/x) = 1- lim(x→0) (cosx-1)/x = 0。

四、导数公式1. 基本定义:函数 y=f(x) 在 x0 处可导,当且仅当函数在 x0 处存在极限lim(x→x0) (f(x)-f(x0))/(x-x0),即导数 f'(x0) 存在。

2.基本导数:- 常数函数的导数为 0:d/dx(c) = 0。

- 幂函数的导数:d/dx(x^n) = nx^(n-1)。

- 指数函数的导数:d/dx(e^x) = e^x。

- 对数函数的导数:d/dx(loga(x)) = 1/(xln(a))。

-三角函数的导数:- d/dx(sin(x)) = cos(x)。

- d/dx(cos(x)) = -sin(x)。

- d/dx(tan(x)) = sec^2(x)。

-反三角函数的导数:- d/dx(arcsin(x)) = 1/√(1-x^2)。

- d/dx(arccos(x)) = -1/√(1-x^2)。

- d/dx(arctan(x)) = 1/(1+x^2)。

微分公式和运算法则

微分公式和运算法则

(cos x)sin x
d(cos x)sin xdx
(tan x)sec2 x
d(tan x)sec2xdx
(cot x)csc2x
d(cot x)csc2xdx
(sec x)sec x tan x
d(sec x)sec x tan xdx
(csc x)csc x cot x
d(csc x)csc x cot xdx
§ 2.2.1 微分概念
一、微分的定义
引例: 一块正方形金属薄片受温度变化的影响, 其
边长由 变到
问此薄片面积改变了多少?
设薄片边长为 x , 面积为 A , 则
当x在 取
得增量 时, 面积的增量为
关于△x 的
时为
线性主部 高阶无穷小

称为函数在 的微分
1
定义1: 若函数
在点 的增量可表示为
( A 为不依赖于△x 的常数)
解: 已知球体体积为
镀铜体积为 V 在
时体积的增量
因此每只球需用铜约为 (g)
17
2.误差估计 某量的精确值为 A , 其近似值为 a , 称为a 的绝对误差 称为a 的相对误差 若 称为测量 A 的绝对误差限 称为测量 A 的相对误差限
18
误差传递公式 :
若直接测量某量得 x , 已知测量误差限为
12
§ 2.2.3 高阶微分
1、二阶微分:一阶微分的微分称为二阶微分。记作
且有
(1)
2、n 阶微分:n-1阶微分的微分称为n阶微分,记作
且有
(2)
3、高阶微分:二阶以及二阶以上的微分统称为高阶微分。
例设
(2)求
解由

依公式(1)得 类似地,依公式(2)得

函数的微分(精)

函数的微分(精)

Jlin Institute of Chemical Technology
上页 下页 返回 退出
求函数增量的近似公式 f(x0Dx)f(x0)f (x0)Dx
例7 有一批半径为 1cm 的球 为了提高球面的光洁 度 要镀上一层铜 厚度定为0.01cm. 估计一下每只球需 用铜多少 g (铜的密度是8.9g/cm3)?
dxDx. 因此 函数yf(x)的微分又可记作
dyf (x)dx.
Jlin Institute of Chemical Technology
上页 下页 返回 退出
•增量与微分的关系
当f (x0)0时 有
lim Dy Dx0 dy
lim
Dx0
Dy f (x0)Dx

f
1 (x0)
解 函数yx3在x1处的微分为
dy(x3)|x1Dx3Dx 函数yx3在x2处的微分为
dy(x3)|x2Dx6Dx.
例2 求函数 yx2当x1 Dx 0.02时的微分.
解 先求函数在任意点x 的微分
dy(x2)Dx2xDx. 再求函数当x1 Dx0.02时的微分
)cos w t dt.
解 (1)因为d(x3)3x2dx 所以
x2dx 1 d(x3) d(1 x3)
3
3
即 d(1 x3) x2dx . 3
一般地 有 d(2 x3 C) 2x2dx (C为任意常数).
3
(2)因为d(sin w t)w cos w tdt 所以
cosw
Dy

ADxo(Dx)
Dy Dx

A
o(Dx) Dx
lim Dx0
Dy Dx

f

微分的概念——精选推荐

微分的概念——精选推荐

第二节 微分 §2.1 微分的概念一、微分概念的引入在实际测量中,由于受到仪器精度的限制,往往会产生误差。

例如x 0为准确数,实际测量出是x *=x 0+Δx 为x 0的近似数,由此产生的误差为Δx 相应产生的函数值的误差Δy =f(x 0+Δx)-f(x 0),往往需要估计Δy 的值。

如果f(x 0+Δx),f(x 0)计算很复杂。

因此计算Δy 也很麻烦或者实际中只知道近似数x *与误差|Δx |≤δ,又如何估计Δy? 假设f ′(x)存在,则0x lim →∆x )x (f )x x ("f 00∆-∆+=0x lim →∆xy ∆∆=f ′(x 0),有 xy ∆∆=f ′(x 0)+α,0x lim →∆α=0,于是 Δy =f ′(x 0)Δx +αΔx ,而0x lim →∆xx ∆∆∂=0 (1) 即 αΔx =0(Δx)(Δx →0)因此,当|Δx |很小时,Δy ≈f ′(x 0)Δx在实际中如果不知道x 0,只知道x *,由x 0,x *相差很小,则Δy ≈f ′(x *)Δx ,从而可以估计出Δy 。

从(1)式我们看到,f ′(x 0)相对Δx 是一个常数,αΔx 是Δx 的高阶无穷小,如果Δy =A Δx +0(Δx)(Δx →0),则Δy ≈A Δx ,由此得到微分的概念。

二、微分的概念定义 设y =f(x)在x 0的某领域U(x 0)内有定义,若Δy =f(x +Δx)-f(x)可表示为Δy =A Δx +o(Δx) (Δx →0)其中A 是写Δx 无关的常数,A Δx 称为Δy 的线性部。

则称y =f(x)在点x 处可微,称线性部A Δx 为y =f(x)在点x 处的微分,记为dy ,即dy =A Δx 。

三、可微与可导的关系从概念的引入,我们可以看到可导必可微,反之也是正确的。

因此有定理 函数y =f(x)在点x 可微的充要条件是函数y =f(x)在点x 处可导。

一、微分的定义二、微分的基本公式三、微分的四则运算法则


dy | x x0 , 或df | x x0 , 即 dy | x x0 A x.
定理3.7 y=f(x)可微的充分必要条件是y=f(x)可导,且 有 dy f ( x)dx .
dy 由于 f ( x) ,即函数的导数等于函数的微 dx 分与自变量微分之比,因此导数也称微商.

d(u v) (u v)dx (u v)dx
udx vdx du dv.
d(uv) (uv)dx (uv uv)dx
v udx u vdx vdu udv.
u 定理3.9 设u=u(x),v=v(x)可微,且 v 0 ,则 可微, v u vdu udv 且有 d ( ) . 2 v v
(a 0,a 1).
d tan x sec2 xdx.
d cot x csc xdx.
2
d sec x sec x tan xdx. d csc x csc x cot xdx.
1 d arsin x dx. 2 1 x 1 d arccos x dx. 2 1 x
当立方体的边长从 x0 变到 x0 x 时,相应的体 积增量
3 2 2 V ( x0 x) 3 x0 3 x0 x (3x0 (x) 2 (x) 3 ).
函数增量 V 分成两部分,一部分是 x 的线性部分
2 3x0 x, 一部分是关于 x 的高阶无穷小
1 d arctan x dx . 2 1 x 1 d arccot x dx . 2 1 x
三、微分的四则运算法则
定理3.8 设u=u(x),v=v(x)可微 ,则 u v , u , v可微, 且有

微分

第二节 微分§2.1 微分的概念一、微分概念的引入在实际测量中,由于受到仪器精度的限制,往往会产生误差。

例如x 0为准确数,实际测量出是x *=x 0+Δx 为x 0的近似数,由此产生的误差为Δx 相应产生的函数值的误差Δy =f(x 0+Δx)-f(x 0),往往需要估计Δy 的值。

如果f(x 0+Δx),f(x 0)计算很复杂。

因此计算Δy 也很麻烦或者实际中只知道近似数x *与误差|Δx |≤δ,又如何估计Δy?假设f ′(x)存在,则0x lim→∆x )x (f )x x ("f 00∆-∆+=0x lim →∆x y∆∆=f ′(x 0),有 xy∆∆=f ′(x 0)+α,0x lim →∆α=0,于是Δy =f ′(x 0)Δx +αΔx ,而0x lim →∆xx∆∆∂=0(1)即 αΔx =0(Δx)(Δx →0)因此,当|Δx |很小时,Δy ≈f ′(x 0)Δx在实际中如果不知道x 0,只知道x *,由x 0,x *相差很小,则Δy ≈f ′(x *)Δx ,从而可以估计出Δy 。

从(1)式我们看到,f ′(x 0)相对Δx 是一个常数,αΔx 是Δx 的高阶无穷小,如果Δy =A Δx +0(Δx)(Δx →0),则Δy ≈A Δx ,由此得到微分的概念。

二、微分的概念定义 设y =f(x)在x 0的某领域U(x 0)内有定义,若Δy =f(x +Δx)-f(x)可表示为Δy =A Δx +o(Δx) (Δx →0)其中A 是写Δx 无关的常数,A Δx 称为Δy 的线性部。

则称y =f(x)在点x 处可微,称线性部A Δx 为y =f(x)在点x 处的微分,记为dy ,即dy =A Δx 。

三、可微与可导的关系从概念的引入,我们可以看到可导必可微,反之也是正确的。

因此有定理 函数y =f(x)在点x 可微的充要条件是函数y =f(x)在点x 处可导。

一、微分的概念


f ( x ) (Δ x )2 f ( x ) (d x )2 .
或写作 d 2 y f ( x )d x 2 , 称为 f 的二阶微分.
注 由于 Δ x 与 x 无关, 因此 x 的二阶微分 d(Δ x )
d(d x ) d 2 x 0, 它与 d x 2 (d x )2 , d( x 2 ) 2 x d x
sin x x, tan x x, ln1 x x , e x 1 x .
例5 试求 sin 33o 的近似值 ( 保留三位有效数字 ). π π π ), 取 f ( x ) sin x , x0 , 解 sin 33 sin( 6 60 6 x π , 由公式 (9) 得到 60
果已知测量值 x0 的误差限为 x , 即
| Δ x | | x x0 | x ,
则当 x 很小时, 量 y0 的绝对误差估计式为:
| Δ y | | f ( x ) f ( x0 ) | | f ( x0 )Δ x | | f ( x0 ) | x .
Δ x 的线性部分 2 xΔ x 和 Δ x 的高阶部分( Δ x )2.因
此, 当边长 x 增加一个微小量 Δ x 时, Δ S 可用 Δ x
的线性部分来近似. 由此产生的误差是一个关于
2 ( Δ x ) 的高阶无穷小量 , 即以 Δ x 为边长的小 Δx
正方形(如图).
x2
2
xΔ x
Δx
xΔ x
d (sin x ) cos x dx ;
ห้องสมุดไป่ตู้
d (a ) a ln a dx .
x
x
二、微分的运算法则
由导数与微分的关系,可方便得出微分运算法则:

微分概念

§ 5 微分一. 微分概念:由导数定义 xx f x x f x f x ∆-∆+='→∆)()(lim)(000利用第三章讲过的极限与无穷小量之间的关系,上式可写为)()()()(000x o x x f x f x x f y ∆+∆'=-∆+=∆即函数在 0x 处的改变量y ∆可表示成两部分:x ∆的线性部分x x f ∆')(0 与 x ∆ 的高阶无穷小部分 )(x o ∆。

当 x ∆充分小时,函数的改变量可由第一部分近似代替x x f y ∆'≈∆)(0例 正方形面积的测问题。

设 正方形的实际边长为 0x ,由于测量 不可能绝对准确,设边长测量的最大 误差为 x ∆,试问由于边长测量不准 造成的面积误差最多有多大?20220)(2)(x x x x x x A ∆+∆=-∆+=∆即面积误差由两部分组成:第一部分 x x ∆02 是 x ∆ 的线性部分;第二部分 2)(x ∆ 是 x ∆ 的高阶无穷小,所以 x x A ∆≈∆02二 微分定义Th ( 可微与可导的关系 ).2x=由微分的定义 )(x o dy y ∆+≈∆ 当 x ∆ 充分小时dy y ≈∆ 即 x x f x f x x f ∆'+≈∆+)()()(000这后一式中的近似号若换成等号就是过 ))(,(00x f x 点的切线方程,所以这种近似计算的实质是“以直代曲”。

用这种方法近似计算时,要注意它的前提:x ∆ 应充分小!这一点可以从图(d52)看得很清楚。

三 微分的几何意义例1 求 ()x d 3sin 2和 .darctgx二. 微分运算法则: 法则1—4 只证2. 一阶微分形式不变性. 利用微分求导数. 微商.例2 ,cos ln 22x x x y += 求 dy 和 .y '例3 ,)sin(b ax ey += 求 dy 和 .y '四 微分的应用:1.建立近似公式: 原理: ,dy y ≈∆ 即).)(()()(000x x x f x f x f -'+≈特别当 00=x 时, 有近似公式 .)0()0()(x f f x f '+≈ 具体的近似公式如:x 1e x,n11x 1 x,sinx x n+≈+≈+≈ 等. 2. 作近似计算:原理: .)()()(00.0x x f x f x x f ∆'+=∆+ 例 求29sin 的近似485.0)180(6cos6sin)1806sin(29sin ≈-+=-=πππππ提问:这里能用度作单位近似计算吗?为什么? 例 求 97.0 和 3127的近似值. 3. 估计误差:绝对误差估计: ,)(0x x f y ∆'≈∆相对误差估计: ),(ln ln ),0( )(⇒=>=x f y x f y.)(ln x f d ydyy y =≈∆ 例2 设已测得一根圆轴的直径为cm 43,并知在测量中绝误差不超过 cm 2.0. 试求以此数据计算圆轴的横截面面积时所产生的误差.4 求速度:原理: .)(,)( ),(dtdxx f dt dy dx x f dy x f y '='== 例7 球半径R 以sec 2.0cm 的速度匀速增大. 求cm R 4=时, 球体积增大的 速度. 在初等数学中“直”就是“直”,“曲”就是“曲”,二者是不会等同的,微分概念的建立冲破了初等数学的狭隘界限,在“直”和“曲”之间架起了一个桥梁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档