1.1正数和负数(第1课时)
1.1正数和负数(第1课时定义)(教学课件)-2024-2025学年七年级数学上册课件

【例2】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无
变化,写出他们这个月的体重增长值;
解:这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
【变式】条件同上,小张体增加-4kg,小美体重-4kg什么意义?
【例2】(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率
D.-20 元
4.-a一定是( D )
A.正数
B.负数
C.0
D.以上选项都不正确
5.如果以东为正方向,向东走了8米记作+8米,那么-2米表示( B )
A.向北走了2米
B.向西走了2米
C.向南走了2米
D.向东走了2米
6.读下列各数,并指出其中哪些是正数,哪些是负数.
-1, 2.5,+43,0,-3.14,120,-1.732,-27
3℃
零下3摄氏度
- 3℃
问题一:生活、生产和科研中,经常遇到数的表示和运算的问题。例如 (2)某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何 用数分别表示“盈利50万元”和“亏损10万元”?
盈利50万元
50 万元
亏损10万元
- 10 万元
问题一:生活、生产和科研中,经常遇到数的表示和运算的问题。例如 (3)某年,我国棉花产量比上年增长7.8%,玉米产量比上年减少0.7%.统计 这两种农作物产量的变化情况时,如何用数分别表示“增长7.8%”和“减少 0.7%”?
再写出第100个数.
解:-13;15; 第100个数为199.
知识回顾
✓ 什么正数,负数?与原来学的数学有什么关系?
情景引入
数的产生和发展离不开生活和生产的需要
问题一:生活、生产和科研中,经常遇到数的表示和运算的问题。例如 (1)北京冬季某一天的最高气温为零上3摄氏度,最低气温为零下3摄氏度. 如何用数区分“零上3摄氏度”和“零下3摄氏度”?
人教版2024-2025学年七年级数学上册第1课时 正数和负数(习题课件)

11. [母题 教材P5习题T5] 中秋节时,小雨的妈妈去超市购买 了一盒月饼(共计6枚),称重后统计列表如下(单位:g):
第n枚 1
2
3
4
5
6
质量/g 69.3 70.2 70.8 69.6 69.4 70.7
(1)求这6枚月饼的平均质量; 【解】(69.3+70.2+70.8+69.6+69.4+70.7)÷6=70(g). 答:这6枚月饼的平均质量为70 g.
人教版 七年级上
第一章 有理数 1.1 正数和负数 第1课时 正数和负数
目 录
CONTENTS
01 基础题 02 综合应用题 03 创新拓展题
1. [2024·广州天河区月考]下列各组数中都是正数或都是负数 的是( B )
A. 4,2,-3
C. -6,-0.5,0
D. 0,4,8
1 2 3 4 5 6 7 8 9 10 11 12 13
B. 亏损30吨粮食 D. 吃掉30吨粮食
1 2 3 4 5 6 7 8 9 10 11 12 13
5. 下列说法:①带正号的数是正数,带负号的数是负数;② 任意一个正数,前面加上负号就是一个负数;③0是最小 的正数;④大于0的数就是正数.其中正确的是( B )
A. ①② C. ①②④
B. ②④ D. ③
1 2 3 4 5 6 7 8 9 10 11 12 13
(3)小童向妈妈要了10元,买书用了7元; 【解】若规定小童的钱数增加为正,则要了10元,用 了7元分别表示为+10元,-7元.
(4)扬州火车站某时刻发出两列火车, A 车向东行驶40 km, B 车向西行驶60 km. 【解】若规定向东为正,则 A 车:+40 km, B 车:- 60 km.
1.1正负数

可表示为??
(1)具有相反意义是什么? (2)具有数量是什么?
例2 某年,下列国家的商品进出口总额比上年的变 化情况是:美国减少6.4%,德国增长1.3%,法国 减少2.4%,英国减少3.5%,意大利增长0.2%,中国 增加7.5%.写出这些国家这一年商品进出口总额的
增长率. 答:六个国家这一年商品进出口总额的增
2.如果80 m表示向东走80 m,那么-60 m表示 向西走60 m .
3.如果水位升高3 m时水位记作+3 m,那么水位 下降3 m时水位变化记作 不降时水位变化记作 0 -3 m,水位不升 m.
4.月球表面的白天平均温度零上126 º C,记 作 记作 +126 º C,夜间平均温度零下150 º C,
日本
-7.3%
意大利
7.0%
这一年,上述六国中哪些国家的服务出口额增长了? 中、意 哪些国家的服务出口额减少了? 美、德、英、日
哪国增长率最高?哪国增长率最低? 意大利增长率最高; 日本增长率最低.
某五年间下列国家年平均森林面积(单位:m 2)的变化情况是: 中国减少866,印度增长72,韩国减少130, 新西兰增长434,泰国减少3 247,孟加拉减少88. (1)写出这些国家在这五年间年平均森林面积的 增长量. (2)哪个国家森林面积减少最多? (3)通过对这些数据的分析,你想到了什么?
回顾本节课所做的练习,请同学们谈谈引入负
数的好处.
1.教科书习题1.1第1~6题. 2..找三个生活中含有正数、负数的例子,并解释 其中相关数量的含义.
-150
º C.
补充练习 5.规定盈利为正,某公司去年亏损了2.5万元,记作 -2.5 万元,今年盈利了3.2万元,记作+3.2 万元. 6.规定海平面以上的海拔高度为正,新疆乌鲁木齐 市高于海平面918 m,记作海拔+918 m;吐鲁番 -155 m. 盆地最低处低于海平面155 m,记作海拔 7.汽车在一条南北走向的高速公路上行驶,规定向 北行驶的路程为正.汽车向北行驶75 km,记作 +75 km(或 75 km),汽车向南行驶100 km, 记作 -100 km.
七年级上册数学课件1.1 正数和负数(第一课时)

(2) 某年,下列国家的商品进出口总额比上年的变化情 况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国 减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家 这一年商品进出口总额的增长率.
解:六个国家这一年商品进出口总额的增长率是: 美国-6.4%,德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%,中国7.5%.
你能从例题的解答过程中,总结下如何用正数、负数表示 实际问题中具有相反意义的量吗?
(1)先找出表示具有相反意义的量的词,如“增加”和 “减少”、“零上”和“零下”、“收入”和“支出”、“上 升”和“下降”等;
(2)选定一方用正数表示,那么另一方就用负数表示;
你能从例题的解答过程中,总结下如何用正数、负数表示 实际问题中具有相反意义的量吗?
7
7
解:正数有:3.5, 6,1 50. 7
负数有:2, 1.75, 1.3, 2. 7
2.指出下列各数的符号: ①+5;②-2.4;③7. 解:①+5的符号是“+”;②-2.4的符号是“-”;
③7的符号是“+”. 3.某工厂计划每月产量为8 000 t,一月份实际产量为7 000 t, 二月份实际产量为8 400 t,三月份实际产量为9 200 t,请你用正负 数表示每月超额完成计划的吨数. 解:一月份:-1 000 t;二月份:+400 t;三月份:+1 200 t.
注释 卖废品 买圆珠笔、铅笔芯 买科普书,同学代付
你能找出上述例子出现的数“-3,3,1.8%,-2.7%, 3.5,8.5,-4.5,4.0,-5.2,-1.2”中,哪些是正数,哪些 是负数吗?你能归纳正数和负数的概念吗?
正数与负数教案

正数与负数教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数〔一〕一、教学目标1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。
3培养学生会独立思考、合作交流的意识。
二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算比赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步负数的意义,鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数引人的必要性.教师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数可以表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。
2.能灵活运用正负数表示生活中具有相反意义的量是难点。
四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路〔一〕情景导学、提出问题:通过电脑动画情节的观看,让学生了解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:这样,我们就可以用带有“+”号与“-”号的数表示各队的得分情况.〔二〕自主学习、尝试解决:〔1〕学生阅读课本2页观察与思考局部,学生独立完成导学卡的自主学习问题.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进货物8吨,今天运出货物3吨,“运进”和“运出”,其意义是相反的.〔2〕一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。
3甲地低于海平面300米4股票第一天涨0.66元.〔三〕讨论交流、合作解决:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:〔1〕在竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?〔2〕某人转动转盘,如果用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?〔3〕在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后教师提出:怎样区别相反意义的量才好呢(五)稳固达标、扩展延伸:1用符号表示以下意义相反的量.〔1〕在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?〔2〕某人转动转盘,如果用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?〔3〕在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容〔1〕数轴能反映出数形之间的对应关系.〔2〕数轴能反映数的性质.〔3〕数轴能解释数的某些概念,如相反数、绝对值、近似数.〔4〕数轴可使有理数大小的比较形象化.3.对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一局部.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法a那么,由绝对值的两种意义可知,有理数a的绝对值可表示为:│a│=0a(a0)(a0)(a0)根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:〔1〕任何有理数都有唯一的绝对值.〔2〕有理数的绝对值是一个非负数,即最小的绝对值是零.〔3〕两个互为相反数的绝对值相等,即│a│=│-a│.〔4〕任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.〔5〕假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目标1.知识与技能〔1〕了解正数、负数的实际意义,会判断一个数是正数还是负数.〔2〕掌握数轴的画法,能将数在数轴上表示出来,能说出数轴上点所表示的解.〔3〕理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.〔4〕会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法4课时1.4有理数的乘除法5课时1.5有理数的乘方4课时数学活动1课时回忆与思考1课时1.1正数和负数第一课时正数和负数〔一〕课本第2页至第4页.教学目标1.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数的广泛性.3.情感态度与价值观培养学生积极思考,合作交流的意识和能力.重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.教具准备投影仪.教学过程一、负数的引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%这样的数〔即在以前学过的0以外的数前面加上负号“-”的数〕叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数〔即以前学过的0以外的数〕叫做正数,有时在正数前面也加上“+”〔正〕号,例如,+3,+2,+0.5,+11,就是3,2,0.5,,一个33数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹〔表示数的工具〕进行计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳固练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数〔除0外〕,在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳固第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.如果向北走5米记作+5,那么向南走10米记作________.2.如果节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.如果-26.80表示亏损26.80元,那么+100元表示________.4.如果体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项是〔〕.A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3111,-0.3,+,-,,其中正数的个数是〔〕.234A.1B.2C.3D.411,0,-6.3,,-,以下说法完全正确的选项是〔〕.2811A.-7,-是负整数B.5,0,是正数287.有六个数:-7,5C.-7,-6.3,-是负数D.只有-6.3是负分数三、解答题.9.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,你对此怎样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5假设规定上升为正,那么水位上升-0.5m的意义是〔〕A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.如果+30m表示向东走30m,那么向西走40m表示为〔〕A.+40mB.-40mC.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作〔〕3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进行质量检测,结果如下:袋号12345678910记作-203-4-3-5+4+4-5-3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.如果气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?〔1〕+5度;〔2〕-6度;〔3〕0度.2.向东走-8米的意义是〔〕A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:〔1〕所有整数都是正数;〔2〕分数是有理数;〔3〕所有的正数都是整数;〔4〕在有理数中,除了负数就是正数,其中正确的语句个数有〔〕A.1个B.2个C.3个D.4个4.以下说法中,正确的选项是〔〕A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库管理员记录了3月~8月水位变化的情况〔单位:米〕:-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.〔05年宜昌市·课改卷〕如果收入15元记作+15元,那么支出20元记作________元.2.〔05年吉林省中考·课改卷〕某食品包装袋上标有“净含量385±5”,这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项是〔〕A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是〔〕A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项是〔〕A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数就是负数C.一个有理数不是整数就是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{};非负有理数集合:{};整数集合:{};负分数集合:{}.7.孔子出生于公元前551年,如果用-551年表示,那么李白出生于公元701年可表示为___________.。
1.1 有理数的引入(第1课时 正数与负数)(教学课件)六年级数学上册(沪教版2024)

A
)
A. 任何情况下,0的实际意义就是什么都没有
B. 0是偶数不是奇数
C. 0既不是正数也不是负数
D. 0是整数也是有理数
分层练习-基础
12.把下列各数填入相应的集
合中:-
,0.618,-3.14,26,-2,
70%,-π.
正分数集合:{ 0.618, ,70%,
…};
整数集合:{ 26,-2,0,…};
1.相反意义的量必须包含两层含义:
第一是具有相反意义;
第二是具有一定的数量,但不要求数量一定
2.下列各组量中,不具有相反意义的是( B
相等
.
)
A. 前进5 m和后退3 m
C. 支出3元和收入10元
B. 身高增加2 cm和体重减少2 kg
D. 运进3 t货物和运出1 t货物
分层练习-基础
3. 【新考向·数学文化2023永州】我国古代数学名著《九章
.
分层练习-巩固
15.[2024潮洲潮安区月考] 将下列各数填在相应的圆圈里:
-8,+6,75,-0.4,25%,0,-2 024,-2.8,
分层练习-巩固
16.某饮料公司生产的一种瓶装饮料的外包装上印有“(600±20) mL”字样.
(1)请问“±20 mL”是什么含义?
解:(1)“+20 mL”表示比600 mL多装20 mL,
01/01 星期五
晴转多云 -2℃~5℃
5℃
-2℃
如图,这一天的最高气温是零上5℃,最低气温是零下2℃。零上
5℃表示比0℃高5℃,零下2℃表示比0℃低2℃。零上温度和零下温度
1.1,正数与负数,教案

1.1,正数与负数,教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数(一)一、教学目的1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。
3 培养学生会独立考虑、合作交流的认识。
二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算竞赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓舞学生本人寻找生活中的例子,并在寻务实例的过程中体会负数引人的必要性.老师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数能够表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。
2.能灵敏运用正负数表示生活中具有相反意义的量是难点。
四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路(一)情景导学、提出征询题:通过电脑动画情节的观看,让学生理解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:如此,我们就能够用带有“+”号与“-”号的数表示各队的得分情况.(二)自主学习、尝试处理:(1)学生阅读课本2页观察与考虑部分,学生独立完成导学卡的自主学习征询题.现实生活中,像如此的相反意义的量还有特别多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进物资8吨,今天运出物资3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。
3甲地低于海平面300米4股票第一天涨0.66元.(三)讨论交流、合作处理:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后老师提出:如何样区别相反意义的量才好呢? (五)稳定达标、扩展延伸:1用符号表示以下意义相反的量.(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容1.本单元结合学生的生活经历,列举了学生熟悉的用正、负数表示的实例,?从扩大运算的角度引入负数,然后再指出能够用正、负数表示现实生活中具有相反意义的量,使学生感遭到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联络.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过如何样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是特别重要的数学工具,它能够把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,提示了数形之间的内在联络,从而表达出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比拟形象化.3.关于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的间隔相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a 的绝对值确实是数轴上表示数a的点与原点的间隔;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法 ?a?那么,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=?0??a?(a?0)(a?0) (a?0)按照有理数的绝对值的两种意义,能够归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目的1.知识与技能(1)理解正数、负数的实际意义,会推断一个数是正数仍然负数.(2)掌握数轴的画法,能将已经明白数在数轴上表示出来,?能说出数轴上已经明白点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比拟有理数的大小.2.过程与方法通过探究有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联络,鼓舞学生探究规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:精确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数2课时1.2 有理数5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方4课时数学活动1课时回忆与考虑1课时1.1正数和负数第一课时正数和负数(一)课本第2页至第4页.教学目的1.知识与技能能推断一个数是正数仍然负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性. 3.情感态度与价值观培养学生积极考虑,合作交流的认识和才能.重、难点与关键1.重点:正确理解负数的意义,掌握推断一个数是正数仍然负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生四周熟悉的事物,?加深对负数意义的理解.教具预备投影仪.教学过程一、负数的引入我们明白,数是人们在实际生活和生活需要中产生,并不断扩大的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、消费、科研中经常遇到数的表示与数的运算的征询题,例如课本第2?页至第3页中提到的四个征询题,这里出现的新数:-3,-2,-2.7%在前面的实际征询题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%如此的数(即在往常学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在征询题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把如此的数(即往常学过的0?以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+11,?确实是3,2,0.5,,?一个33 数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0能够表示没有,还能够表示一个确定的量,现在天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳定练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数确实是我们过去学过的数(除0外),在正数前放上“-”号,确实是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.假设原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应留意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳定第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.假设向北走5米记作+5,那么向南走10米记作________.2.假设节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.假设-26.80表示亏损26.80元,那么+100元表示________.4.假设体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3 111,-0.3,+,-,?,其中正数的个数是().234A.1B.2C.3D.411,0,-6.3,,-?,以下说法完全正确的选项().2811 A.-7,-?是负整数B.5,0,是正数28 7.有六个数:-7,5C.-7,-6.3,-?是负数D.只有-6.3是负分数三、解答题.8.指出以下各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,31391,-0.08,-,,-4,3.14,77,-103.27239.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,?你对此如何样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5 假设规定上升为正,那么水位上升-0.5m的意义是()A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.假设+30m表示向东走30m,那么向西走40m表示为()A.+40mB.-40m C.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作()3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进展质量检测,结果如下:袋号12345678910记作-203 -4 -3 -5 +4+4 -5 -3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.假设气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数确实是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.以下说法中,正确的选项()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既能够是正整数,也能够是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库治理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试征询这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市·课改卷)假设收入15?元记作+?15?元,?那么支出20?元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,?这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数确实是负数C.一个有理数不是整数确实是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001 315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{ };非负有理数集合:{};整数集合:{ };负分数集合:{ }.7.孔子出生于公元前551年,假设用-551年表示,那么李白出生于公元701年可表示为___________.。
1.1 正数和负数 (第1课时)教学设计(表格式)沪科版数学七年级上册(2024年)新版教材

1.1正数和负数
第1课时正数和负数
A.0既是正数,又是负数
B.0是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
答案:D
4.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()
A. Φ45.02
B. Φ44.9
C. Φ44.98
D. Φ45.01
答案:B
5.如果以每月生产180个零件为准,超过的零件数记为正数,不足的零件数记为负数,那么1月生产160个零件记为______个,2月生产200个零件记为______个.
答案:-20,+20
5.课堂小结,自我完善
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能举例说明引入负数的必要性吗?
(2)你能用例子说明负数的意义吗?
(3)用正、负数表示相反意义的量的实例.
6.布置作业
课本P4习题第1、2题.及时调整授课,查缺补漏.
通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.
板书设计正数和负数
1.正、负数的意义.
2.具有相反意义的量.提纲掣领,重点突出.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第周星期第课时年月日
【新课导学】:
一、预习内容:
1、小学里学过哪些数请写出来:、、 .
2、阅读课本P
1和P
2
三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、数学概念(或模型)
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例
子: .
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定
为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于
等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47.
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 .
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数.
三、例题讲解
例1.下列各数哪些是正数?哪些是负数?
-1,2.5,+43,0,-3.14,120,-1.732,-27中,
正数是______________;负数是______________.
方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.
四、总结反思
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 .
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数.
五、反馈练习
1. P5第一题到第四题(直接做在课本上).
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:51-,4
32-,3.14,+3065,0,-239;
则正数有_____________________;负数有____________________.
4.下列结论中正确的是 ………………………………………( )
A .0既是正数,又是负数
B .O 是最小的正数
C .0是最大的负数
D .0既不是正数,也不是负数
5.给出下列各数:-3,0,+5,213-,+3.1,2
1-,2004,+2010;
其中是负数的有……………………………………………()A.2个B.3个C.4个D.5个
六、能力提升
1.零下15℃,表示为_________,比O℃低4℃的温度是_________. 2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.
七、作业布置:
板书设计。