高中物理复习能量和动量经典习题例题含答案
物理动能动量试题及答案

物理动能动量试题及答案一、选择题1. 物体的动能与下列哪个因素无关?A. 物体的质量B. 物体的速度C. 物体的形状D. 物体的颜色答案:C2. 一个物体的动量是其质量和速度的乘积,以下哪项描述正确?A. 动量是标量B. 动量是矢量C. 动量与物体的质量成反比D. 动量与物体的速度无关答案:B3. 根据动能定理,下列哪种情况会导致物体动能增加?A. 物体的质量增加,速度不变B. 物体的质量不变,速度增加C. 物体的质量减少,速度减少D. 物体的质量减少,速度不变答案:B二、填空题4. 动能的公式是_______,其中Ek表示动能,m表示物体的质量,v表示物体的速度。
答案:Ek = 1/2 mv^25. 动量的公式是_______,其中p表示动量,m表示物体的质量,v表示物体的速度。
答案:p = mv三、计算题6. 一辆质量为1000kg的汽车以20m/s的速度行驶,求汽车的动能。
答案:Ek = 1/2 * 1000kg * (20m/s)^2 = 200000J7. 一个质量为5kg的足球以10m/s的速度飞出,求足球的动量。
答案:p = 5kg * 10m/s = 50kg·m/s四、简答题8. 描述动能和动量在物理学中的重要性。
答案:动能和动量是物理学中描述物体运动状态的两个重要物理量。
动能反映了物体运动的能量,与物体的质量和速度的平方成正比,是能量守恒定律在运动物体中的应用。
动量则反映了物体运动的量,与物体的质量和速度有关,是动量守恒定律的基础,也是碰撞和爆炸等现象研究的关键。
两者在物理学中有着广泛的应用,如在力学、热力学、量子力学等领域都有重要的地位。
高考物理复习动量与能量练习有答案

动量和能量1.如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左边拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是A.第一次碰撞后的瞬间,两球的速度大小相等B.第一次碰撞后的瞬间,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的平衡位置2.为了研究鱼所受水的阻力与其形状的关系,小明同学用石蜡做成两条质量均为m、形状不同的“A鱼”和“B鱼”,如图所示。
在高出水面H 处分别静止释放“A鱼”和“B鱼”,“A鱼”竖直下滑h A后速度减为零,“B鱼” 竖直下滑h B后速度减为零。
“鱼”在水中运动时,除受重力外还受浮力和水的阻力,已知“鱼”在水中所受浮力是其重力的10/9倍,重力加速度为g,“鱼”运动的位移远大于“鱼”的长度。
假设“鱼”运动时所受水的阻力恒定,空气阻力不计。
求:(1)“A鱼”入水瞬间的速度V A1;(2)“A鱼”在水中运动时所受阻力f A;(3)“A鱼”与“B鱼” 在水中运动时所受阻力之比f A:f B3如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高度也为h,坡道底端与台面相切。
小球A从坡道顶端由静止开始滑下,到达水平光滑的台面与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半,两球均可视为质点,忽略空气阻力,重力加速度为g。
求(1)小球A刚滑至水平台面的速度v A;(2)A、B两球的质量之比m A:m B。
【答案】:(1)错误!未找到引用源。
(2)1:3【解析】:解:(1)小球从坡道顶端滑至水平台面的过程中,由机械能守恒定律得m A gh = 错误!未找到引用源。
m A v A2解得:v A = 错误!未找到引用源。
(2)设两球碰撞后共同的速度为v,由动量守恒定律得m A v A=(m A + m B)v粘在一起的两球飞出台面后做平抛运动竖直方向:h = 错误!未找到引用源。
高中物理动量经典大题练习(含答案)

1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为0.1R m=,半圆形轨道的底端放置一个质量为0.1m kg=的小球B,水平面上有一个质量为0.3M kg=的小球A以初速度04.0/sv m=开始向着木块B滑动,经过时间0.80t s=与B发生弹性碰撞,设两个小球均可以看作质点,它们的碰撞时间极短,且已知木块A与桌面间的动摩擦因数0.25μ=,求:(1)两小球碰前A的速度;(2)小球B运动到最高点C时对轨道的压力(3)确定小球A所停的位置距圆轨道最低点的距离。
2.如图所示,一质量为mB=2kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间由一段小圆弧平滑连接),轨道与水平面的夹角θ=37°。
一质量也为mA=2kg的物块A由斜面轨道上距轨道底端x=8m处静止释放,物块A刚好没有从木板B的左端滑出。
已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sinθ=0.6,cosθ=0.8,g取10m/s2,物块A可看作质点。
请问:(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?(3)木板B有多长?3.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M∶m=4∶1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?4.如图所示,水平固定一个光滑长杆,有一个质量为m 小滑块A 套在细杆上可自由滑动。
2025年高考物理总复习专题六动量第1讲动量、冲量、动量定理

知识巩固练1.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于玻璃杯与水泥地面撞击过程中() A.动能变化较大 B.动量变化较大C.受到的冲量较大D.动量变化较快【答案】D2.(2023年佛山模拟)据历史文献和出土文物证明,踢毽子起源于中国汉代,盛行于南北朝、隋唐.毽子由羽毛、金属片和胶垫组成.如图是同学练习踢毽子,毽子离开脚后,恰好沿竖直方向运动,假设运动过程中毽子所受的空气阻力大小不变,则下列说法正确的是()A.脚对毽子的作用力大于毽子对脚的作用力,所以才能把毽子踢起来B.毽子在空中运动时加速度总是小于重力加速度gC.毽子上升过程的动能减少量大于下落过程的动能增加量D.毽子上升过程中重力冲量大于下落过程中的重力冲量【答案】C【解析】脚对毽子的作用力与毽子对脚的作用力是一对作用力和反作用力,等大反向,故A 错误;因为空气阻力存在,毽子在空中上升段阻力向下,加速度大于重力加速度g,而下降阶段阻力向上,加速度小于重力加速度g,故B错误;根据动能定理,毽子上升过程的动能减少量ΔE k=(mg+f)h,下落过程的动能增加量ΔE k1=(mg-f)h,则ΔE k>ΔE k1,故C正确;毽子上升过程中加速度大小大于下降过程中加速度大小,上升过程中时间小于下降过程中时间,毽子上升过程中重力冲量小于下落过程中的重力冲量,故D错误.3.(多选)将质量为m的物体A以速率v0水平抛出,经过时间t后,物体下落了一段距离,速率仍为v0,方向却与初速度相反,如图所示.在这一运动过程中,下列说法中正确的是()A.风对物体做功为零B.风对物体做负功C.物体机械能减少mg2t22D.风对物体的冲量大小大于2mv0【答案】BD【解析】物体被抛出后,重力对其做正功,但是其动能没有增加,说明风对物体做负功,A 错误,B正确;由于不知道风的方向,所以无法计算物体下落的高度,也就无法计算重力和风对物体所做的功,C错误;重力的冲量竖直向下,大小为mgt,合力的冲量为2mv0,根据矢量的合成可知,风对物体的冲量大小大于2mv0,D正确.综合提升练4.一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动.F随时间t变化的图像如图,则()A.0~2 s内合外力F的冲量为4 N·sB.t=2 s时物块的动量大小为2 kg·m/sC.0~4 s内合外力F的冲量为0D.t=4 s时物块的速度为零【答案】A【解析】根据冲量的定义有I=Ft,结合图像可知,图线与时间轴所围面积表示合外力的冲量,上侧的面积表示冲量方向为正,下侧的面积表示冲量方向为负,则0~2 s内合外力F的冲量I1=2×2 N·s=4 N·s,0~4 s内合外力F的冲量I2=(2×2-1×2) N·s=2 N·s,A正确,C错误;0~2 s内根据动量定理有I1=mv1-0,解得p1=mv1=4 kg·m/s,0~4 s内根据动量定理有I2=mv2-0,解得v2=1 m/s,B、D错误.5.(2023年中山模拟)质量为m的运动员从下蹲状态竖直向上起跳,经时间t身体伸直并刚好离开水平地面,此时运动员的速度大小为v,不计空气阻力,重力加速度大小为g.则()A.运动员在加速上升过程中处于失重状态B.该过程中,地面对运动员的冲量大小为mv-mgtC.该过程中,地面对运动员做功为0D.该过程中,运动员的动量变化量大小为mgt+mv【答案】C【解析】对运动员受力分析,在加速上升过程中加速度向上,处于超重状态,A错误;由动量定理有I-mgt=mv,得地面对运动员的冲量大小为I=mgt+mv,B错误;地面对运动员的力的作用点的位移为零,得地面对运动员做功为零,C正确;运动员的动量变化量大小为mv,D错误.6.如图甲所示,粗糙固定斜面与水平面的夹角为37°,质量为1.2 kg的小物块(可视为质点),在沿斜面向上的恒定推力F作用下从A点由静止开始向上运动,作用一段时间后撤去推力F,小物块能达到的最高位置为C点,小物块从A到C的v-t图像如图乙所示(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).求:(1)撤去F后小物块运动的加速度;(2)小物块与斜面间的动摩擦因数;(3)0~1.2 s内推力F的冲量.解:(1)由图像可以知道撤去F后物块运动的加速度大小为a2=Δv2t2=10 m/s2.(2)在匀减速直线运动过程中由牛顿第二定律知mg sin 37°+μmg cos 37°=ma2,解得μ=0.5.(3)匀加速直线运动过程的加速度大小为a1=Δv1t1=103m/s2,沿斜面方向根据牛顿第二定律可得F-mg sin 37°-μmg cos 37°=ma1,得F=16 N. I=Ft,其中t=0.9 s,解得I=14.4 N·s.。
高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。
电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。
现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。
一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。
高中物理动量定理专项训练100(附答案)含解析

高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
高中物理动量定理题20套(带答案)及解析

高中物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2C v N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向;(2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量;解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左(2)碰撞过程对B 应用动量定理可得:0B I Mv =-可解得:3I N s =⋅ 方向水平向右3.如图所示,真空中有平行正对金属板A 、B ,它们分别接在输出电压恒为U =91V 的电源两端,金属板长L =10cm 、两金属板间的距离d =3.2cm ,A 、B 两板间的电场可以视为匀强电场。
物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题研究二能量和动量清大师德教育研究院物理教研中心李相关知识链接恒力做功 W=FsCOS B咼考考点解功能量(重力做功、电场力做功)变力做功(弹力、机车牵引力、摩擦力、分子力做功等)考题重力做功W G=—△ E p 弹力做功 W FI=— A E pi 分子力做功WF2=—A E P2 电场力做功W F3=— A E p3动量台匕冃匕动能20KK上海4 ” 势能(重力势能动弹上海£ 性势能、子势能)20KK上海21动能定理工 W= A E K功能原理W其他=A E机械能守题__型A E P=选择题能量守,恒计算题A E选择题计算题功和能、动能定理勺冲量20K牟t大津理综・24 变力的冲量20KK力江苏「10 向心力、摩擦20KK仑上海1 力的冲量等)----- 20KK厂东1计算题冲量9A动量定理选择题动量动冲量、动动量的变化2(方向黑、吉力量定理线上的0KK向广东不在一条直线上的)上海工 I = A p、广西・23动量守恒计算题A P = — A F计算题p i+p2=p i /计算题能量和动量的综合应用机械能守恒定律动量守恒定律动量和能量的综合应•420KK江苏1520KK上海920KK北京理综2320KK广东620KK河南河北2420KK天津理综21计算题选择题计算题选择题计算题选择题计算题选择题20KK江苏19 计算题20KK江苏20 计算题20KK江苏18 计算题20KK广东17 计算题20KK全国理综-25 计算题20KK北京理综-24 计算题20KK江苏18 计算题咼考命题思路——和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。
例如20KK年江苏物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。
2 .动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。
计算题常设置某个瞬时过程,计算该过程物体受到的平均作用力或物体状态的变化。
要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。
3 .动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。
机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。
这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。
如20KK 年上海物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。
4 .动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。
要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。
对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化与守恒的方法解决实际问题。
分析解答问题的过程中常需运用归纳、推理的思维方法。
女口:20KK年全国卷第20题、20KK年理综全国卷第25题的柴油机打桩问题、20KK年江苏物理卷第18题、20KK年广东物理卷第17题、20KK年江苏物理卷第18题、20KK年广东物理卷第18题等。
值得注意的是20KK年江苏物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。
第5课时做功、能量和动能定理精典考题反思[例1] (20KK 江苏10)如图5-1所示,固定的光滑竖直杆上套着一个滑块,用轻 绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始 上升•若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为 W 1、 W 2,滑块经B 、C 两点时的动能分别为E KB 、E KC ,图中AB=BC ,则一定有 ()(A)W i >W 2 (B)W 1 <W 2 (C)E KB >E KC (D)E KB <E KC析与解:该题考查了功的概念及功能关系,难点在于比较W 1和W 2,关键是要理解功是力在位移上的累积的本质;功的 大小既可视为力F 与力的方向上的位移S 的乘积,又可视为位 移S 与位移方向上的力的乘积;因此,可以将力 F 在位移方向 上进行分解,由于力F 在AB 段的分力均大于在BC 段的分力, 则不难判断出 W i >W 2,所以A 正确。
根据动能定理:W F -W G =E K -E K 因在两段中拉力做的功W F 与重力做的功 W G 的大小关系不能确定,故无法比较E KB 与E KC 的大小。
点评:解决该题的关键是能正确地理解功的定义,注意从不同的思维角度去分析问 题。
题中力F 为恒力,学生易从求力的作用点位移角度来比较两过程绳子缩短的长度, 进而增加了思维难度,甚至造成错误。
[例2] (20KK 广东17)如图5-2所示,轻弹簧的一端固定,另一端与滑块 B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离h 时,与B 相碰,碰撞时间极短,碰 后A 、B 紧贴在一起运动,但 互不粘连。
已知最后A 恰好返 回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数 都为,运动过程中弹簧最大 形变量为12,求A 从P 出发时 的初速度V 。
析与解:本题涉及物块A 及AB 共同体两个研究对象,涉及多个运动过程,且 AB 共同体压迫弹簧及被弹簧推向右端的过程受力复杂,属于多对象多过程的复杂问题。
研 究A 滑行至B 的过程,设A 刚接触B 时的速度为V 1,由功能关系有: 丄mv ; -^mv :二J mg11 A 与B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为 2 2 V 2,有mw =2mv 2 A 与B 碰后先一起向左运动,接着 A 、B 一起被弹回,当弹簧BP图5-2 仰林站加加俗加伽旳加厉曲曲砒恢复到原长时,A、B分离,设此时A、B的共同速度为V3,在这过程中,弹簧势能始末两态都相等,研究共同体与弹簧作用的全过程,利用功能关系,有1 2 1 3—(2mM (2m)V3 二"(2m)g(2l2)2 2此后A、B开始分离,A单独向右滑到P点停下,由功能关系有-mvl = ^mgh 由以上各式,可得v° =」g(1 CV 1 62 )点评:A、B碰撞的瞬间有动能损失,A、B再次分离后各自己的运动独立,故不能研究整个过程运用动能定理求解。
正确的分析出滑块运动的各个过程,判断出AB两滑块分离时弹簧处于原长状态是题解的关键。
对于多过程问题,在分析运动过程的同时还应注意找出前后各过程间的联系。
[例3](20KK黑龙江吉林・23)如图5-3所示,在水平桌面的边角处有一轻质光滑的定滑轮K,一条不可伸长的轻绳绕过K分别与物块A、B相连,A、B的质量分别为m A、m B。
开始时系统处于静止状态。
现用一水平恒力F拉物块A,使物块B上升。
已知当B上升距离为h时,B的速度为v。
求此过程中物块A克服摩擦力所做的功。
重力加速度为g。
析与解:由于连结AB的绳子在运动过程中一直处于绷紧状态,故A、B速度的大小相等,对A、B组成的系统,由功能关系有:Fh —W —m 旳h二;(m A+m B)V21求得:W=Fh —m B gh —;(m A+m B)V2点评:本题如果运用隔离法选择研究对象,运用牛顿运动定律求解,要求出摩擦力的大小则比较复杂,而运用功能原理求解时则就显得简单多了。
在连结体问题中,若不涉及常系统内的相互作用时,常以整体为研究对象求解。
[例4]如图5-4所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m。
小球第一次到达槽最低点时速率为10m/s,并继续沿槽壁运动直到从槽右端边缘飞出……,如此反复几次, 设摩擦力恒定不变,求:(设小球与槽壁相碰时不损失能量)(1)小球第一次离槽上升的高度h ;(2)小球最多能飞出槽外的次数(取g=10m/s 2)。
析与解:(1)小球从高处运动至槽口的过程中,只有重力做功;由槽口运动至槽底端的过程中,重力、摩擦力都做功,因摩擦力大小2、始滑下, 1为匚H o2由静止开在斜面上能上升到的最大高度恒定不变,且方向总是与运动方向相反,故圆槽右半部分摩擦力对小球做的功与左半部 分摩擦力对小球做的功相等。
分别研究小球从最高点落至槽底部和从槽底部运动至左侧上方最高点的过程, 设小球第一次离槽上升的高度h ,由动能定理得1 2 mg(H R)「W fmv1 2 _mg(h R) 一Wfmv 21 2 mv -W f - mgR 得 h = 2= 4.2mmg(2)小球通过一次圆弧槽,需克服摩擦力做功 2W f ,且小球飞出槽口一次,在小球 多次通过圆弧槽后,当小球飞出槽口的速度小于等于零,则小球不能飞出槽口,设小球 飞出槽外的次数为n ,用动能定理研究全过程得mgH - n 2W f - 0mgH 25 6..n6.252W f4即小球最多能飞出槽外6次。
点评:小球在沿槽壁运动过程中摩擦力方向尽管不断变化,但摩擦力方向与运动方 向始终在同一直线上,摩擦力功为力与路程的乘积。
该题小球的运动具有往复性,用动 能定理研究整个过程可直接求出问题的答案。
本题中作了摩擦力不变的假设,学生应认 真审题。
1所示,木板长为I ,板的A 端放一质量为m 的小物块,物块与板间的 动摩擦因数为卩。
开始时板水平,在绕 0点缓慢转过一个小角度B 的过程中,若物块始 终保持与板相对静止。
对于这个过程中各力做功的情况,下列说法正确的是 ()A 、 摩擦力对物块所做的功为 mgl sinB (1-cos B 、 弹力对物块所做的功为 mgl sin 0cos 0C 、 木板对物块所做的功为 mgl sin 0 合力对物块所做的功为mgl cos 0如图5 -2所示,一物体从高为H 的斜面顶端 滑上与该斜面相连的一光滑曲面后又返回斜面,若不考虑物体经过斜面底端转折处的能量损失,则当物体再一次滑回斜面时上巩固提高训 练—1、如图 W-5-升的最大高度为A. 01B. 一H ,41 1C. 一H与一H之间4 21D . 0与H之间4 ( )3、如图5 -3所示,重球m用一条不可伸长的轻质细线栓住后悬于0点,重球置于一个斜面不光滑的斜劈M上,用水平力F向左推动斜劈M在光滑水平桌面上由位置(a)匀速向左移动到位置(b),在此过程中,正确说法是:()A . m与M之间的摩擦力对m做正功;B. M与m之间的摩擦力对m做负功;C. M对m的弹力对m所做的功与m对M的弹力对M所做的功的绝对值不相等;D . F对M所做的功与m对M所做的功的绝对值相等。