数控车床对刀原理及方法步骤(实用详细)
数控机床对刀的方式及其对刀步骤

在进行加工之前,数控车床要进行对刀操作,以便确保产品加工的精度以及准度,在实际进行生产的过程中,数控车床对刀的操作有试切对刀和机外对刀仪这两种对刀方法,但是在进行对刀操作的时候也会出现一些问题,下面我们就来具体介绍一下数控车床对刀的操作步骤。
1、试切对刀试切对刀主要用在建立加工坐标系。
在安装好工件后,为了可以加工出需要的加工件,要将编程原点设定为加工原点,建立加工坐标系,用来确定刀具和工件的相对位置,使刀具按照编程轨迹进行运动,最终加工出所需零件。
试切对刀的步骤主要有:(1)选择机床的手动操作模式;(2)启动主轴,试切工件外圆,保持X方向不移动;(3)停主轴,测量出工件的外径值;(4)选择机床的MDI操作模式;(5)按下“off set sitting”按钮;(6)按下屏幕下方的“坐标系”软键;(7)光标移至“G54”;(8)输入X及测量的直径值;(9)按下屏幕下方的“测量”软键;(10)启动主轴,试切工件端面,保持Z方向不移动;2、机外对刀仪对刀机外对刀仪对刀需要将显微对刀仪固定于车床上,用于建立刀具之间的补偿值。
但是因为刀具尺寸会有一定差别,机床中刀位点的坐标值也会因此而出现不同。
如果不设立刀具之间的补偿值,运行相同的程序时就不可能加工出相同的尺寸,想要保证运行相同的程序时,运用不同的刀具得出相同的尺寸,则需要建立刀具间的补偿。
机外对刀仪对刀的步骤主要有:(1)移动基准刀,让刀位点对准显微镜的十字线中心;(2)将基准刀在该点的相对位置清零,具体操作是选择相对位置显示;(3)将其刀具补偿值清零,具体操作是按下“off set sitting”按钮,按下屏幕下方的“补正”软键,选择“形状”,在基准刀相对应的刀具补偿号上输入Xo、Zo;(4)选择机床的手动操作模式,移出刀架,换刀;(5)使其刀位点对准显微镜的十字线中心;(6)选择机床的MDI操作模式;(7)设置刀具补偿值,具体操作是按下“offset sitting”按钮,按下屏幕下方的“补正”软键,选择“形状”,在相对应的刀补号上输入X、Z;(8)移出刀架,执行自动换刀指令即可。
数控车床对刀的原理及方法

数控车床对刀的原理及方法一、数控车床对刀的原理:对刀是数控加工中的主要操作和重要技能。
在一定条件下,对刀的精度可以决定零件的加工精度。
同时,对刀效事还直接影响数控加工效丰。
仅仅知道对刀方法是不够的。
还要知道数控系统的各种对刀设置方式,。
以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点。
使用条件等。
一股来说,数控加工零件的编程和加工是分开进行的。
数控编程员根据零件的设计图纸,速定一个方便编程的工件坐标系,工件坐标系-般与零件的工艺基准或设计基准重合。
在工件坐标系下进行零件加工程序的编制,对刀时,应使指刀位点与对刀点重合,所谓刀位点是指刀具的定位基准点,对于车刀来说,其刀位点是刀失。
对刀的目的是确定对刀点。
在机床坐标系中的绝对坐标值,测量刀具的刀位偏基值。
对刀点找正的准确度直接影响加工精度。
在实际加工工件时。
使用一把刀具一般不能满足工件的加工要求,通常要使用多把刀具进行加工。
在使用多把车刀加工时,在换刀位置不变的情况下,换刀后刀失点的几何位置将出现差异,这就要求不同的刀具在不同的起始位置开始加工时。
都能保证程序正常运行。
为了解决这个问题。
机床数控系統配备了刀具几何位置补能的功能,利用刀其几何位置补偿功能,只要事先把每把刀相对于某一预先选定的基准刀的位置偏差测量出来,输入到数控系统的刀具梦数补正栏指定组号里,在加工程序中利用T指令,即可在刀具轨述中自动补偿刀具位置偏差。
刀具位置值差的利量同样也需通过对刀操作来实现。
生产厂家在制造数控车床,必须建立位置测量,控制、显示的统基准点。
该基准点就是机床坐标系原点,也就是机床机械目零后所处的位置。
操作方法01数控车床对刀是车床加工技术中比较复杂的工艺之一,它的精度将会直接影响到所加工零部件的精度,所以不能马虎。
02数控车床对刀的基本原理就是将零件的坐标系与数控机床的坐标系整合起来,然后依据这个坐标系来确定对刀位置。
03目前数控车床大部分采用的是对刀器主动对刀,对刀器会自动向零件确定一个原点位置,这是十分方便快捷的对刀方法。
简述数控车床对刀操作步骤

简述数控车床对刀操作步骤数控车床是一种自动化加工设备,广泛应用于工业生产中。
对刀是数控车床使用中非常重要的一步,它可以确保加工质量和效率。
本文将简要介绍数控车床对刀的操作步骤。
步骤一:准备工作在进行数控车床对刀操作之前,需要进行以下准备工作:1.确保车床工作区域整洁、安全,清除与加工无关的杂物;2.确保车床已经通电并正常运行;3.准备好工作所需的刀具、夹具等。
步骤二:安装刀具1.根据加工需要选择适当的刀具,并检查刀具的状态;2.将刀具安装到车床刀架上,并使用扳手等工具固定好;3.确保刀具安装牢固,无松动。
步骤三:刀具测量1.使用必要的测量工具(如卡规、千分尺等),测量刀具的尺寸;2.根据测量结果调整刀具的位置和角度,以确保刀具与工件之间的距离和角度符合要求;3.利用车床上的测量功能,如工具测量仪,可以更方便地进行刀具测量。
步骤四:调整刀具偏移量1.打开数控车床的控制面板,进入刀具偏移量调整界面;2.根据刀具的测量结果,逐一调整刀具的偏移量,包括径向偏移和切向偏移;3.在调整中,可以通过手动移动刀具并观察加工效果,进行微调,以达到最佳的加工质量。
步骤五:保存参数1.当刀具调整到位后,将调整过的刀具偏移量参数保存到数控车床的控制系统中;2.根据刀具的类型和位置,可以在数控车床的控制系统中选择相应的刀具参数存储槽进行保存;3.保存参数后,可以随时调用该刀具参数进行加工操作,提高加工效率。
步骤六:试切与调整1.在进行实际加工之前,进行试切操作,观察切削效果;2.根据试切结果,进行必要的调整,如调整切削速度、进给速度、切削深度等;3.不断试切与调整,直到达到满意的加工效果。
步骤七:加工生产1.在完成刀具调整和试切调整后,即可正式进行加工生产;2.根据加工要求,在数控车床上设置相应的加工参数,如切削速度、进给速度、切削深度等;3.监控加工过程,及时调整参数,保证加工质量和效率。
以上便是数控车床对刀操作的简要步骤。
数控机床对刀

(7)将光标移动至欲设定的偏置号处。
(8)输入Zβ(或0)。
(9)按软键[MESURE]。
(10)在手动方式中用一把实际刀具切削外圆。
(11)仅仅在Z方向上退刀,不要移动X,停止主轴。
(12)测量被车削部分的直径D。
(13)按功能键OFFSET/SETING。
(14)按软键[OFFSET]。
实习总结:
用试切法确定起刀点的位置对刀的步骤:
(1)在MDI或手动方式下,用基准刀切削工件端面;
(2)用点动移动X轴使刀具试切该端面,然后刀具沿X轴方向退出,停主轴。
记录该Z轴坐标值并输入系统。
(3)用基准刀切量工件外径。
(4)用点动移动Z轴使刀具切该工件的外圆表面,然后刀具沿Z方向退出,停主轴。用游表卡尺测量工件的直径,记录该X坐标值并输入系统。
(3)对刀点与对刀:对刀点是用来确定刀具与工件的相对位置关系的点,是确定工件坐标系与机床坐标系的关系的点。
对刀就是将刀具的刀位点置于对刀点上,以便建立工件坐标系。
(4)对刀基准(点):对刀时为确定对刀点的位置所依据的基准,该基可以是点、线、面,它可以设在工件上或夹具上或机床上。
(5)对刀参考点:是用来代表刀架、刀台或刀盘在机床坐标系内的位置的参考点,也称刀架中心或刀具参考点。
(5)对第二把刀,让刀架退离工件足够的地方,选择刀具号,重复(1)—(4)步骤。
法拉克车床对刀:
基准刀的对法:
(1)在手动方式中用一把实际刀具切削端面。
(2)仅仅在X轴方向上退刀,不要移动Z轴,停止主轴。
(3)测量工件坐标系的零点至端面的距离β(或0)。
(4)按功能键OFFSET/SETING。
(5)按软键[OFFSET]。
简述数控机床对刀的过程和注意哪些方面

数控机床对刀的过程和注意事项一、什么是数控机床对刀在使用数控机床进行加工过程中,正确的对刀操作是非常重要的。
数控机床对刀是指通过一系列的操作和调整,使刀具与工件之间达到理想的对刀状态,以便正常加工工件。
这个过程中还需要注意一些关键事项,以确保加工质量和安全。
二、数控机床对刀的过程数控机床对刀的过程可以分为以下几个步骤:1. 设定参考点首先,需要设定一个参考点作为对刀的基准点。
通常情况下,参考点会选择工件的一个角点或者边缘作为基准。
2. 加工刀具的设定接下来,需要对加工刀具进行设定。
这包括选择合适的切削刃、确定刀具安装位置以及设定刀具的刀尖与刀夹的距离。
3. 对刀工具的设定然后,需要对刀具进行设定。
这包括调整刀具的刀尖高度、刀具的半径补偿以及切削刃的长度设定。
4. 加工路径的设定在对刀过程中,还需要设置加工路径。
这包括确定刀具的进给速度、切削速度以及确定刀具的运动轨迹。
完成设置后,需要对刀具进行检查。
通过测量刀具的位置和角度,确定切削刃是否正确对准工件表面。
如果发现偏差,需要进行微调,直到达到理想的对刀状态。
6. 再次验证和修正最后,对刀完成后,需要再次验证对刀的准确性。
这可以通过测量加工后的工件尺寸和形状来进行验证。
如果出现偏差,需要进行修正,直到达到要求的加工精度。
三、数控机床对刀的注意事项在进行数控机床对刀的过程中,需要注意以下几个方面:1. 安全注意事项•在对刀过程中,必须确保机床处于安全状态,刀具处于停止状态。
避免对刀时发生意外伤害。
•切勿用手直接接触刀具,以免被刀具伤到。
应使用合适的工具进行调整和检查。
2. 刀具的选择和安装•根据加工工件的要求选择合适的切削刃和刀具。
不同的加工材料和工件形状需要选择不同的刀具。
•在安装刀具时,要确保刀具正确安装,不可有松动或倾斜现象。
否则可能导致加工精度下降或刀具偏差。
3. 对刀工具的设定•在对刀工具的设定过程中,应使用合适的测量工具进行测量和调整。
确保对刀工具的准确性和稳定性。
数控车床对刀的原理与方法

数控车床对刀的原理与方法数控车床的刀具对刀是确保机床工作精度的关键步骤之一、对刀准确度影响着工件的加工精度和质量。
数控车床的对刀一般采用刀具测量、感应式对刀、比较式对刀等方式。
下面将介绍数控车床对刀的原理和方法。
1.刀具测量:数控车床通常提供一个专门的测量装置,用来测量刀具的长度和半径。
通过刀具测量装置的读数,可以计算出刀具的几何参数,以便在数控系统中设置正确的刀具补偿值。
2.感应式对刀:数控车床使用感应式传感器,通过与刀具接触或靠近刀具来感应刀具的位置信息。
传感器可以测量到刀具的长度和半径,并将这些信息传递给数控系统。
3.比较式对刀:比较式对刀是通过测量工件上已加工的特征来确定刀具的位置。
例如,在数控车床上面加工一个规定尺寸的槽后,可以使用传感器测量槽的尺寸,然后根据预定的槽尺寸,调整刀具的位置。
根据数控车床对刀的原理,可以采用以下方法进行对刀:1.感应式对刀:数控车床上通常有一个专用的感应式对刀装置。
在对刀过程中,需要选取一把已知长度的刀具,并使用感应式传感器测量其长度。
将测量到的刀具长度输入数控系统,系统会自动计算并设置刀具长度补偿值。
然后,将正确长度的刀具安装到车刀刀架上,依次对各个刀具进行对刀。
2.刀具测量:刀具测量是比较常见的对刀方式。
使用专用的刀具测量设备可以测量刀具的长度和半径。
在对刀过程中,首先选取一把已知长度和半径的刀具,将其放入测量设备中测量。
然后,将测量到的数值输入数控系统,系统会自动计算出刀具的补偿值。
最后,将已校准好的刀具安装到车刀刀架上。
3.比较式对刀:在比较式对刀中,首先需要加工一个已知尺寸的特征,例如一条槽或一组孔。
然后,使用专用的测量仪器测量加工后的特征尺寸。
将测量到的尺寸和预定的尺寸进行比较,计算出相应的补偿值。
最后,根据计算结果调整刀具的位置。
除了上述方法外,还可以使用图形化的数控系统来辅助进行对刀。
通过在数控系统中显示工件轮廓的模拟图像,可以直观地观察刀具的位置与工件轮廓之间的关系,从而调整刀具的位置。
广数GSK车床对刀方法

广数GSK车床对刀方法GSK数控车床对刀方法是指在车削加工之前,将车刀和工件相对位置进行调整和校准的过程,以确保车削操作的准确性和稳定性。
下面将详细介绍GSK数控车床对刀的方法。
一、准备工作1.1准备工具:卡尺、比较器、平行垫块等。
1.2查看设备的操作手册,了解车床的加工范围、最大行程和操作步骤。
二、机械对刀2.1首先校准X、Z轴的零点位置:2.1.1手动将刀具定位到工件的理论起始位置(起始位置可以通过工件的工程图或CAD文件确定)。
2.1.2使用卡尺测量X、Z轴距离刀具刃口和工件表面的距离。
2.1.3将两个距离记录下来,并与理论起始位置的数值进行比较,调整X、Z轴的零点位置,直到与理论起始位置一致。
2.2调整工件的夹紧装置:2.2.1使用平行垫块或其他装置将工件固定在车床上。
2.2.2确保工件夹紧装置具有足够的力并且牢固可靠,以防止工件在车削过程中移动。
2.3调整刀架:2.3.1将刀片安装到刀架上,并且确保刀片安装牢固。
2.3.2调整刀架的角度和位置,使得刀片与工件的角度和位置相匹配。
2.3.3使用比较器调整刀片的位置,确保刀刃与工件表面保持一定的距离,以避免刀具和工件之间的碰撞。
2.4调整刀架的高度:2.4.1手动调整刀架的高度,使得刀片的高度与工件的高度相匹配。
2.4.2使用比较器检查刀刃的高度,确保刀片与工件表面保持一定的距离。
三、数控对刀3.1通过数控编程,将车床的坐标系与工件的坐标系进行匹配,以确保准确的加工位置。
3.2使用数控设备将刀具移动到设定的起始位置,并且分别调整X、Z轴的坐标,使其与工件的零点位置相匹配。
3.3使用数控设备进行自动对刀,通过感应工件表面的参考点或传感器,调整刀具的坐标和方向,使其与工件保持一定的间隙。
四、检查和调整4.1使用卡尺或比较器检查工件表面与刀具的间隙,确保刀具与工件保持适当的接触。
4.2使用数控设备进行手动或自动调整,以进一步微调刀具位置和角度,以达到更好的加工效果。
数控车床的对刀操作步骤

数控车床的对刀操作步骤在数控车床的操作中,对刀是一项非常重要的工艺操作。
对刀操作的准确与否直接影响到车床加工的质量和效率。
本文将为您介绍数控车床的对刀操作步骤,帮助您正确进行对刀操作。
步骤一:准备工作在进行对刀操作之前,首先需要做一些准备工作。
1.先确保车床的刀具刀片是整齐摆放的,没有松动或损坏的情况。
2.确保车床刀架的位置正确,刀架能够正常移动。
3.准备好适合对刀操作的工件,可以是一块平整的金属坯料。
步骤二:工具选择在进行对刀操作时,需要配备一些常用的工具,以便进行测量和调整。
1.卡尺:用于测量刀具的长度、宽度和高度。
2.快速测高仪:用于测量刀具的高度差异。
3.刀具调整工具:用于调整和固定刀具。
步骤三:测量刀具长度1.选择一根刀具,并将其安装在车床刀架上。
2.使用卡尺,测量刀具的长度。
将卡尺放置在刀具的上方和下方,确保卡尺与刀具接触紧密。
3.记下测量结果,并与车床的预设数值进行比对。
如果长度不匹配,就需要进行调整。
步骤四:测量刀具宽度1.使用卡尺,测量刀具的宽度。
将卡尺放置在刀具的两侧,确保卡尺与刀具接触紧密。
2.记下测量结果,并与车床的预设数值进行比对。
如果宽度不匹配,就需要进行调整。
步骤五:测量刀具高度1.使用快速测高仪,将其靠近刀具表面,并将测高仪调至水平。
2.将测高仪移到刀具的各个部位,记录下不同部位的高度差异。
3.如果发现刀具存在高度差异,就需要进行调整,以确保刀具的高度统一。
步骤六:刀具调整根据之前测量的结果,对刀具进行调整。
1.如果刀具的长度不匹配,可以通过添加刀夹片或者更换刀具来进行调整。
2.如果刀具的宽度不匹配,可以通过调整刀具的位置或者更换合适宽度的刀具来进行调整。
3.如果刀具的高度差异较大,可以通过调整刀架高度或者刀具位置来进行调整。
步骤七:验证对刀结果在完成刀具的调整后,需要进行对刀结果的验证,以确保调整准确。
1.将工件安装在车床上,并选择适当的加工程序。
2.运行加工程序,观察加工过程中切削刀具的表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车床对刀原理及对刀方法对刀是数控加工中的主要操作和重要技能。
在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。
仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等. 1 为什么要对刀一般来说,零件的数控加工编程和上机床加工是分开进行的。
数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。
程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。
数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定.由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点.在图1中,O是程序原点,O’是机床回零后以刀尖位置为参照的机床原点。
编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。
由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。
所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。
2 试切对刀原理对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。
但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。
以图2为例,试切对刀步骤如下:①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。
(注意:数控车床显示和编程的X坐标一般为直径值)。
②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za.③测量试切后的工件外圆直径,记为φ.如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为Xo=Xa—φ(1)Zo=Za注意:公式中的坐标值均为负值。
将Xo、Zo设置进数控系统即完成对刀设置.3 程序原点(工件原点)的设置方式在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。
程序原点设置是对刀不可缺少的组成部分.每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。
各种设置方式可以组合使用。
(1)设置刀具偏移量补偿车床的刀具补偿包括刀具的“磨损量”补偿参数和“形状”补偿参数,两者之和构成车刀偏移量补偿参数。
试切对刀获得的偏移一般设置在“形状”补偿参数中.试切对刀并设置刀偏步骤如下:①用外圆车刀试车—外圆,沿+Z轴退出并保持X坐标不变。
②测量外圆直径,记为φ。
③按“OFSET SET”(偏移设置)键→进入“形状”补偿参数设定界面→将光标移到与刀位号相对应的位置后,输人Xφ(注意:此处的φ代表直径值,而不是一符号,以下同),按“测量”键,系统自动按公式(1)计算出X方向刀具偏移量(如图3所示)。
注意:也可在对应位置处直接输人经计算或从显示屏得到的数值,按“输人”键设置.④用外圆车刀试车工件端面,沿+X轴退出并保持Z坐标不变。
⑤按“OFSET SET"键→进人“形状"补偿参数设定界面→将光标移到与刀位号相对应的位置后,输人Zo,按“测量"键,系统自动按公式(1)计算出Z方向刀具偏移量.同样也可以自行“输入"偏移量。
⑥设置的刀具偏移量在数控程序中用T代码调用。
这种方式具有易懂、操作简单、编程与对刀可以完全分开进行等优点.同时,在各种组合设置方式中都会用到刀偏设置,因此在对刀中应用最为普遍。
(2)用G50设置刀具起点①用外圆车刀试车一段外圆,沿+Z轴退至端面余量内的一点(假定为a点)。
②测量外圆直径,记为φ。
③选择“MDI”(手动指令输入)模式,输人GO1 U一φF0. 3,切端面到中心(程序原点)。
④选择“MDI"模式,输人G50 X0 ZO,按“启动"按钮.把刀尖当前位置设为机床坐标系中的坐标(0,0),此时程序原点与机床原点重合。
⑤选择“MDI"模式,输入GO X150 2200,使刀尖移动到起刀点。
该点为刀具离开工件、便于换刀的任意位置,此处假设为b点,坐标为(1。
50、200)。
⑥加工程序的开头必须是G50 X150 2200,即把刀尖所在位置设为机床坐标系的坐标(150,200)。
此时刀尖的程序坐标(150,200)与刀尖的机床坐标(150,200)在同一位置,程序原点仍与机床原点重合。
⑦当用G50 X150 2200设置刀具起点坐标时,基准刀程序起点位置和终点位置必须相同,即在程序结束前,需用指令GO X150 2200使基准刀具回到同一点,才能保证重复加工不乱刀。
⑧若用第二参考点G30,并在数控系统的参数里将第二参考点设为起刀点位置,能保证重复加工不乱刀,此时程序开头为:G30 UO WO; G50 X150 Z200。
⑨若不用上述③、④、⑤步骤中的GO1 U~φF0。
3、G50 XO ZO.GO X150 2200指令来获得起刀点位置,也可用下述公式计算指定起刀点在机床坐标系(显示屏)中的坐标:Xb=Xa—φ+150(2)Zb=Za+200然后用点动或脉冲操作,使刀尖移动到(Xb,Zb)位置。
注意:运行程序前要先将基准刀移到设定的位置.在用G50设置刀具的起点时,一般要将该刀的刀偏值设为零。
此方式的缺点是起刀点位置要在加工程序中设置,且操作较为复杂。
但它提供了用手工精确调整起刀点的操作方式,有的人对此比较喜欢.(3)用G54~G59设置程序原点①试切和测量步骤同前述一样。
②按“OFSET SET”键,进人“坐标系”设置,移动光标到相应位置,输入程序原点的坐标值,按“测量”或“输入”键进行设置。
如图4所示.③在加工程序里调用,例如:G55 X100 Z5..。
G54为默认调用。
注意:若设置和使用了刀偏补偿,最好将G54~G59的各个参数设为0,以免重复出错。
对于多刀加工,可将基准刀的偏移值设置在G54~G59的其中之一,将基准刀的刀偏补偿设为零,而将其它刀的刀偏补偿设为其相对于基准刀的偏移量。
这种方式适用于批量生产且工件在卡盘上有固定装夹位置的加工。
铣削加工用得较多。
执行G54~G59指令相当于将机床原点移到程序原点.(4)用“工件移”设置程序原点①通过试切工件外圆、端面,测量直径,根据公式(1)计算出程序原点(工件原点)的X坐标,记录显示屏显示的原点Z坐标。
②按“OFSET SET"键,进入“工件移”设置,将光标移到对应位置,分别输入得到的X. Z坐标值,按机床MDI键盘上的“INPUT”键进行设置。
如图5所示。
③使X、Z轴回机床原点(参考点),建立程序原点坐标。
“工件移”设置亦相当于将机床原点移到程序原点(工件原点)。
对于单刀加工,如果设置了“工件移",最好将其刀偏补偿设为0,以防重复出错;对于多刀加工,“工件移"中的数值为基准刀的偏移值,将其它刀具相对于基准刀的偏移值设置在相应的刀偏补偿中。
4 多刀对刀FANUC数控系统多刀对刀的组合设置方式有:①绝对对刀;②基准刀G50+相对刀偏;③基准刀“工件移"+相对刀偏;④基准刀G54~G59+相对刀偏。
(1)绝对对刀所谓绝对对刀即是用每把刀在加工余量范围内进行试切对刀,将得到的偏移值设置在相应刀号的偏置补偿中。
这种方式思路清晰,操作简单,各个偏移值不互相关联,因而调整起来也相对简单,所以在实际加工中得到广泛应用.(2)相对对刀所谓相对对刀即是选定一把基准刀,用基准刀进行试切对刀,将基准刀的偏移用G50,“工件移”或G54~G59来设置,将基准刀的刀偏补偿设为零,而将其它刀具相对于基准刀的偏移值设置在各自的刀偏补偿中。
下面以图2所示为例,介绍如何获得其它刀相对基准刀的刀偏值。
①当用基准刀试切完外圆,沿Z轴退到a点时,按显示器下方的“相对"软键,使显示屏显示机床运动的相对坐标。
②选择“MDI”方式,按"SHIFT"换档键,按"XU"选择U,这时U坐标在闪烁,按“ORIGIN”置零,如图6所示。
同样将w坐标置零。
③换其它刀,将刀尖对准a点,显示屏上的U坐标、W坐标即为该刀相对于基准刀的刀偏值。
此外,还可用对刃仪测定相对刀偏值.5 精确对刀从理论上说,上述通过试切、测量、计算;得到的对刀数据应是准确的,但实际上由于机床的定位精度、重复精度、操作方式等多种因素的影响,使得手动试切对刀的对刃精度是有限的,因此还须精确对刀。
所谓精确对刀,就是在零件加工余量范围内设计简单的自动试切程序,通过“自动试切→测量→误差补偿"的思路,反复修调偏移量、或基准刀的程序起点位置和非基准刀的力偏置,使程序加工指令值与实际测量值的误差达到精度要求。
由于保证基准刀程序起点处于精确位置是得到准确的非基准刀刀偏置的前提,因此一般修正了前者后再修正后者。
精确对刀偏移量的修正公式为:记:δ=理论值(程序指令值)—实际值(测量值),则xo2=xo1 +δx(3)Zo2=Zo1-δZ注意:δ值有正负号.例如:用指令试切一直径40、长度为50的圆柱,如果测得的直径和长度分别为040。
25和49。
85,则该刀具在X、Z向的偏移坐标分别要加上-0。
25和—0.15,当然也可以保持原刀偏值不变,而将误差加到磨损栏。
6 结束语笔者设计了一段多刀加工程序,在FANUC Oi数控车削系统上验证了上述几种组合对刀设置方式,取得了相同的效果.对其它数控系统也具有一定推广价值.。