向量组线性相关性
第二节 向量组的线性相关性

定理四 任意n+1个n维向量都是线性相关的.
[证]设n+1个n维向量为: 1=(a11,a12,,a1n) 2=(a21,a22,,a2n)
n=(an1,an2,,ann) n+1=(an+1,1,an+1,2,,an+1,n)
构造向量组: 1=(a11,a12,,a1n,0) 2=(a21,a22,,a2n,0)
故1,2,,n线性无关
例5 讨论向量组1=(1,1,1),2=(0,2,5), 3=(1,3,6)的线性相关性,若线性相关,试写
出其中一向量能由其余向量线性表示的表
达式.
解: 若有k1,k2,k3,使k11+k22+k33=0
即k1(1,1,1)+k2(0,2,5)+k3(1,3,6)=(0,0,0)
k1(1+2)+k2(2+3)+k3(3+1)=0 即(k1+ k3)1+(k1+k2)2+(k2+ k3)3=0 由已知1,2,3线性无关,则
k1 k3 0 1 0 1
k1 k2 0 1 1 0 =2 0
k2 k3 0 0 1 1
齐次方程组只有零解: k1=k2=k3=0
1+2,2+3,3+1线性无关.
若r维向量组1,2,,m线性无关,则r+1维 向量组1,2,,m也线性无关.
[证]反证法
若1,2,,m线性相关
即有不全为零的数k1,k2,,km,使
k11+k22++kmm=0
即 k1(a11,a12,,a1r,a1,r+1)+ k2(a21,a22,,a2r,a2,r+1)+ +km(am1,am2,,amr,am,r+1)=(0,0,,0)
4.3 向量组的线性相关性

证 (方法1) 设 B 1, 2,L n , 且
有数x1,x2,…,xn,使得 x11 x22 L xnn 0,
即
x1
1, 2,L
,
n
x2
M
0,
xn
右边等式两边同时左乘矩阵A,得
ABx 0, 即 Ex 0, 所以 x 0, 即 x1 x2 L xn 0, 故由定义可知,
0
0
1
证 令 A (1,2,L ,n ),
则A恰为单位矩阵E,故R(A)=n。 根据判定定理,单位向量组线性无关。
例8
已知向量组 , ,
1
2
3
线性无关, 1
1
2
, ,
2
2
3
3
3
1
证明向量组 , ,
1
2
3
也线性无关.(典型考题,典型方法)
证明:(方法 1: 根据定义) 设有数k1,k2,k3,使得
则称向量组A 线性相关,否则称它线性无关。
当且仅当k1 k2 L ks =0时,
表达式 k11 k22 L kss 0成立。
定理2
线性相关和无关的判定定理
1,2 ,L ,s 线性无关
x11 x22 L xss 0 仅有零解
对矩阵 A=(1,2,L ,s ), R( A) 向量的个数s.
例2 零向量是任何一个同维向量组的线性组合
Q 0 01 02 L 0m
线性表示的表示系数可以是零
例3 向量组中的任何一个向量都是该向量组的线性组合。
i 01 02 L 1i L 0m
例4 对如下向量
(0,1,2)T ,1 (1,1,0)T ,2 (0,1,1)T ,3 (3, 4,0)T ,
3.2线性相关性

a11 a21 A 1 , 2 , , s a n1 a12 a22 an 2 a1 s x1 a2 s x2 ,x ans xs
• 证明:设x1a1+x2a2 +…+xsas=0(3.2),即
第二节 向量组的线性相关性
一、向量组线性相关性的概念 二、向量组线性相关性的判定 三、向量组线性相关性的性质
• 一、向量组线性相关性的概念
• 定义4 给定向量组A: 1, 2,…, s, 如果存在不全 为零的数k1, k2,…, ks, 使 k11+k22 +…+kss=0 • 称向量组A是线性相关的, 否则称它线性无关。
• • • •
引理 设有列向量组a1, a2 , …, as, 其中 a1=(a11, a21, …, an1)T, a2 =(a12, a22, …, an2)T, …, as=(a1s, a2s, …, ans)T(s个n维列向量) 则向量组a1, a2 , …, as线性相关齐次线性方程组 Ax=0 (3.1) • 有非零解, 其中
高中数学《向量组的线性相关性》课件

35
例2 设 1 1 2 , 2 2 3, 3 3 1.
若向量组1, 2 , 3线性无关,证明
向量组1, 2, 3也线性无关.
证 由已知可以解得用1, 2,3来表示
1, 2 , 3的表达式:
2
1 2
(1
2
3),
3
1
1 2
1 2
(1
(1
2
2
3 3)
)
故两向量组等价,等秩, r(1, 2 , 3)=3
证 由1,2,…,m, 线性相关
存在不全为零的数k1,k2,…,km,l使得
k11 k2 2 km m l 0
下面证明只有l0, 反证法.
25
如果 l =0, 则有k1, k2,…,km不全为零,使
k11 k2 2 km m 0
于是1, 2, … , m 线性相关,与已知矛盾.
则称向量组 1, 2 ,为,向 r量组S的一个
极大线性无关组(简称极大无关组). 数 r 称为该向量组的秩,记为
r(1, 2, … , s)= r 或秩(1, 2, … , s)= r
24
线性表示唯一性定理
定理4.2 设n维向量1,2,…,m线性无关, 而1,2,…,m , 线性相关, 则 可由 1,2,…,m 线性表示, 且表法唯一.
1 k111 k21 2 kr1 r
2 k121 k22 2 kr 2 r
s k1s1 k2
即 (1, 2,,
s 2
s)
( 1,2 ,kr,s rr)
k11
k21
k12
k22
k1s k2s
kr1 kr2 krs
存在r×s矩阵K,使得 Bn×s =An×r Krs
向量组的线性相关性

T 1 T 2 T i
T m
向量组 , , …, 称为矩阵A的行向量组.
3
反之,由有限个向量所组成的向量组可以构 成一个矩阵.
m个n维列向量所组成的向量 1 , 2 ,, m , 组 构成一个n m矩阵
A ( 1 , 2 ,, m )
m 个n维行向量所组成 的向量组 1 , 2 , m ,
b12 b22 ks2
b1n b2 n k sn
19
同时,C的行向量组能由 的行向量组线性表示 A B , 为这一表示的系数矩阵 :
1T a11 T 2 a 21 T a m m1
矩阵K m s ( kij )称为这一线性表示的系数矩阵.
此时有 B
18
AK
若C mn Ams Bsn,则矩阵C的列向量组能由 矩阵A的列向量组线性表示, 为这一表示的系数 B 矩阵:
b11 b21 ( c1 , c 2 ,, c n ) 1 , 2 ,, s ) ( b s1
(3) R( A ) m R( A ) m) ( ,即矩阵 A的秩小于 (等于)向量组所含向量的个数 m
1 0 0 0 10
2 1 1 3 r3 r2 1 3 5 r4 3r2 3 5 11 0 3
2 r 3r 3 1 1 1 3 r r 2 3 0 1 1 r 2r 3 4 0 2 2 0 3
1 0 0 0
1 0 0 0
2 r3 ( 1 ) 1 1 3 2 0 2 2 0 2 2 0 3
3章3节 向量组的线性相关性

即:部份相关, 则全组相关; ?全组无关, 则部份无关。 ?
定理4 若向量组1 ,2 ,, s, 线性相关,而向量组
则向量 可由1 ,2 ,, s线性表示, 1 ,2 ,, s线性无关,
且表示法唯一。
无关组加一个后相关, 则后加者由原组表出法唯一。
定理5 设有两向量组 A:1 , 2 ,, s ; B:1 , 2 ,, t ;
定义1 给定向量组A : 1 , 2 ,, s , 如果存在不全为零的数
k1 , k2 ,, ks , 使k11 k22 ks s 0, 则称向量组
线性相关 ,否则称为线性无关 。
与上一节对应,本定义相当于零向量由一组向量线性表出
(线性组合), 但这里要求k1 , k2 ,, ks不全为零。
§ 3.3 向量组的线性相关性
上一节分析了某向量与一组向量的线性组合关系,
以及线性组合的表示, 这一内容对应非齐次线性方程组
的有解判断以及求解的内容。为下一步学习向量之间的
相关性做好了理论准备,
本节将分析一组向量内各向量之间的线性相关性。 这一内容则对应齐次线性方程组的有解判断以及求解的
内容。
一、线性相关性概念
秩小于向量的个数s。
即为齐次线性方程组系数矩阵的秩小于未知数个数 ——有非零解。
推论1 s个n维列向量1 ,2 ,, s线性无关(线性相关)的
充要条件是: 矩阵A (1 ,2 , s )的秩(等于)小于向量的个数s。
齐次线性方程组系数矩阵的秩等于未知数个数 ——仅有零解;
推论2 n个n维列向量1 ,2 ,, s线性无关(线性相关)的
1 0 2 r r = 1 2 4 2 1 r3 r1 1 5 7
向量组线性相关性

向量组线性相关性
向量组线性相关性是指向量组之间的关系,它可以用来度量两个
或多个随机向量之间的相似程度。
它是将某种矩阵投射到更高维空间
中进行分析所必需的一种工具。
对于定量分析,它是一种快速而有效
的方法,可以帮助研究人员快速识别观察值之间的特征,如:相关性、回归和分类等。
此外,线性相关性也与潜在因素有关。
线性相关性可用于发现隐
藏的潜在变量,同时,当没有显式的潜在变量可以使用时,它也可以
用作预测。
例如,如果一个研究者想要预测一组观察值的趋势或变化,他/她可以使用线性相关性来找出隐藏的关系,从而建立一个有效的模
型来描述观察值之间的关系。
由于它可以用于识别数据之间的关系,因此,线性相关性在机器
学习任务中也是一种有用的工具,它可以帮助研究人员构建有效的模型,并用于预测新的数据。
例如,在机器学习领域中,线性回归就是
一种线性相关性模型,可以用于分析和预测数据集中观察值之间的关系。
因此,线性相关性是一个非常有用的工具,可用于大量因素和研
究设计中,从而帮助研究人员发现观察值之间的关系,有助于他们建
立有效的模型,并可以用于预测分析和推断。
第四章 向量组的线性相关性总结

第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。
§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量组线性相关性
向量组线性相关性是数学中一个重要的概念,它可以在许多应用中使用,包括统计和线性代数。
它表明了两个变量是如何相互影响的,并且可以用来解释不同情况下变量之间的线性关系。
因此,了解这个概念对推断变量之间的关系非常重要。
在这篇文章中,我们将详细讨论向量组线性相关性的定义、特性和应用。
首先,我们将介绍什么是向量组,包括它的结构、特性和如何表示。
接下来,我们将讨论线性相关性的定义,它的两个重要特性,即相关系数和回归线。
最后,我们将讨论向量组线性相关性的应用,特别是在统计学中,它可以用来推断和预测数据集之间的关系。
首先,让我们来看看什么是向量组。
它是一组由单位矢量组成的数值,它们被称为标量。
向量组由坐标轴上的点组成,这些点的特性取决于它们的大小和关系。
例如,在二维空间中,每一个矢量都可以用它的横坐标和纵坐标来表示,这两个坐标是矢量的分量。
此外,矢量的大小是按照它们两个坐标的积来表示的,这个大小可以用简单的乘法计算,也可以用更复杂的三角函数计算。
其次,我们来讨论线性相关性。
线性相关性是指在两个变量之间存在线性关系的能力。
它可以用相关系数来表示。
相关系数是一个指标,表示两个变量的相关性。
它的值介于-1和1之间,-1表示完全负相关,1表示完全正相关,0表示无关。
因此,通过计算相关系数,可以了解两个变量之间的线性关系。
此外,另一个重要的线性相关性特性是回归线。
回归线是一条拟
合两个变量之间线性关系的直线,它可以用来推测两个变量之间的关系。
通过画出回归线,可以更清楚地了解两个变量之间的关系,例如它们之间是线性相关还是非线性相关。
最后,我们来看看向量组线性相关性的应用。
它主要应用于统计学,用来推断和预测数据集之间的关系。
它也可以用来了解变量之间的线性依赖性,以及变量的趋势及其变化。
此外,它还可以用来帮助预测未来,因为它可以用来推断不同数据集之间的相关性。
总之,向量组线性相关性是一个非常重要的概念,它可以帮助我们了解变量之间的关系,推断不同数据集之间的关系,以及预测未来。
因此,学习它是很有必要的,以便我们能够更好地理解复杂的数据集,并且能够更准确地预测数据集之间的变化和趋势。