高考解析几何定点、定值问题例题以及答案详解

高考解析几何定点、定值问题例题以及答案详解
高考解析几何定点、定值问题例题以及答案详解

解析几何定点、定值问题

1、已知椭圆C :(22221>>0)y x a b a b +=的离心率为2

1

,以原点为圆点,椭圆的短半轴为半

径的圆与直线06=+-y x 相切。 (Ⅰ)求椭圆的标准方程;

(Ⅱ)设P (4,0),A,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭

圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;

2、斜率为1的直线l 过抛物线2:2(0)y px p Ω=>的焦点F ,与抛物线交于两点A ,B 。 (1)若|AB|=8,求抛物线Ω的方程;

(2)设P 是抛物线Ω上异于A ,B 的任意一点,直线PA ,PB 分别交抛物线的准线于M ,N 两点,证明M ,N 两点的纵坐标之积为定值(仅与p 有关)。

3、在平面直角坐标系中,点(,)P x y 为动点,

已知点A

,(B ,直线PA 与PB

的斜率之积为12

-.

(I )求动点P 轨迹E 的方程;

(II )过点(1,0)F 的直线l 交曲线E 于,M N 两点,设点N 关于x 轴的对称点为Q (Q M 、不重合),求证:直线MQ 过定点.

4、如图,曲线C 1是以原点O 为中心,F 1、F 2为焦点的椭圆的一部分,曲线C 2是以原点O

为顶点,F 2

为焦点的抛物线的一部分,3

(2

A 是曲线

C 1和C 2的交点.

(Ⅰ)求曲线C 1和C 2所在的椭圆和抛物线的方程;

(Ⅱ)过F 2作一条与x 轴不垂直的直线,分别与曲线C 1、C 2依次交于B 、C 、D 、E 四点,若G 为CD 中点,H 为BE 中点,问

22||||

||||

BE GF CD HF ??是否为定值,若是,求出定值;若

不是,请说明理由.

5、已知抛物线)0(22

>-=p px y 的焦点为F ,过F 的直线交y 轴正半轴于P 点,交抛物

线于,A B 两点,其中A 在第二象限。

(1)求证:以线段FA 为直径的圆与y 轴相切; (2)若12FA AP,BF FA λλ==,求21λλ-的值.

6、已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为

3

π

的直线,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.

(Ⅰ)求⊙M 和抛物线C 的方程;

(Ⅱ)过圆心M 的直线交抛物线C 于P 、Q 两点,求OP OQ ?的值。

7、已知椭圆C 的中心在原点,焦点在x ,它的一个顶点恰好是抛物线2

4

1x y =

的焦点, (Ⅰ)求椭圆C 的标准方程;

(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若

12,,MA AF MB BF λλ== 12λλ+求证:为定值.

8、(2012枣庄一摸)已知椭圆C 1:22221(0)x y a b a b +=>>的离心率为1

2

,椭圆上一点到

一个焦点的最大值为3,圆222:870C x y x ++-+=,点A 是椭圆上的顶点,点P 是椭圆C 1上不与椭圆顶点重合的任意一点。

(1)求椭圆C 1的方程;

(2)若直线AP 与圆C 2相切,求点P 的坐标; (3)若点M 是椭圆C 1上不与椭圆顶点重合且异于点P 的任意一点,点M 关于x 轴的对称点是点N ,直线MP ,NP 分别交x 轴于点1(,0)E x ,点2(,0)F x ,探究12x x ?是否为

定值。若为定值,求出该定值;若不为定值,请说明理由。

(1) 求椭圆C 的方程;

(2) 设直线l :=+y kx m 与椭圆C 交于,M N 两点,直线22,F M F N 的倾斜角分别为

αβ、,且αβπ+=,求证:直线l 过定点,并求该定点的坐标.

10、(2012东营一摸)已知直线:=l y x 2

2

:+=5O x y ,椭圆22

22:1(>>0)

y x E a b a b

+=

的离心率=

3

e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (Ⅰ)求椭圆E 的方程;

(Ⅱ)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.

11、已知椭圆()22

2210x y a b a b

+=>>的左、右焦点分别为1F ,2F , 点()0,2M 是椭圆的

一个顶点,12F MF ?是等腰直角三角形. (Ⅰ)求椭圆的方程;

(Ⅱ)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为1k ,

2k ,且128k k +=,证明:直线AB 过定点(2,2

1

--).

12、直线l 与椭圆22

221(0)y x a b a b

+=>>交于11(,)A x y ,22(,)B x y 两点,已知11(,)m ax by =,

22(,)n ax by =,若m n ⊥且椭圆的离心率e =,又椭圆经过点,O 为坐标原点. (1)求椭圆的方程;

(2)若直线l 过椭圆的焦点(0,)F c (c 为半焦距),求直线l 的斜率k 的值; (3)试问:AOB ?的面积是否为定值?如果是,请给予证明;如果不是,请说明理

由.

13、已知抛物线2=4y x 的焦点为F ,直线l 过点(4,0)M .

(1)若点F 到直线l ,求直线l 的斜率.

(2)设A B 、为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.

14、已知椭圆E 的长轴的一个端点是抛物线2

y = (1)求椭圆E 的方程;

(2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上是否存在点M ,使?为常数?若存在,求出点M 的坐标;若不存在,请说明理由。

15、已知点21,F F 分别为椭圆)0(1:22

22>>=+b a b

y a x C 的左、右焦点,点P 为椭圆上任意一点,

P 到焦点2F 的距离的最大值为12+,且21F PF ?的最大面积为1.

(I )求椭圆C 的方程。

(II )点M 的坐标为)0,4

5(,过点2F 且斜率为k 的直线L 与椭圆C 相交于B A ,两点。对于任意的R k ?∈,是否为定值?若是求出这个定值;若不是说明理

16、已知曲线C 上的动点P 到点)0,2(F 的距离比它到直线1-=x 的距离大1. (I )求曲线C 的方程;

(II )过点)0,2(F 且倾斜角为)2

0(π

αα<

<的直线与曲线C 交于B A ,两点,线段AB 的垂直平

分线m 交x 轴于点P ,证明:α2cos ||||?-FP FP 为定值,并求出此定值.

17、(2012枣庄一摸)已知椭圆C 1:22221(0)x y a b a b +=>>的离心率为1

2

,椭圆上一点到一个焦点

的最大值为3,圆222:870C x y x ++-+=,点A 是椭圆上的顶点,点P 是椭圆C 1上不与椭圆顶点重合的任意一点。

(1)求椭圆C 1的方程;

(2)若直线AP 与圆C 2相切,求点P 的坐标;

(3)若点M 是椭圆C 1上不与椭圆顶点重合且异于点P 的任意一点,点M 关于x 轴的对称点是点N ,直线MP ,NP 分别交x 轴于点1(,0)E x ,点2(,0)F x ,探究12x x ?是否为定值。若为定值,求出该定值;若不为定值,请说明理由。

18、已知椭圆E :)0(122

22>>=+b a b

y a x 的左焦点)0,5(1-F ,若椭圆上存在一点D ,满足以椭

圆短轴为直径的圆与线段1DF 相切于线段1DF 的中点F . (Ⅰ)求椭圆E 的方程;

(Ⅱ)已知两点)1,0(),0,2(M Q -及椭圆G :1922

22=+b

y a x ,过点Q 作斜率为k 的直线l 交椭圆G 于

K H ,两点,设线段HK 的中点为N ,连结MN ,试问当k 为何值时,直线MN 过椭圆G 的顶点? (Ⅲ) 过坐标原点O 的直线交椭圆W :142922

22=+b

y a x 于P 、A 两点,其中P 在第一象限,过P 作x

轴的垂线,垂足为C ,连结AC 并延长交椭圆W 于B ,求证:PB PA ⊥.

19、已知椭圆22221(0)x y a b a b

+=>>的一个焦点F 与抛物线2

4y x =的焦点重合,且截抛物

45的直线l 过点F . (Ⅰ)求该椭圆的方程;

(Ⅱ)设椭圆的另一个焦点为1F ,问抛物线24y x =上是否存在一点M ,使得M 与1F 关于直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.

20、已知椭圆C 的焦点在x 轴上,中心在原点,离心率e =

,直线2l :y x =+与以原点为圆心,椭圆C 的短半轴为半径的圆O 相切。 (I)求椭圆C 的方程;

(Ⅱ)设椭圆C 的左、右顶点分别为A 1,A 2,点M 是椭圆上异于A l ,A 2的任意一点,

设直线MA 1,MA 2的斜率分别为12MA MA k ,k ,证明12MA MA k k 为定值。

(Ⅲ)设椭圆方程22

221x y a b +=,A 1,A 2为长轴两个端点,M 是椭圆上异于A 1,A 2的任

意一点,12MA MA k ,k 分别为直线MA l ,MA 2的斜率,利用上面(Ⅱ)的结论,直接写出12

MA MA k k 的值(不必写出推理过程)

21、(2012德州一摸)设椭圆C :22

2210x y (a b )a b

+=>>的一个顶点与抛物线:2x =的

焦点重合,F 1、F 2分别是椭圆的左、右焦点,离心率e =F 2的直线l 与椭圆C 交于M 、N 两点.

(I)求椭圆C 的方程;

(Ⅱ)是否存在直线l ,使得1OM ON ?=-,若存在,求出直线l 的方程;若不存在,说明理由;

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

解析几何中的定值定点问题

解析几何中的定值定点问题 一、定点问题 【例1】.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的圆 与直线0x y -+=相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 解:⑴由题意知c e a ==2222 2234c a b e a a -=== ,即224a b = ,又因为1b ==,所以22 4,1a b ==,故椭圆C 的方程为C :2214 x y +=. ⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22 (4)14 y k x x y =-???+=??消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ?=-+->得21210k -<, 又0k =不合题意, 所以直线PN 的斜率的取值范围是0k << 或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为21 2221 ()y y y y x x x x +-=--, 令0y =,得221221 () y x x x x y y -=- +,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ② 由得①2212122232644 ,4141k k x x x x k k -+== ++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0). 【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M 到(),0 ,) ,0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x 轴上焦中为的椭圆,其方程为2 214 x y +=.

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

解析几何中的定点、定值问题(含答案)

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出. 令4400x y -=??=? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 220001222 000y y y y y y k k x x x x x x -+-?=?=-+-, 又由A 、P 均在椭圆上,故有:22 0022 21 21 x y x y ?+=??+=??,

两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122 2 02y y k k x x -?==-- 3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-, 与椭圆方程联立消去y 整理可得() 22223424361080k x k x k +-+-=, 则22121222 2436108 ,3434k k x x x x k k -+== ++, 所以122 1834k y y k -+= +, 则AB 中点为222129,3434k k k k ?? - ?++?? . 所以AB 中垂线方程为22291123434k k y x k k k ?? +=-- ?++??, 令0y =,则2 2334k x k =+,即22 3,034k N k ?? ?+?? , 所以2222 39(1) 33434k k NF k k +=-=++. () 22 36134k AB k += =+,所以14 NF AB =. F A ,是其左顶点和左焦点,P 是圆222b y x =+ 上的动点,若PA PF =常数,则此椭圆的离心率是

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

高考解析几何压轴题精选(含答案)

专业资料 1. 设抛物线y2 2 px( p 0) 的焦点为F,点 A(0, 2) .若线段FA的中点B在抛物线上, 则 B 到该抛物线准线的距离为_____________ 。(3 分) 2 . 已知m>1,直线l : x my m20 ,椭圆 C : x 2 y21, F1,F2分别为椭圆C的左、 2m2 右焦点 . (Ⅰ)当直线l过右焦点 F2时,求直线l的方程;(Ⅱ)设直线 l 与椭圆 C 交于A, B两点,V AF1F2,V BF1F2的重心分别为G, H .若原点O在以线段GH为直径的圆内,求实数m 的取值范围. (6 分) 3 已知以原点 O为中心,F5,0 为右焦点的双曲线 C 的离心率e 5 。2 (I)求双曲线C的标准方程及其渐近线方程;(I I )如题(20)图,已知过点M x1, y1 的直线 l1 : x1 x 4 y1 y 4 与过点 N x2 , y2(其中 x2x )的直 线 l2 : x2 x 4 y2 y 4 的交点E在 双曲线 C 上,直线MN与两条渐近 线分别交与G、H两点,求OGH 的面积。(8 分)

4. 如图,已知椭圆x2y21(a> b>0) 的离心率为2 ,以该椭圆上的点和椭圆的左、右 a2b22 焦点 F1 , F2为顶点的三角形的周长为4( 2 1) .一等轴双曲线的顶点是该椭圆的焦点,设 P 为该双曲线上异于顶点的任一点,直线PF1和 PF2与椭圆的交点分别为A、B和C、D. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1、 PF2的斜率分别为 k1、 k2,证明 k1·k2 1 ;(Ⅲ)是否存在常数,使得 A B C D A·B C恒D成立?若存在,求的值;若不存在,请说明理由. ( 7 分) 5. 在平面直角坐标系 x2y2 xoy 中,如图,已知椭圆1

解析几何中的定点、定值与最值问题解法揭秘

龙源期刊网 https://www.360docs.net/doc/70339179.html, 解析几何中的定点、定值与最值问题解法揭秘 作者:黄伟军 来源:《广东教育·高中》2012年第01期 在平面解析几何这个知识版块里,定点、定值与最值问题历来都是中学数学中的重点问题,同时又是高考的热点问题,常考常新.据统计2011年高考各省市(区)解析几何大题中涉及考查定点、定值与最值问题的就有10个省份左右.为帮助2012届的高三考生在复习中能更 好地把握这三个问题,探索这三种类型问题的解题规律,本文特地详细介绍了这三种类型问题的基本概念、分类,并结合典型的高考试题、各地最新模拟试题给予剖析、小结归纳,并且给出相应的变式题目,让同学们小试牛刀,相信对同学们的复习有一定的帮助. 一、解析几何中的定点、定值问题 解析几何中的定点、定值问题一般是指在一定的情境下,不随其它因素的改变而改变的量.从近几年的新课标高考题来看,定点、点值问题多数以选择、填空题的形式出现,考查特殊与一般的转化思想,也有以证明等解答题面目出现,着重考查逻辑推理能力.处理定点、点值的基本方法是:先将变动元素用参数表示,然后计算出所需结果与该参数无关;也可将变动元素置于特殊状态下,探求出定点、定值,然后给以证明.值得注意的是,解析几何中的定点、定值问题与一般几何证明不同,它的结论中没有确定的定点、定值对象,所以探求定点、定值成为首要任务.其一,要有一定量的基本图形、基本结论作基础,先设一般问题成为一个 特殊问题,动中取静,使图形极端化(考虑图形的特殊位置和临界位置等),从而求得定点、定值,然后,从图形或数据的直观观察中,获得合乎情理的猜想,再进行逻辑证明;其二,要注意前面解答结论中的暗示功能和桥梁作用. 由于解析几何中的定点、定值问题在解题之前不知道定点、定值的结果,因而更增添了题目的神秘色彩,因而是颇有难度的问题,解决这类问题时,要运用辩证的观点去思考分析,在“变”中寻求“不变”,用特殊探索法(即用特殊值、特殊位置、特殊图形等)先确定出定点、定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.另外,有许多定点、定值问题,通过特殊探索法不但能够确定出定点、 定值,还可以为我们提供解题的线索. 例1.已知抛物线y2=2px(p>0),问:在轴的正半轴上是否存在一点M,使得过M点的抛物线的任意一条弦P1P2都有∠P1OP2=■(O为坐标原点)?请说明理由. 分析:这是一道与探索性相结合的定点问题,通过阅读题意我们发现几个关键词:“正半轴”,“任意一条弦”,抛物线y2=2px(p>0)的开口向右,先假设满足题设条件的点M存

解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点, 12,F F 是C 上的两个焦点,若120MF MF ?

故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得)M a ,()N a -,或()M a -, )N a .

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

高三文科数学解析几何专题

2008届高三文科数学第二轮复习资料 ——《解析几何》专题 1.已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程; (2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ?=?若存在,求出直线l 的方程;若不存在,说明理由. 2.如图,设1F 、2F 分别为椭圆 C :22 221x y a b += (0a b >>)的左、右焦点. (Ⅰ)设椭圆C 上的点3 (1,)2 A 到F 1、F 2两点距离之和等于4,写出椭圆C 的方程和离心率; (Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在,说 明理由 4.已知圆C :224x y +=. (1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+, 求动点Q 的轨迹方程,并说明此轨迹是什么曲线. 5.如图,已知圆A 的半径是2,圆外一定点N 与圆A 上的点的最短距离为6,过动点P 作A 的切线PM (M 为切点),连结PN 使得PM : ,试建立适当 的坐标系,求动点P 的轨迹 6.已知三点P (5,2)、1F (-6,0)、2F (6,0).

(Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程; (Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程. 7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车,有10名驾驶员,每辆卡车每天往返次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的成本费用为A 型卡车320元,B 型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低. 8.曲线03622=+-++y x y x 上两点P 、Q 满足:①关于直线04=+-y kx 对称;②OQ OP ⊥.求直线PQ 的方程. 9 情况下的两类药片怎样搭配价格最低?

相关文档
最新文档