高考数学文化题选讲
专题03 数列与数学文化-高考中的数学文化试题 (解析版)

专题03 数列与数学文化纵观近几年高考,数列以数学文化为背景的问题,层出不穷,让人耳目一新。
同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开。
本专题通过对典型高考问题的剖析、数学文化的介绍、及精选模拟题的求解,让考生提升审题能力,增加对数学文化的认识,进而加深对数学文理解,发展数学核心素养。
【例1】 (2018北京) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这 个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( ) A 32B 322C .1252D .1272【答案】D【解析】从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122 率为f ,由等比数列的概念可知,这十三个单音的频率构成一个首项为f ,公比为122的等比数列,记为{}n a ,则第八个单音频率为128171282)2a f -=⋅=,故选D .【试题赏析】本题以《律学新说》中的“十二平均律”为背景,考查等比数列的应用,既考查了等比数列的相关知识,又展示了我国古代在音乐、数学、天文等方面的成就.【例2】(2017新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍 加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一 层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 【答案】B【解析】设塔顶共有灯1a 盏,根据题意各层等数构成以1a 为首项,2为公比的等比数列,∴77171(12)(21)38112a S a -==-=-,解得13a =.选B . 【试题赏析】《算法统宗》是由明代数学家程大位写的数学巨著,它是一部应用数学书, 反映了中华文明源远流长,中国古代为世界数学做出了杰出的贡献。
高考数学复习热点02 数学传统文化和实际民生为载体的创新题(解析版)

热点02 数学传统文化和实际民生为载体的创新题【命题形式】1、考查题型主要是选择题和填空题,计算题和证明题比较少,涉及到的知识点主要集中在函数、数列、立体几何证明与计算、复数、组合、三角函数、概率、推理、圆锥曲线。
2、数学文化考查背景总结如下:①以数学名著为考查背景,以中国数学典籍史料中优秀成果为背景。
②以数学猜想和定理为命题背景。
③以数学名家的故事为命题背景,以数学家的故事,为考查背景,正是对创新精神数学精神的一种传承。
④以数学的应用为命题背景。
⑤历史名人。
⑥历史发展。
3、文化背景的考查在突出所要考查的数学知识的同时,培养学生的数学素养,不仅可以让学生理解数学文化形成数学素养,同时也让学生感受我们古代数学的伟大成就,增强爱国情怀,引导学生了解数学文化体现数学文化以数化人的本质内涵。
这是新高考考察的目的,从而这类问题也是新高考必考题型。
4、数学高考题渗透了大量的数学文化,尤其是渗透到中国古代独特的数学题目。
但这些题目考查的知识点有限,很多内容并未涉及到。
我们现在的社会在飞速发展,无论是科技还是人的思想都不断地变化。
为了让学生能够更好地适应未来社会的发展,我们的教育需要及时更新,不仅仅要反映在教材,考试也应该与时俱进,而不再是摸小球,投骰子,算水费这些老古董的模型背景,更应该与时俱进。
比如以科技为背景文化材料都可以作为激发学生学习兴趣的新材料。
像2020年12月2日嫦娥五号成功降落在月球上,它里面所涉及的轨道、运动都能成为很好的考查背景材料,而这些发射卫星的基地名称也可以作为命题背景的一大亮眼之处。
除次以外,同样可以结合其他学科知识和实际民生,比如新冠肺炎这些热点问题也可以成为出题的背景,进入数学高考题。
【满分技巧】1、多掌握数学文化知识通过对数学文化知识了解使学生对文化素养的提升,做题时能够做到有的放矢,减少对这类问题的恐惧心理。
2、注意数学文化的译文很多数学文化的题型都是选用的是中国传统数学文化,题目前面都是以文言文的形式出现,而后面都会对给出译文,译文才是本题的关键题意,所以这类题的关键地方是在译文上理解。
高考中的数学文化(解析版)

高考中的数学文化一、单选题1.1750年,欧拉在给哥德巴赫的一封信中列举了多面体的一些性质,其中一条是:如果用V 、E 和F 表示闭的凸多面体的顶点数、棱数和面数,则有如下关系:2V E F -+=.已知正十二面体有20个顶点,则正十二面体有()条棱A .30B .14C .20D .26【答案】A 【分析】由已知条件得出20V =,12F =,代入欧拉公式2V E F -+=可求得E 的值,即为所求.【详解】由已知条件得出20V =,12F =,由欧拉公式2V E F -+=可得22012230E V F =+-=+-=.故选:A.2.龙马负图、神龟载书图像如图甲所示,数千年来被认为是中华传统文化的源头;其中洛书有云,神龟出于洛水,甲壳上的图像如图乙所示,其结构是戴九履一,左三右七,二四为肩,六八为足u ,以五居中,五方白圈皆阳数,四角黑点为阴数;若从阳数和阴数中分别随机抽出2个和1个,则被抽到的3个数的数字之和超过16的概率为()A .1340B .720C .14D .310【答案】A 【分析】由题可求出所有情况共40种,再求出满足条件的情况即可求出概率.【详解】依题意,阳数为1、3、5、7、9,阴数为2、4、6、8,故所有的情况有215440C C =种,其中满足条件的为()7,8,9,()7,6,9,()7,4,9,()7,2,9,()5,8,9,()5,6,9,()5,4,9,()3,8,9,()3,6,9,()1,8,9,()7,8,5,()7,6,5,,()7,8,3,共13种,故所求概率1340P =.故选:A .3.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有()A .132项B .133项C .134项D .135项【答案】D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数.【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤,所以该数列的项数共有135项.故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.4.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,则侧棱与底面外接圆半径的比为()A .12cos αB .12sin αC .sin 3πsin8αD .cos 3πcos8α【答案】A 【分析】根据正六棱锥的底面为正六边形计算可得结果.【详解】正六棱锥的底面为正六边形,设其外接圆半径为R ,则底面正边形的边长为R ,因为正六棱锥的侧面等腰三角形的底角为α,所以侧棱长为2cos 2cos RR αα=,所以侧棱与底面外接圆半径的比为12cos 2cos RR αα=.故选:A 【点睛】关键点点睛:掌握正六棱锥的结构特征是解题关键.5.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织()A .12尺布B .518尺布C .1631尺布D .1629尺布【答案】D 【分析】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值.【详解】设该女子第()Nn n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.6.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()A .3斤B .6斤C .9斤D .12斤【答案】C 【分析】根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++.【详解】由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,根据等差数列的性质可知1533263a a a a +==⇒=,中间三尺为234339a a a a ++==.故选:C 【点睛】本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型.7.古希腊时期,人们把宽与长之比为512-的矩形称为黄金矩形,把这个比值512称为黄金分割比例.下图为希腊的一古建筑.其中部分廊、檐、顶的连接点为图中所示相关对应点,图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均近似为黄金矩形.若A 与D 间的距离大于18.7m ,C 与F 间的距离小于12m .则该古建筑中A 与B 间的距离可能是()(参考数据:510.6182-≈,70.6180.38≈,30.6180.236≈)A .29mB .29.8mC .30.8mD .32.8m【答案】C 【分析】由矩形ABCD 和EBCF 是黄金矩形,由边长的比求出AB 范围即可得.【详解】由黄金矩形的定义可知0.618AD AB ≈,20.6180.38BC CF CFAB BC AB⋅=≈≈,所以18.730.260.6180.618AD AB m ≈>≈,1231.580.380.38CF AB m ≈<≈,即()30.26,31.58AB ∈,对照各选项,只有C 符合.故选:C .【点睛】本题考查数学文化,考查学生的阅读理解能力,转化与化归能力,创新意识.属于基础题.8.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36o 的等腰三角形(另一种是顶角为108 的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin126= ()A .1254-B.38+C .154+D .458+【答案】C 【分析】计算出51cos 724-= ,然后利用二倍角公式以及诱导公式可计算得出sin126cos36= 的值,即可得出合适的选项.【详解】因为ABC 是顶角为36o 的等腰三角形,所以,72ACB ∠= ,则1512cos 72cos 4BCACB AC-=∠==,()sin126sin 9036cos36=+= ,而2cos722cos 361=-,所以,51cos364+====.故选:C.【点睛】本题考查利用二倍角公式以及诱导公式求值,考查计算能力,属于中等题.9.《九章算术》是我国古代内容极为丰富的数学名著.书中有如下问题:“今有委米依垣内角,下周四尺.高三尺.何积及为米几何?”其意思为:“在屋内墙角处堆放米,米堆底部的弧长为4尺.米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A .7斛B .3斛C .9斛D .12斛【答案】B 【分析】根据圆锥的体积公式计算出对应的体积即可.【详解】解:设圆锥的底面半径为r ,则42r π=,解得8r π=,故米堆的体积为2118163433ππ⎛⎫⨯⨯⨯⨯≈ ⎪⎝⎭,∵1斛米的体积约为1.62立方,∴161.6233÷≈,故选:B .【点睛】本题主要考查椎体的体积的计算,比较基础.10.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A .2B .242+C .42+D .442+【答案】D 【分析】利用三视图还原原几何体,结合三视图中的数据可计算出该“堑堵”的侧面积.【详解】由三视图还原原几何体如下图所示:2的等腰直角三角形,且直三棱柱的高为2,因此,该“堑堵”的侧面积为()22224+⨯=.故选:D.【点睛】本题考查利用三视图计算几何体的侧面积,一般要求还原原几何体,考查空间想象能力与计算能力,属于基础题.11.干支是天干(甲、乙、…、癸)和地支(子、丑、…、亥)的合称,“干支纪年法”是我国传统的纪年法.如图是查找公历某年所对应干支的程序框图.例如公元2041年,即输入2041N =,执行该程序框图,运行相应的程序,输出58x =,从干支表中查出对应的干支为辛酉.我国古代杰出数学家秦九韶出生于公元1208年,则该年所对应的干支为()六十干支表(部分)56789戊辰己巳庚午辛未壬申5657585960己未庚申辛酉壬戌癸亥A .戊辰B .辛未C .已巳D .庚申【答案】A 【分析】输出1208N =,计算输出结果,查表可得结果.【详解】输入1208N =,1i =,第一次循环,120836011145x =--⨯=,2i =,60x ≤不成立;第二次循环,120836021085x =--⨯=,3i =,60x ≤不成立;第三次循环,120836031025x =--⨯=,4i =,60x ≤不成立;由上可知,每执行一次循环后,x 的值对应地在上一次循环后x 的值中减去60,则输出的x 的值为1205除60后的余数,120620605=⨯+ ,则输出的x 的值为5,因此,公元1208年对应的干支为戊辰.故选:A.【点睛】本题考查数学文化中的“干支纪年法”,考查程序框图的应用,考查计算能力,属于中等题.12.古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.图2(正八边形ABCDEFGH )是由图1(八卦模型图)抽象而得到,并建立如下平面直角坐标系,设1OA =.则下述四个结论:①以直线OH 为终边的角的集合可以表示为32,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭;②以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π;③22OA OD ⋅= ;④(BF = 中,正确结论的个数是()A .1B .2C .3D .4【答案】B 【分析】根据终边相同的角的定义可判断命题①的正误;利用扇形的弧长公式可判断命题②的正误;利用平面向量数量积的定义可判断命题③的正误;利用平面向量的坐标运算可判断命题④的正误.【详解】对于命题①,以直线OH 为终边的角的集合可以表示为3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭,命题①错误;对于命题②,4AOB π∠=,以点O 为圆心、OA 为半径的圆的弦AB 所对的弧长为4π,命题②正确;对于命题③,由平面向量数量积的定义可得3cos 42OA OD OA OD π⋅=⋅=- ,命题③错误;对于命题④,易知点22,22B ⎛⎫ ⎪ ⎪⎝⎭,22,22F ⎛-- ⎝⎭,所以,(BF = ,命题④正确.故选:B.【点睛】本题以数学文化为背景,考查了终边相同的角的集合、扇形的弧长、平面向量数量积的定义以及平面向量的坐标运算,考查计算能力,属于基础题.二、填空题13.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.【答案】29714【分析】作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值.【详解】如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD ==,则152BM =设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =.故答案为:29714.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.14.明朝著名易学家来知德以其太极图解释一年、一日之象的图式,一年气象图将二十四节气配以太极图,说明一年之气象,来氏认为“万古之人事,一年之气象也,春作夏长秋收冬藏,一年不过如此”.上图是来氏太极图,其大圆半径为4,大圆内部的同心小圆半径为1,两圆之间的图案是对称的,若在大圆内随机取一点,则该点落在黑色区域的概率为______.【答案】1532【分析】设大圆面积为1S ,小圆面积2S ,求得116S π=,2S π=,进而求得黑色区域的面积,结合面积比,即可求解.【详解】设大圆面积为1S ,小圆面积2S ,则21416S ππ=⨯=,221S ππ=⨯=,可得黑色区域的面积为()1211522S S π⨯-=,所以落在黑色区域的概率为()121115232S S P S -==.故答案为:1532.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A P N =求解,着重考查了分析问题和解答问题的能力,属于基础题.15.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,53.14,sin 22.513π≈≈ ,答案四舍五入,只取整数...........)【答案】317【分析】根据弓形的锯口深1寸,锯道长1尺,求出圆的半径,从而求出弓形(阴影部分)面积后,由柱体体积公式得木材体积【详解】如图,设圆半径为r 寸(下面长度单位都是寸),连接,OA OD ,已知152AD AB ==,1OD OC CD r =-=-,在Rt ADO 中,222AD OD OA +=,即2225(1)r r +-=,解得13r =,由5sin 13AD AOD AO ∠==得22.5AOD ∠=︒,所以45AOB ∠=︒,图中阴影部分面积为S S =扇形214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△(平方寸),镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为 6.332550317V Sh =≈⨯≈(立方寸)故答案为:317.【点睛】本题考查柱体的体积,关键是求底面面积,方法是由扇形面积减去相应三角形面积得弓形面积,属基础题.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的棱长为______1-【分析】从图形中作一个最大的水平截面,它是一个正八边形,八个顶点都在边长为铁正方形边上,由此可计算出棱长.【详解】作出该图形的一个最大的水平截面正八边形ABCDEFGH ,如图,其八个顶点都在边长为1的正方形上,设“半正多面体”棱长为a ,则2212a a ⨯+=,解得1a =-,1-.【点睛】本题考查学生的空间想象能力,抽象概括能力,解题关键是从“半正多面体”中作出一个截面为正八边形且正八边形的八个顶点都在边长为1的正方形上,由此易得棱长.。
高考数学卷里的亮点———“数学文化”题

哈尔滨师范大学附属中学刘冰2017年,高考考试大纲修订内容中增加了对数学文化的要求,但是高考数学试题中早就出现过以数学文化为背景的新颖命题,经过持续发展,在2018年高考中呈现出了求新、求变的效果.把历史和文化内容引入高考数学,为高考数学题打上了文化的烙印.教师应在平时的教学中弘扬中国传统文化,吸收世界文化的精华,引导学生胸怀祖国,放眼世界.例1(2018年全国新课标I,理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自I,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:设AB=a,A C=b,BC=a2+b2,√设整个图形的面积为S则p1=ab2S,p2=1S{π(a2)22+π(b2)22-[π(a2+b2√2)22-1 2ab]}=ab2S=p1故选A.【数学文化】古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理———月牙定理,指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙型面积之和等于该直角三角形的面积.本题依据这一定理考查几何概型问题.例2(2017年全国卷II,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析:设顶层灯数为a1,q=2,s7=a1(1-27)1-2=381,解得a1=3.故选B.【数学文化】《算法统宗》,又名《直指算法统宗》《新编直指算法统宗》,明代数学家程大位撰,共17卷.1592年编成《算法统宗》共列算题595道,以珠算为主要的计算工具,卷一介绍数学常识,卷二介绍珠算,卷三以后分别为方田、粟布、衰分、少广、分田截积、商功、均输、盈亏、方程、勾等,第十七卷附以难题杂法,又列有14个纵横图.本题以数学史中《算法统宗》的一个问题为包装,考查数列问题.例3(2016年全国新课标II,理8)中国古代有计算多项式值的秦九韶算法,实现该算法的程序框图见下页.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=.(A)7(B)12(C)17(D)34解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C.【数学文化】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在著作《数书九章》中提出了这一先进的多项式简化算法.一般一元n次多项式的求值需要经过n(n+1)2次乘. All Rights Reserved.a ,ba ≠ba >ba =a -bb =b-aa法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法.在人工计算时,大大简化了运算过程.本题以数学史中《秦九韶算法》的问题为背景,考查程序框图问题.例4(2015年全国卷II,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =.(A )0(B )2(C )4(D )14解析:逐次运行程序,直至程序结束得出a .a=14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a=b =2,跳出循环,输出a=2,故选B.【数学文化】更相减损术出自《九章算术》中的求最大公约数的算法,原本是为约分而设计的,但它适用于任何需要求最大公约数的场合.本题将更相减损术与程序框图相结合,加大了该问题的考查难度.考生若能看出此程序框图的功能,便很容易解决.例5(2015年湖北卷,理2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓有人送来米1534石,验得米内夹谷,254粒内夹谷28粒,则这批米内夹谷约为(A )134石(B)169石(C)338石解析:254粒和1534致相同的,设1534解得x =169,故这批米内夹谷约为169石.【数学文化】中的“米谷粒分”问题,体.本题以《数书九章》为载体,例6(2018年全国新课标II,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有n =C 210=45种不同的情况,其中和等于30的有7+23=30,11+19=30,13+17=30,共m =3种不同的情况,则所求的概率p =m n =345=115,故选C.【数学文化】在1742年给欧拉的信中,哥德巴赫提出了如下猜想:任一大于2的偶数都可写成两个素数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明.1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”.本题依据这一定理,考查古典概型问题.“数学文化”题是经典与创新的完美结合,也是近几年全国及各省份高考数学题中的一大亮点.我们在教学中应引导学生多多了解中国数学史及世界数学史,以便学生在高考中更好地发挥.编辑/王一鸣E-mail:***************考试KAOSHI. All Rights Reserved.。
2022届高考数学一轮复习-数学文化创新题选讲课件

题型二 概率统计问题
4、赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书 作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个 全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似地 构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的 一个大等边三角形,设DF 2AF,若在大等边三角形中随机取一点,则此点取自 小等边三角形的概率是( )
D. 2.5升
解析:由题意,aa17
a2 a8
a3 a9
a4 4.5
3.8
4a1 6d 3a1 21d
3.8 4.5
a1
0.8, d
0.1
a5 a6 2a1 9d 2.5
归纳
以我国古代数学名著的实际问题为背景考查数 列的概念、前n项和公式.意在考查学生的数学 文化素养和应用意识. 求解的关键是将古代传统应用问题转化为现代 数学,建立恰当的数列模型,运用方程思想求 解计算.
依题意,得 a1 1 27 1 2
=381,解得a1=3.B项正确.
2、《九章算术》之后,人们学会了用等差数列的知识来解决问题,《张丘建算经》
卷上第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈”.
其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,
第1天织了5尺布,现在一月(按30天计算)共织390尺布,则从第2天起每天比前一
谢谢
首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四
节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明。”
【( 注】四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求
高中数学文化选题(解析版)

数学文化选题一、选择题1.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间3尺的重量为A. 6斤B. 9斤C. 10斤D. 12斤【答案】B【解析】试题分析:此问题是一个等差数列,设首项为,则,∴中间尺的重量为斤.故选:B.学科&网2.“珠算之父”程大位是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升.次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为A. 1.9升B. 2.1升C. 2.2升D. 2.3升【答案】B3.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方棱台(上、下底面均为矩形额棱台)的专用术语.关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之.亦倍下表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为,高为3,且上底面的周长为6,则该棱台的体积的最大值是A. 14B. 56C.D. 63【答案】C4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有邹亮,下广三丈,茅四仗,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽仗长仗;上棱长仗,高一丈,问它的体积是多少?”已知丈为尺,现将该锲体的三视图给出右图所示,齐总网格纸小正方形的边长1丈,则该锲体的体积为A. 立方尺B. 立方尺C. 立方尺D. 立方尺【答案】A5.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入时,输出的A. 6B. 9C. 12D. 18【答案】D【解析】试题分析:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18. 学科&网6.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知五人分5钱,两人所得与三人所得相同,且每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,所得为A. 钱B. 钱C. 钱D. 钱【答案】A7.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“”,那么剩下的部分所成的数列的通项公式为A. B. C. D.【答案】C【解析】由“一尺长的木棒,每日取其一半.”可知每天剩下的木棒构成一个首相为1,公比为的等比数列.所以该数列的通项公式为.故选C.8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半径等于4米的弧田.按照上述方法计算出弧田的面积约为A. 6平方米B. 9平方米C. 12平方米D. 15平方米[来源学科网ZXXK]【答案】B9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为A. 24里B. 12里C. 6里D. 3里【答案】C【解析】试题分析:记每天走的路程里数为,易知是公比的等比数列,,,故选C. 学科&网10.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为A. 55B. 52C. 39D. 26【答案】B11.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?A. B. C. D.【答案】C【解析】根据“红灯向下成培增”可得该塔每层的灯从上到下构成一个等比数列,公比为2,其中.由等比数列的前n项和公式可得.故选C.12.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(参考数据:,,)[来源:]A. B. C. D.【答案】B13.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数A. 336B. 510C. 1326D. 3603【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.14.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B15. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽丈,长丈,上棱丈,.与平面的距离为1丈,问它的体积是A. 4立方丈B. 5立方丈C. 6立方丈D. 8立方丈【答案】B【解析】延长EF、FE分别到H、G,且|FH|=|EG|=1,则该几何体为直三棱柱,三棱锥F-BCH的体积为,三棱柱的体积为,所以所求体积为.故选B.16.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形.其中正确的有A. ①③B. ①③④C. ②③D. ①④【答案】A17.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有周长为的满足,试用以上给出的公式求得的面积为A. B. C. D.【答案】A二、填空题18.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分解:按此规律,____________;____________.【答案】(1). ;(2).19.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)【答案】20.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.[来源:]【答案】【解析】椭圆的长半轴为5,短半轴为2,现构造一个底面半径为2,高为5的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V=2(V圆柱﹣V圆锥)=2(π×22×5﹣)=.[来源学科网Z.X.X.K]21.艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,则的通项公式__________.【答案】22.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3V kD =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3V kD =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3V kD =求体积(在等边圆柱中, D 表示底面圆的直径;在正方体中, D 表示棱长).假设运用次体积公式求得球(直径为a )、等边圆柱(底面积的直径为a )、正方体(棱长为a )的“玉积率”分别为1k 、2k 、3k ,那么123::k k k =__________.【答案】::164ππ【解析】 由题意得,球的体积为333114433266a V R a k ππππ⎛⎫===⇒= ⎪⎝⎭; 、等边圆柱的体积为22322244a V R a a a k ππππ⎛⎫===⇒= ⎪⎝⎭;学科&网正方体的体积3321V a k =⇒=,所以123::::164k k k ππ=[来源学科网].。
高考数学文化题集锦含答案.docx
历年高考数学文化题集锦一. 数学名著中的立几题,例如:2015年全国1卷文6理6题6、《九章算术》是我国古代内容极为丰富的数学名著,书屮有如下问题:“今有委米依垣内角,下周八尺,高五尺,问''积及为米几何?”其意思为广在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A) 14斛(B) 22 斛(C) 36斛(D) 66 斛答案:B2012年湖北理科数学第10题10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积〃,求其直径〃的一个近似公式d 珂尹.人们还用过一些类似的近似公式.根据71=3.14159…判断,下列近似公式中最精确的一个是A. B. d =何 C・d = J型7—vV 9 V157考点分析:考察球的体积公式以及估算.解析:由卩二彳龙上几削二:胚‘设选项中常数为纟,则好④;力中代入得好空=3.375,3 2 V 7C b a163中代入得K空=3, C中代入得好空卫=3.14,科代入得好空丄3.142857,2 300 21曲于I)中值最接近加勺真实值,故选择D。
二、数学名著中的数列题,例如:2011年湖北卷文9理13题;13.《九章算术》“竹九节”问题:现有1根9节的竹子,自上而下各节的容积成等差数列,上面四节的容积共3升,下面3节的容积共4升,则第5节的容积为【解析】设该数列的杵项为公筮为依题总应该疇(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术"。
执行该程序框图,若输入a,b分别为14,18,则输出的玄= ___________【答幻B晦】師atWTil®中,a, 6的值依次为a = 14. 6 = 18; 6 = 4; a = 10; a = 6; a=2 b = 2・d匕时a = b = 2程牌抹,输岀a的值为2・故选B・数学名著中的统计题,例如:2015年湖北卷文2理2题2. (5分)(2015-湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(A. 134 石)B. 169 石C. 338 石D. 1365 石升。
以数学文化背景的高考数学命题
数学文化背景的高考试题背景一:杨辉三角杨辉三角,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
下图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了。
1.如图,一个类似杨辉三角的数阵,则(1)第9行的第2个数是66;(2)若第n(n≥2)行的第2个数为291,则n=18.2.中国古代数学史曾经有自己光辉灿烂的篇章,其中“杨辉三角”的发现就是十分精彩的一页.而同杨辉三角齐名的世界著名的“莱布尼茨三角形”如图所示,从莱布尼茨三角形可以看出:排在第10行从左边数第3个位置上的数值是()A.B.C.D.3.[2006湖北L-15]将杨辉三角(如图(1))中的每一个数都换成分数,就得到一个如图(2)所示的分数三角形,称为莱布尼茨三角形.从莱布尼茨三角形可以看出:,其中x=r+1.背景二:古希腊多边形数教材背景:必修⑤数列引入1.[2009湖北L-W-10]古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是A.289B.1024C.1225D.13782.[2012湖北W-17]传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数。
他们研究过如图所示的三角形数:将三角形数1,3, 6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(Ⅰ)b 2012是数列{an}中的第______项;(Ⅱ)b 2k-1=______。
(用k 表示)3.[2013湖北L-14]古希腊毕达哥拉斯学派的数学家研究过各种多边形数。
如三角形数1,3,6,10,…,第n 个三角形数为()2111222n n n n +=+。
记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n =五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =- ……可以推测(),N n k 的表达式,由此计算()10,24N = 。
新高考题型:数学文化(精选100题)-数学附答案
“ 4 − 78 ”,1周角等于 6000 密位,记作1周角= 60 − 00 ,1直角= 15 − 00 .如果一个
半径为 2 的扇形,它的面积为 7 π ,则其圆心角用密位制表示为( ) 6
A.12 − 50
B.17 − 50
C. 21− 00
D. 35 − 00
2.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、
10
5
15
过剩近似值,即 27 < e < 41 ,若每次都取最简分数,那么第二次用“调日法”后可得 e 10 15
的近似分数为( )
68
A.
25
41
B.
15
27
C.
10
14
D.
5
6.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其 甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五 方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取 3 个数,则选取 的 3 个数之和为奇数的方法数为( )
半球时取正值,直射南半球时取负值).设第 x 天时太阳直射点的纬度值为 y, 该科研小 组通过对数据的整理和分析.得到 y 与 x 近似满足 y = 23.4392911sin0.01720279x .则
每 400 年中,要使这 400 年与 400 个回归年所含的天数最为接近.应设定闰年的个数为
(精确到1)( )
A.30
B.40
C.44
D.70
7.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子
在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦
专题05 立体几何与数学文化-高考中的数学文化试题 (解析版)
专题05 立体几何与数学文化纵观近几年高考,立体几何以数学文化为背景的问题,层出不穷,让人耳目一新。
同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开。
本专题通过对典型高考问题的剖析、数学文化的介绍、及精选模拟题的求解,让考生提升审题能力,增加对数学文化的认识,进而加深对数学文理解,发展数学核心素养。
【例1】(2019课标2)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.【答案】26,21.【解析】中间层是一个正八棱柱,有8个侧面,上层是有81+,个面,下层也有81+个面,故共有26个面;半正多面体的棱长为中间层正八棱柱的棱长加上两个棱长的2cos452=倍.该半正多面体共有888226+++=个面,设其棱长为x,则221x x=,解得21x.【试题赏析】本题以金石文化为背景,考查了球内接多面体,体现了对直观想象和数学运算素养的考查。
【例2】(2018课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A【解析】由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .【试题赏析】本题以中国古建筑借助榫卯将木构件为背景,考查了简单几何体的三视图的画法。
【例2】 (2019浙江高考) 祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh 柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .324【答案】B【解析】由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解, 即()()114632632722ABCDE S =+⨯++⨯=五边形,高为6,则该柱体的体积是276162V =⨯=.故选:B . 【试题赏析】本题以祖暅原理为背景,考查由三视图求面积、体积,关键是由三视图还原原几何体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习课:重温数学经典
——掀开高考数学文化题的面纱
襄阳东风中学数学组 侯正卫2018.1.12
● 一、大纲分析:
2017高考考试大纲修订内容中增加了数学文化的要求。
其实近些年高考数学试卷早已出现以数学文化为背景的新颖命题,只是17年新修订的大纲更加强调,我国古代数学里有大量的实际问题,此类问题可以结合函数、数列、立体几何、算法等内容。
这些问题同时也体现了应用性的考查,备考中应充分重视。
● 二、数学经典简介:
1、《九章算术》成书于公元1世纪,作者不详。
西汉张仓、耿寿昌曾经做过增补和整理。
全书收集了实际的数学问题共246个,分为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等9章,所以定名为《九章算术》。
2、《数书九章》 秦九韶(约1202~1261),字道吉,四川安岳人。
秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。
1247年写成著名的《数书九章》。
其最重要的数学成就——“大衍求一术”(一次同余方程组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
3、《张丘建算经》张丘建,北魏时清河人。
《张丘建算经》共有三卷, 约成书于公元466~485年间。
其中,最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。
“百鸡术”是世界著名的不定方程问题。
● 三、数学文化与人文价值
1.数学名著中的数列题
题1. 南北朝时期的数学古籍《张丘建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问:每等人比下等人多得几斤?”( )
题2、2016衡水模拟
《九章算术》之后,人们学会了用等差数列知识来解决问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布
4775A. B. C. D.397876811281516311629A. B C D
题3、古希腊人常用小石子在沙滩上摆成各种形状来研究数。
比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。
下列数中既是三角形数又是正方形数的是
A.289
B.1024
C.1225
D.1378
数列类问题:脱去马甲,化未知为已知,涉及等差等比多从基本量入手
2.概率中的数学文化
题4..(2017全国1卷文4)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A.1
4
B.
π
8
C.
1
2
D.
π
4
弘扬中华传统文化在数学中体现为两点:1.挖掘古代典籍与数学知识的结合点;2.将数学落实在中华传统美德,贯彻“弘扬正能量”的精神风貌
3.数学名著中的立体几何问题
题5、2015年全国1卷文6题
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣
内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()斛A .14 B . 22 C . 36 D . 33
题6、《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的表面积为( )
题7.(2015·湖北高考)
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .
(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
立体几何类问题:关注经典,克服对陌生名词的惧怕心理,强化读题能力,将文字转化成符号或数字等。
24D.62
4C.4 22B.4.+++2A
4.解析几何中的数学文化
题8.(2008·湖北高考)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c2;④c1
a1<
c2
a2.
其中正确式子的序号是()A.①③B.②③C.①④D.②④
本题是小中见大、常中建新、蕴文化于现代技术应用之中的好题。
题9.(2007·北京高考)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ.那么cos 2θ的值等于________.
四、归纳总结,思维升华
以古代数学知识为背景的题目常与立体几何、函数、数列、算法等知识有关,解题的关键是将数学史背景下的条件转化为高中数学知识,考察考生的阅读理解能力、抽象概况能力、转化与化归能力,既体现了对数学应用性的考察,也体现了我国数学文化的源远流长。
随着高考改革的深入,仍会适当加大对中国传统文化考查的内容,如将四大发明、勾股定理等所代表的中国古代科技文明作为试题背景材料,遵循继承、弘扬、创新的发展途径,注重传统文化在现实中的创造性转化和创造性发展,体现中国传统科技文化对人类发展和社会进步的贡献,践行社会主义核心价值观。