26.1_二次函数(第3课时)教案

合集下载

26.1.1二次函数教学案

26.1.1二次函数教学案

主备人 张 伟 年级主任签字 使用人修 改 补 充【尝试应用】例1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x例2. 关于x 的函数mm xm y -+=2)1(是二次函数, 求m 的值.注意:二次函数的二次项系数必须是 的数。

3.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数. 4.课堂训练:P3-- 练习 【畅谈收获】你认为今天这节课最需要掌握的是 __________________________。

【达标检测】(带*为选做) (一)必做题 :举一反三1.下列函数中是二次函数的是( ) A .y =x +12B .y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x2.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-1 3.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.4.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米5.一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式. _________________ (二)选做题:劝君未解不要走,解得好题快乐人1.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式。

2.已知y 与x 2成正比例,并且当x =-1时,y =-3.求: (1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13时,x 的值.修 改 补 充课 题 《26.1.1二次函数》教学案学习目标1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次例函数的概念;2、能判断一个给定的函数是否为二次例函数;3、能根据实际问题中的条件确定二次例函数的解析式。

26.1.3二次函数 的图象(三)

26.1.3二次函数 的图象(三)

26.1.3二次函数()k h x a y +-=2的图象(三)九年级下册 编号05【学习目标】1.会画二次函数的顶点式()k h x a y +-=2的图象;2.掌握二次函数()k h x a y +-=2的性质;【学习过程】 一、知识链接: 1.将二次函数2-5y x =的图象向上平移2个单位,所得图象的解析式为 。

2.将抛物线2y x =-的图象向左平移3个单位后的抛物线的解析式为 。

二、自主学习 在右图中做出()212y x =--的图象:观察:1. 抛物线()212y x =--开口向 ;顶点坐标是 ;对称轴是直线 。

2. 抛物线()212y x =--和2y x =的形状 ,位置 。

(填“相同”或“不同”) 3. 抛物线()212y x =--是由2y x=如何平移得到的?答:。

三、合作交流平移前后的两条抛物线a 值变化吗?为什么?答: 。

四、知识梳理结合上图和课本第9页例3归纳: (一)抛物线2()+y a x h k =-的特点:1.当0a>时,开口向 ;当0a <时,开口 ;2. 顶点坐标是 ;3. 对称轴是直线 。

(二)抛物线2()+y a x h k =-与2y ax =形状 ,位置不同,2()+y a x h k =-是由2y ax =平移得到的。

二次函数图象的平移规律:左 右 ,上 下 。

(三)平移前后的两条抛物线a 值 。

五、跟踪训练 1.二次函数2)1(212+-=x y 的图象可由221x y =的图象( ) A.向左平移1个单位,再向下平移2个单位得到xyy = x 2-1-2-3-412345-1-2-312345678910OB.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到 2.抛物线()21653y x =--+开口 ,顶点坐标是 ,对称轴是 ,当x = 时,y 有最 值为 。

二次函数的全章教案

二次函数的全章教案

26.1二次函数(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。

二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。

三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。

问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有 的形式。

问题5:什么是二次函数?形如 。

问题6:函数y=ax²+bx+c ,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(三)尝试应用:例1. 关于x 的函数 是二次函数, 求m 的值.mm 221)x (m y --=注意:二次函数的二次项系数必须是的数。

例2.已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。

求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。

26.1二次函数教案[修改版]

26.1二次函数教案[修改版]

第一篇:26.1二次函数教案26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[创新思维](1)正方形边长为a(cm),它的面积s(cm)是多少?s = a(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.y = (4+x)(3+x)−4×3 = x+7x222请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.二次函数的概念:形如ax+bx+c = 0(a≠0,a、b、c为常数)的函数叫二次函数.2[实践与探索]例题:补充例题:1.m取哪些值时,函数是以x为自变量的二次函数?分析若函数.解若函数解得因此,当,且,且时,函数..是二次函数,须满足的条件是:是二次函数,则是二次函数.的函数只有在的条件下才是二次函数.回顾与反思形如探索若函数值?是以x为自变量的一次函数,则m取哪些2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;222(2)由题意,得(3)由题意,得其中y是x的一次函数;,其中y是x的二次函数;(x≥0且是正整数),(4)由题意,得数.,其中S是x的二次函3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.2解(1)(2)当x = 3cm时,;(cm).2[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)为二次函数?2.当k为何值时,函数3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数2.已知二次函数是二次函数,求m的值.,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x 为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.(D.6.下列函数关系中,可以看作二次函数A.在一定的距离内汽车的行驶速度与行驶时间的关系)模型的是()B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)圆的周长与圆的半径之间的关系典型例题1.下列各式中,y是x的二次函数的是( ) A.x+y−1 = 0 B.y = (x+1)(x−1)−xC.y = 1+22D.2(x−1)+3y−2 = 0 答案:D2 4说明:选项A、C都不难看出关系式中不含x的平方项,因此,都不满足二次函数的定义,选项B,y = (x+1)(x−1)−x可化简为y = −1,也不满足二次函数的定义,只有选项D是正确的,答案为D.2.下列函数中,不是二次函数的是( )2A.y = 1−x B.y = 2(x−1)+4 C.y =2222(x−1)(x+4) D.y = (x−2)−x22答案:D说明:选项D,y = (x−2)−x可化为y = −4x+4,不是二次函数,而选项A、B、C中的函数都是二次函数,答案为D.3.函数y = (m−3)是二次函数,则m的值为:(答案:−3)说明:因为y = (m−3)且m≠3,即m = −3.4.已知函数y = ( 4a +3)是二次函数,所以m2−7 = 2,且m−3≠0,因此有m = ±3,+x−1是一个二次函数,求满足条件的a的值.解:∵y = ( 4a +3)+x−1是一个二次函数,∴,解得a = 1.习题精选21.在半径为4 cm的圆中,挖去一个半径为x(cm)的小圆,剩下的圆环面积为y(cm),则y与x之间的函数关系式为( ) A.y = πx−4 B.y = π(2−x)C.y = −(x+4) D.y = −πx+16π答案:D说明:半径为4cm的圆,面积为16π(cm),挖去的小圆面积为πx(cm),所以剩下的圆环222面积为(16π-πx)(cm),即有y =-πx+16π,答案为D.2.若圆锥的体积为Vcm,高为6cm,底面半径为rcm.写出V与r之间的函数关系式,并判断它是否是二次函数?此题考查圆锥的体积公式及二次函数的概念.32222222解:由题意得:V=n+2πr×6,即V=2πr,此函数是二次函数.223.若函数y=2x+1是二次函数,求n的值.此题考查二次函数概念中关于自变量的二次式.解:由题意得:n+2=2 ∴n=04.若函数y=(a−1)x+x+1是二次函数,求a、b的取值范围.b+12 5此题综合考查二次函数的概念,分三种情况讨论:(1)(a−1)x是二次项(2)(a−1)x是一次项(3)(a−1)x是常数项.解:分三种情况:b+1b+1b+1(1)∴b = 1,a≠1(2)∴b = 0,a≠1(3)a−1 = 0 ∴a = 1∴a = 1;b = 0且a≠1且b = 15.一个长方形的周长为50cm,一边长为x(cm),求这个长方形的面积y(cm)与一边长x(cm)之间的函数关系式,并写出自变量x的取值范围答案:y=−x+25x,0说明:由已知不难得出,该长方形的另一边长为50÷2−x,即25−x,长方形的两边长则分别为x、25−x,而这两边长都应该大于0,即x>0且25−x>0,同时,该长方形的面积为22x(25−x)=−x+25x,即有y=−x+25x,06.小明存入银行人民币200元,年利率为x,两年到期,本息和为y元(以单利计算).(1)求y与x之间的函数关系式.(2)若年利率为2.25%,求本息和.(3)若利息税率为20%,求到期时,小明实际所得利息.答案:(1)y=200+400 (2)209 (3)7.2元说明:(1)两年到期的利息应该是2×200x,即400x,所以本息和y=200+400x(2)当x=2.25%时,y=200+400×2.25%=209(3)实际所得利息为2×200×2.25%×(1−20%)=7.2.22 6第二篇:《26.1二次函数》教学反思《26.1二次函数》教学反思龙潭镇第一初级中学黄海东这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。

本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。

但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。

此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。

三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。

2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪和黑板。

3.准备教案和教学笔记。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。

例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。

例如,展示一个二次函数的图像,引导学生观察其特点。

用待定系数法求二次函数的解析式教案

用待定系数法求二次函数的解析式教案

用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。

得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。

26.1 二次函数 华师大版数学九年级下册 课件

增加 ycm²,试写出y与x的函数关系式.
答:(1)y=-x²+10x; (2)S=r²; (3)y=x²+7x.共同特点:都是关于自变量的二次式.
2.探究新知
问题 1 要用长为20m的铁栏杆,一面靠墙(墙足够长),围成一个矩 形的花圃.
(1)设垂直于墙面的边AB为xm,矩形的面 积为ym².y能用含x的代数式来表示吗?
第26章 二次函数
26.1 二次函数
一 教学目标
1.通过对实际问题情境的分析,让学生经历二次函数概念的 形成过程,学会用类比思想学习二次函数知识. 2.掌握二次函数的概念,列出实际问题中的二次函数关系式.
二 重难点
重点:掌握二次函数的概念,列出二次函数关系式. 难点:理解变量之间的对应关系,并会求自变量的取值范围.
问题 2 某商店将每件进价为8元的某种商品按每件10元出售,一天 可售出100件.该店想通过降低售价、增加销售量的办法来提高利润. 经市场调查,发现这种商品每件每降低0.1元,每天销售量可增加10 件.将这种商品的售价降低多少时,能使每天销售利润最大?
(1)设每件商品降低x元(0≤x≤2),该商品每天的利润为y,y是x的 函数吗?为什么要限定x的值?
(2)试填写下面的表格. (3)x的值可以任意取吗?有限定范围吗? (4)我们发现y是x的函数,试写出这个函数的关系式.
解:(1)能. (2)如表所示.
AB的边长 x(m)
1
2
3
4
5
6
7
8
9
BC的边长 x(m)Fra bibliotek1816
14
12
10
8
6
4
2
面积y (m²)
18

新人教版九年级数学下第二十六章二次函数教案

新人教版九年级数学下二次函数教案课题:26.1二次函数教学目标:1、 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、 理解二次函数的概念,掌握二次函数的形式。

3、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、 会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y 与x 之间的函数解析式。

2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征?x让学生充分发表意见,提出各自看法。

26.1.3二次函数及其图象(3)


总结
(1) 抛物线 y a( x h) 的图象可由 y ax 的图象左右平
2
2
移得到, h 0 ,向右平移, h 0 ,向左平移,平移
h个单位.
(2)抛物线 y a( x h)的性质:
2
① a 0时,开口向上;a 0 时,开口向下; ②对称轴是直线 x
h;
③顶点坐标是 ( h,0).
练习二
1.在同一直角坐标系内画出下列二次函数的图象:
1 2 y x , 2
1 y ( x 2) 2 , 2
y
1 ( x 2) 2 . 2
观察三条抛物线的相互关系,并分别指出它们的开口方
1 2 y ( x h ) 向及对称轴、顶点的位置.你能说出抛物线 2
的开口方向及对称轴、顶点的位置吗?
一、复习 用描点法画出函数 向、对称轴与顶点坐标. 图象, 并根据图象指出抛物线
yx
yx
2
2
的开口方
对于二次函数y ax
a>0时 顶点坐标 对称轴 位置
(0,0)
y轴 在x轴的上方 (除顶点外) 向上
2
a< 0时
(0,0)
y轴 在x轴的下方 (除顶点外) 向下
开口方向 当x=0时,y最小值=0。 当x=0时,y最大值=0 最值
2.抛物线y=
B.向下平移1个单位; D.向右平移1个单位.
2x2 向上平移5个单位,会得到哪条抛物线. 向下平移3.4个单位呢? 3、把抛物线y= 2x2-4x+2化成y= a(x-h)2的形式,并指出 抛物线的开口方向,对称轴,顶点坐标;函数有最大值 还是最小值?是多少?
点,当x=
,与y轴交点坐标 直线x=3

26.1.3 二次函数y=ax2+k的图像及性质(教案)

3、抛物线y= - x2,y=- 3x2,y=-2x2中开口最小的是。
4、抛物线y= x2,y= 3x2,y=2x2中开口最大的是。
【ቤተ መጻሕፍቲ ባይዱ】课堂导学
1、在同一直角坐标系中画出二次函数y=x2,y=x2+1,y=x2-1的图象
x


y=x2
y=x2+1
y=x2-1
解:
列表
描点、连线
(1)抛物线y=x2+1的开口方向,对称轴是,
课题:26.1.3二次函数y=ax2+k的图像及性质
课型
新授课
备课时间
2014-9-8
使用教师姓名
使用时间
主备
审核教师
尹丽娟
参与教师姓名
张娜俊芳明宝凌云永鑫巩建英
教学目标:能做出二次函数y=ax2和y=ax2+k的图像,并能够比较它们的异同,理解a与k对二次函数图像的影响,能说出图像的开口方向、对称轴和顶点坐标。
6、填表
抛物线
开口方向
对称轴
顶点坐标
a>0
a<0
y=ax2
Y=ax2+k
【五】板书设计
【六】教后札记
顶点坐标是,顶点是最点,当x=时,函
数有最小值是。当x时,y随x的增大而增大,
当x时,y随x的增大而减小。
(2)抛物线y=x2-1的开口方向,对称轴是,
顶点坐标是,顶点是最点,当x=时,
函数有最小值是。当x时,y随x
的增大而增大,当x时,y随x的增大而减小。
【三】课堂小结
3、观察二次函数y=x2,y=x2+1,y=x2-1的图象的形状、对称轴、顶点、位置有何关系,你能得出什么规律?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计意图
一、提出问题
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
0
1
2
3

y=x2

18
8
2
0
2
8
18

y=x2+1

19
9
3
l
3
9
19

(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
(图象略)
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
教师引导生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值
之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。
问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗?
教学要点
1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。
2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.
3.教师写出解题过程,同学生所画图象进行比较。
解:(1)列表:
x

-3
-2
-1
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=2x2和函数y=2x2的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
2.你能说出函数y=ax2+k具有哪些性质?
作业
设计
必做
教科书P14:5(1)
选做
练习册P109-114




从课本的体系来看,这节课明显是要让学生明白什么是二
次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!
教学重点
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系
教学难点
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系
教学准备
教师
多媒体课件
学生
“预习课文、学习袋、学习用具”
课堂教学程序设计
[函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]
问题11:这个函数图象有哪些性质?
让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。
四、练习:P7练习。
五、小结
1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
完成填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.
以上就是函数y=2x2+1的性质。
三、做一做
问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
教学要点
1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);
2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数
值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得
最小值,最小值y=-2。
问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系?
教学要点
1.在学生画函数图象的同时,教师巡视指导;
2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。
问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?
教学时间
课题
26.1二次函数(3)
课型
新授课




知 识

能 力
使学生能利用描点法正确作出函数y=ax2+b的图象。
过 程

方 法
让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
情 感
态 度
价值观
师生互动,学生动手操作,体验成功的喜悦
问题4:函数y=2x2+1和y=2x2的图象有什么联系?
由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。
问题5:现在你能回答前面提出的第2个问题了吗?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
相关文档
最新文档