2012年普通高校招生全国统一考试(安徽卷)数学(理科)试题参考答案
2012年高考安徽数学(理)试卷解析(精析word版)(教师版)

2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 务必在试题卷、答题卡 自己的姓名、座位号,并认真 粘贴的条形码中姓名 座位号是否一致。
务必 面规定的地方填写姓名和座位号后两位。
2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
稿纸上答题无效。
4.考试结束,务必将试卷和答题卡一并上交。
参考:如果事件A 与B 互斥;则()()()P A B P A P B +=+ 如果事件A 与B 相互独立;则()()()P AB P A P B =如果A 与B 是事件,且()0P B >;则()()()P AB P A B P B = 试卷总评:安徽卷的试题在整体上题目比去年容易很多,注重了学生对基础知识、基本技能的全面考查,试题难易程度适中,布局比较合理,适合与对中等生的能力选拔应试。
但对于最后的难题(压轴题,如选择最后1题,填空最后一题,解答题压轴题)的区分度不大。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)复数x 满足()(2)5z i i --=. 则( )A. 22i -- B 22i -+ C 22i - D 22i +(2) 下列函数中,不满足(2)2()f x f x =的是( )A f(x)=xB f (x)=x-xC f(x)=x+1D f(x)=-x3 如图所示,程序框图(算法流程图)的输出结果是( )B.4 C4. 公比为2的等比数列{n a } 的各项都是正数,且31116a a =,则210log a =( )(A )4 (B )5 (C )6 (D )75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A )甲的成绩的平均数小于乙的成绩的平均数(B )甲的成绩的中位数等于乙的成绩的中位数(C )甲的成绩的方差小于乙的成绩的方差(D )甲的成绩的极差小于乙的成绩的极差(6)设平面α与平面β相交于直线m ,直线a 在平面α内。
2012年安徽高考数学试题及答案(理科)

的余弦值。
的中点为点
,面
面
得:
,连接 面
共面
又
面
(Ⅱ)延长 到 ,使
得:
,面
面
面
面
(Ⅲ) 在
中,
是二面角
的平面角
在
中,
得:二面角
的余弦值为 。
(19)(本小题满分13分)K]
设 (I)求 在
上的最小值;
(II)设曲线
在点
的切线方程为 ;求 的值。
【解析】(I)设
;则
①当 时,
在 上是增函数
得:当
时, 的最小值为
(7)
的展开式的常数项是( )
【解析】选
第一个因式取 ,第二个因式取 得: 第一个因式取 ,第二个因式取 得:
展开式的常数项是
(8)在平面直角坐标系中, 后,得向量
则点 的坐标是( )
【解析】选
【方法一】设
则
,将向量 按逆时针旋转
【方法二】将向量
按逆时针旋转 后得
则
(9)过抛物线
的焦点 的直线交抛物线于
参考公式:
如果事件 与 互斥;则
如果事件 与 相互独立;则
如果 与 是事件,且
;则
第Ⅰ卷(选择题 共50分) 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的 四个选项中,只有一项是符合题目要求的。
(1)复数 满足:
;则 ( )
【解析】选
(2)下列函数中,不满足:
【解析】选 与
均满足:
数列 是单调递减数列
得:数列 是单调递减数列的充分必要条件是 (II)由(I)得:
①当 时,
,不合题意
②当 时,
理数高考试题答案及解析-安徽.pdf

( A) 1或 3
(B) 1或 4
(C) 2 或 3
(D) 2 或 4
【解析】选 D
C62 −13 = 15 −13 = 2
①设仅有甲与乙,丙没交换纪念品,则收到 4 份纪念品的同学人数为 2 人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到 4 份纪念品的同学人数为 4 人
第 II 卷(非选择题 共 100 分)
按逆时针旋转 3
uuur 后,得向量 OQ
4
则点 Q 的坐标是( )
( A) (−7 2, − 2)
(B) (−7 2, 2) (C) (−4 6, −2)
【解析】选 A
uuur 【方法一】设 OP
=
(10cos ,10sin )
cos
=
3 ,sin
=
4
5
5
则
uuur OQ=来自(10 cos(+
3
),10 sin(
2
2
2
当 x [− , 0] 时, (x + ) [0, ] g(x) = g(x + ) = 1 sin 2(x + ) = − 1 sin 2x
2
2
2
22
22
当 x [− , − ) 时, (x + ) [0, ) g(x) = g(x + ) = 1 sin 2(x + ) = 1 sin 2x
(2)下列函数中,不满足: f (2x) = 2 f (x) 的是(
)
( A) f (x) = x 【解析】选 C
(B) f (x) = x − x (C) f (x) = x + (D) f (x) = −x
2012年安徽卷理科数学高考试卷(原卷 答案)

绝密★启用前2012年普通高等学校招生全国统一考试(安徽卷)理科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的4.(5分)公比为的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=()6.(5分)设平面α与平面β相交于直线m,直线a在平面α内.直线b在平面β内,且b⊥m,则“α⊥β”是7.(5分)(x2+2)()5的展开式的常数项是()8.(5分)在平面直角坐标系中,点0(0,0),P(6,8),将向量绕点O逆时针方向旋转后得向量,的坐标是(7,﹣)7,)4,﹣4,...211.(5分)若x,y满足约束条件,则x﹣y的取值范围是.12.(5分)某几何体的三视图如图所示,该几何体的表面积是.13.(5分)在极坐标系中,圆ρ=4sinθ的圆心到直线θ=(ρ∈R)的距离是.14.(5分)若平面向量满足|2|≤3,则的最小值是.15.(5分)设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是(写出所有正确命题的编号).①若ab>c2,则C<②若a+b>2c,则C<③若a3+b3=c3,则C<④若(a+b)c<2ab,则C>⑤若(a2+b2)c2<2a2b2,则C>.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(12分)设函数f(x)=cos(2x+)+sin2x(Ⅰ)求f(x)的最小正周期;(Ⅱ)设函数g(x)对任意x∈R,有g(x+)=g(x),且当x∈[0,]时,g(x)=﹣f(x),求g(x)在区间[﹣π,0]上的解析式.17.(12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.(Ⅰ)求X=n+2的概率;(Ⅱ)设m=n,求X的分布列和均值(数学期望)18.(12分)平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:AA1⊥BC;(Ⅱ)求AA1的长;(Ⅲ)求二面角A﹣BC﹣A1的余弦值.19.(13分)设函数f(x)=ae x++b(a>0).(Ⅰ)求f(x)在[0,+∞)内的最小值;(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y=,求a,b的值.20.(13分)如图,点F1(﹣c,0),F2(c,0)分别是椭圆C:(a>b>0)的左右焦点,经过F1做x 轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线于点Q.(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;(Ⅱ)证明:直线PQ与椭圆C只有一个交点.21.(13分)数列{x n}满足x1=0,x n+1=﹣x2n+x n+c(n∈N*).(Ⅰ)证明:{x n}是递减数列的充分必要条件是c<0;(Ⅱ)求c的取值范围,使{x n}是递增数列.2012年普通高等学校招生全国统一考试(安徽卷)理科数学(参考答案)i=⇒+i=+i=+i=2+2i的等比数列,=32解:×,甲的成绩的方差为×,以的成绩的方差为解:第一个因式取,第二个因式取,可得1)5,可得),设,=,绕点逆时针方向旋转后得向量,)cos sin7+sin﹣=,﹣)|AF|=3,,=解:由题意,解:约束条件,表示的可行域如图,由解得由,、由=.﹣,故答案为:满足|≤,≥=4||||≥,,故的最小值是﹣.>=cosC=>≥<≥C=,故a=b=c=C=cos=sin2x+﹣T=,sin2x]x+]=[sin2x=类试题,其概率为类型试题的概率为;p== ++=n+1AD=BB1=4,A1=51.在,当且仅当,,即,解得.)代入;Qy2=2a,,=∴0<c<1⇔,c时,⇒=⇔.c Nc。
2012年安徽高考数学理科试卷 (带详解)

2012年普通高等学校招生全国统一考试(安徽卷)数学理科一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数满足,则为 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出代数式,求复数.【难易程度】容易【参考答案】D【试题解析】设,则,所以可得,故.2.下列函数中,不满足等于的是()A. B. C. D.【测量目标】函数相等.【考查方式】给出一系列函数解析式,计算两函数值,得到答案.【难易程度】容易【参考答案】C【试题解析】令,则,其中C不满足,故答案为C.3.如图所示,程序框图(算法流程图)的输出结果是 ( )A.3B.4C.5D.8第3题图【测量目标】循环结构的程序框图.【考查方式】理解程序框图中的计算关系,求值.【难易程度】容易【参考答案】B【试题解析】第一次循环后:;第二次循环后:;第三次循环后:,跳出循环,输出 .4. 公比为2的等比数列{} 的各项都是正数,且=16,则 ( )A.4B.5C.6D.7【测量目标】等比数列的性质,对数的求值.【考查方式】给出等比数列两项乘积,求出等比中项,根据公比求出再求对数的值.【难易程度】中等【参考答案】B【试题解析】设等比数列的公比为,,则,所以,故.5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )第5题图A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【测量目标】频率直方图.【考查方式】给出频率直方图,通过图比较两者的中位数,平均数,以及方差和极差.【难易程度】容易【参考答案】C【试题解析】由条形图易知甲的平均数为,中位数为,(步骤1)方差为,极差为;(步骤2)乙的平均数为,中位数为5,(步骤3)方差为,极差为,(步骤4)故,甲乙中位数不相等且.(步骤5)6.设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且,则“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【测量目标】充分,必要条件.【参考方式】判断充分必要条件.【难易程度】容易【参考答案】A【试题解析】判断本题条件命题为“”条件命题,命题“”为结论命题,当时,由线面垂直的性质定理可得,所以条件具有充分性;但当时,如果,就得不出,所以条件不具有必要性,故条件是结论的充分不必要条件.7.()的展开式的常数项是 ( )A. B. C. D.【测量目标】二项式定理.【考查方式】整理所给的方程,直接利用二项式定理求展开式常数项.【难易程度】容易【参考答案】D【试题解析】因为,所以要找原二项式展开式中的常数项,(步骤1)只要找展开式中的常数项和含项即可.通项公式(步骤2)8.在平面直角坐标系中,点(0,0),点,将向量绕点按逆时针方向旋转后得向量,则点的坐标是()A. B. C. D.【测量目标】三角函数的定义和求值,两角和的正切.【考查方式】根据题意得到正切值,将向量转动后再利用两角和的正切公式求解.【难易程度】中等【参考答案】A【试题解析】设,因为,所以,(步骤1)可得,(步骤2)验证可知只有当点坐标为时满足条件,(步骤3)故答案为A;法二:估算.设,因为,所以,可得,,所以点在第三象限,排除B,D选项,又,故答案为A.9.过抛物线的焦点的直线交该抛物线于A,B两点,为坐标原点.若,则的面积为()第9题A. B. C. D.【测量目标】直线的方程,直线和抛物线的位置关系.【考查方式】给出抛物线方程求出直线方程,根据直线与抛物线的位置关系求三角形面积.【难易程度】较难【参考答案】C【试题解析】如图,设,由抛物线方程,可得抛物线焦点,(步骤1)抛物线准线方程为,故.(步骤2)可得,,故,直线的斜率为,(步骤3)直线的方程为,(步骤4)联立直线与抛物线方程可得,(步骤5)因为两点横坐标之积为,所以点的横坐标为,(步骤6)可得,,(步骤7)点到直线的距离为,所以.(步骤8)10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ` ( )A.1或3B.1或4C.2或3D.2或4【测量目标】简单的计数,排列组合的应用.【考查方式】通过实际的问题,利用简单的计数原理和排列组合求值.【难易程度】较难【参考答案】D【试题解析】任意两个同学之间交换纪念品共要交换次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题共100分)请用0.5毫米海瑟墨水签字笔在答题卡上作答,在试卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.若满足约束条件则的取值范围是______.第11 题图【测量目标】二元线性规划求目标函数的范围.【考查方式】直接给出约束条件,画出可行域,求目标函数的的取值范围.【难易程度】容易【参考答案】【试题解析】法一:画出可行域是如图所示的的边界及内部,令.易知当直线经过点时,直线在轴上截距最大,目标函数取得最小值,即;当直线经过点时,直线在轴上截距最小,目标函数取得最大值,即,所以.法二:界点定值,同法一先画出可行域,令,把边界点代入目标函数可得,,比较可得.12.某几何体的三视图如图所示,该几何体的表面积是______.第12题图【测量目标】三视图求几何体的表面积.【考查方式】观察三视图,通过空间想象得出几何体,求几何体表面积.【难易程度】中等【参考答案】【试题解析】如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为.第12题图13.在极坐标系中,圆的圆心到直线的距离是____________.【测量目标】点到直线的距离,坐标系和参数方程.【考查方式】将参数方程化为一般方程,利用点到直线的距离公式求值.【难易程度】容易【参考答案】【试题解析】圆,即化为直角坐标为,(步骤1)直线的方程也就是直线,即为,(步骤2)圆心到直线的距离为.(步骤3)14.若平面向量,满足,则的最小值是___________.【测量目标】绝对值,均值不等式,向量的异向性.【考查方式】给出绝对值不等式,利用均值不等式求两向量的最值.【难易程度】中等【参考答案】【试题解析】由,有,(步骤1),可得,所以,(步骤2)故当且方向相反时,的最小值为.(步骤3)15.设的内角所对边的长分别为,则下列命题正确的是_____________(写出所有正确命题的编号).①若,则;②若,则;③若,则;④若,则;⑤若,则.【测量目标】正余弦定理判断三角形角的大小,均值不等式,命题之间的关系.【考查方式】根据三角形的边角关系,通过均值不等式以及正余弦定理判断角的大小从而确定命题间的关系.【难易程度】较难【参考答案】①②③【试题解析】对于①,由得,(步骤1)则,因为,所以,故①正确;(步骤2)对于②,由得,即,则,(步骤3)因为,所以,故②正确;(步骤4)对于对于③,可变为,可得,(步骤4)所以,所以,故,③正确;(步骤5)对于④,可变为,可得,所以,(步骤6)因为,所以,④错误;(步骤7)对于⑤,可变为,即,(步骤8)所以,所以,所以,故⑤错误. (步骤9)答案为①②③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设函数.(I)求函数的最小正周期;(II)设函数对任意,有,且当时,,求函数在上的解析式.【测量目标】两角和与差的三角函数公式,二倍角公式,三角函数的性质,求分段函数解析式.【考查方式】给出函数解析式,根据三角函数的性质得到周期,利用两角和与差的三角公式以及二倍角公式求分段函数解析式.【难易程度】中等【试题解析】.(步骤1)(1)函数的最小正周期.(步骤2)(2)当时,,(步骤3)当时,,当时, .(步骤4)得:函数在上的解析式为(步骤5)17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量.(Ⅰ)求的概率;(Ⅱ)设,求的分布列和均值(数学期望).【测量目标】基本事件概率,条件概率,离散型随机变量及其分布列均值.【考查方式】通过实际问题考查基本事件的的概率以及分布列和数学期望.【难易程度】中等【试题解析】(I)表示两次调题均为类型试题,概率为.(步骤1)(Ⅱ)时,每次调用的是类型试题的概率为,随机变量可取.,,.(步骤2).(步骤4)答:(Ⅰ)的概率为;(Ⅱ)的均值为.(步骤5)18.(本小题满分12分)平面图形,其中是矩形,,,.现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图空间图形,对此空间图形解答下列问题.第18题图(1)证明:;(2)求的长;(3)求二面角的余弦值.【测量目标】空间中线线、线面、面面的位置关系,空间中的距离以及二面角.【考查方式】线线,线面,面面的垂直的相互转化,证明线线垂直;根据证明得到三角关系求距离;分析所求二面角所形成的三角形,解三角形,求角.【难易程度】中等【试题解析】(1)取的中点为点,连接,则,∴,∵平面平面,∴平面,(步骤1)同理:平面,得,∴共面,(步骤2)又∵,∴平面,∴.(步骤3)(2)延长到,使,得,(步骤4),平面平面∴平面,∴平面,(步骤5).(3),∴是二面角的平面角.(步骤6)在中,,在中,,∴二面角的余弦值为.(步骤7)19.(本小题满分13分)设.(I)求在上的最小值;(II)设曲线在点的切线方程为,求的值.【测量目标】函数、导数的基础知识,运用导数研究函数性质,导数的几何性质.【考查方式】给出含参的函数解析式,利用导数对参数进行分类讨论求函数的最值;根据导数的几何性质,得到切点方程联立该点函数方程求值.【难易程度】中等【试题解析】(I)设,则.(步骤1)①当时,在上是增函数,得:当时,的最小值为.(步骤2)②当时,,当且仅当时,的最小值为.(步骤3)(II),(步骤4)由题意得:20. (本小题满分13分)如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点;(I)若点的坐标为,求椭圆的方程;(II)证明:直线与椭圆只有一个交点.第20 题图【测量目标】椭圆方程和椭圆几何性质,直线与椭圆的位置关系. 【考查方式】通过图形以及已知条件求椭圆方程;根据直线与圆的位置关系进行证明.【难易程度】中等【试题解析】(I)点代入,得:.(步骤1).①又. ②.③(步骤2)由①②③得:,即椭圆的方程为.(步骤3)(II)设,则.(步骤4)得:,(步骤5).(步骤6)过点与椭圆相切的直线斜率.(步骤7)得:直线与椭圆只有一个交点.21.(本小题满分13分)数列满足:.(I)证明:数列是单调递减数列的充分必要条件是;(II)求的取值范围,使数列是单调递增数列.【测量目标】数列概念及其性质,不等式及其性质,充要条件.【考查方式】给出数列关系式,分步骤证明充分,必要条件;分类讨论,归纳求参数的取值范围使得数列单调递增.【难易程度】较难【试题解析】(I)必要条件当时,数列是单调递减数列;(步骤1)充分条件数列是单调递减数列.(步骤2)得:数列是单调递减数列的充分必要条件是.(II)由(I)得:.①当时,,不合题意;(步骤3)②当时,,,(步骤4).(步骤5)当时,与同号,由,.(步骤6)当时,存在,使与异号.(步骤7)与数列是单调递减数列矛盾得:当时,数列是单调递增数列.(步骤8)。
2012年高考理科数学安徽卷及答案

绝密★启用前2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,.在.答题卷、草稿纸上答题无效............. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥;则()()()P A B P A P B +=+ 如果事件A 与B 相互独立;则()()()P AB P A P B =如果A 与B 是事件,且()0P B >;则()()()P AB P A B P B =第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足:(i)(2i)5z --=;则z =( )A .22i --B .22i -+C .2-2iD .2+2i2.下列函数中,不满足(2)2()f x f x =的是( )A .()||f x x =B .()||f x x x =-C .()1f x x =+D .()f x x =-3.如图所示,程序框图(算法流程图)的输出结果是( )A .3B .4C .5D .84.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log =a ( )A .4B .5C .6D .75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差6.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.2521(2)(1)x x +-的展开式的常数项是( )A .3-B .2-C .2D .38.在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针旋转3π4后得到向量OQ ,则点Q 的坐标是( )A.(- B.(- C.(2)--D.(-9.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,O 为是坐标原点.若3AF =,则AOB ∆的面积为 ( )A.2 BCD.10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4第Ⅱ卷(非选择题 共100分)姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.若,x y 满足约束条件:0,23,23,x x y x y ⎧⎪+⎨⎪+⎩≥≥≤则x y -的取值范围为______.12.某几何体的三视图如图所示,该几何体的表面积是______.13.在极坐标系中,圆4sin ρθ=的圆心到直线π()6R θρ=∈的距离是______. 14.若平面向量a,b 满足:|2|3-≤a b ;则⋅a b 的最小值是______.15.设ABC ∆的内角,,A B C 所对的边为,,a b c ,则下列命题正确的是______(写出所有正确命题的编号).①若2ab c >;则π3C <②若2a b c +>;则π3C <③若333a b c +=;则π2C <④若()2a b c ab +<;则π2C >⑤若22222()2a b c a b +<;则π3C >三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设函数2π())sin 4f x x x =++ (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)设函数()g x 对任意x ∈R ,有π()()2g x g x +=,且当π[0,]2x ∈时,1()()2g x f x =-.求()g x 在区间[π,0]-上的解析式.17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量. (Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望).18.(本小题满分12分)平面图形111ABB AC C 如图1所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC ==1111A B A C ==.现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,A A A B AC ,得到如图2所示的空间图形.对此空间图形解答下列问题. (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】{}n a 是等比数列,且,又等比数列4=,16a ∴=log 32=log 【解析】1(45x =甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,”的充分条件,m ,则a ⊥故选A .【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =5,又OP 按旋转OQ,10cos OQ θ⎡=+ ⎢⎝⎭⎦∴【提示】由点,知(6,8)OP =,设(10cos OP =。
2012安徽高考数学理科试卷含答案
2012年安徽省普通高等学校招生统一考试试题、参考答案
(理科数学)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.
第I 卷
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.
2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.
3.考试结束,监考员将试题卷、答题卡一并收回.
参考公式:
如果事件A B ,互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24πS R =
如果事件A B ,相互独立,那么 其中R 表示球的半径
()()()P A B P A P B =g g 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =
n 次独立重复试验中恰好发生k 次的概率 ()(1)k k n k n n P k C P P -=-
其中R 表示球的半径。
[VIP专享]2012年安徽高考数学试题及答案(理科)
2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 务必在试题卷、答题卡自己的姓名、座位号,并认真粘贴的条形码中姓名座位号是否一致。
务必面规定的地方填写姓名和座位号后两位。
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试卷和答题卡一并上交。
参考:如果事件A与B互斥,那么P(A+B)=P(A)+P(B)如果事件A与B相互独立,那么P(AB)=P(A)P(B)如果A与B为事件,P(A)>0,那么一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的(1)复数x满足f(x-i)(2-i)=5. 则A.-2-2i B -2+2iC 2-2iD 2+2i(2) 下列函数中,不满足飞(2x)等于2f(x)的是x xA f(x)=B f (x)=x-C f(x)=x+1D f(x)=-x3 如图所示,程序框图(算法流程图)的输出结果是A.3B.4C.5D.84.的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16=(A)4 (B)5 (C)6 (D)75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则(A )甲的成绩的平均数小于乙的成绩的平均数(B )甲的成绩的中位数等于乙的成绩的中位数(C )甲的成绩的方差小于乙的成绩的方差(D )甲的成绩的极差小于乙的成绩的极差(6)设平面α与平面β相交于直线m ,直线a 在平面α内。
12年高考数学答案(理科)
2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案1-5 DCBBC 6-10 ADACD 11. [3,0]- 12. 92 13. 3 14. 98- 15. ①②③16【解析】22111()cos(2)sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =-(I )函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[22x ππ+∈11()()sin 2()sin 22222g x g x x x ππ=+=+=-当[,)2x ππ∈--时,()[2x ππ+∈11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩17【解析】(I )2X n =+表示两次调题均为A 类型试题,概率为12n n m n m n +⨯+++ (Ⅱ)m n =时,每次调用的是A 类型试题的概率为12p =随机变量X 可取,1,2n n n ++21()(1)4P X n p ==-=,1(1)2(1)2P X n p p =+=-=,21(2)4P X n p =+== X n1n + 2n +P1412 14111(1)(2)1424EX n n n n =⨯++⨯++⨯=+答:(Ⅰ)2X n =+的概率为12n n m n m n +⨯+++(Ⅱ)求X 的均值为1n +18【解析】(I )取11,BC B C 的中点为点1,O O ,连接1111,,,AO OO AO AO 则AB AC AO BC =⇒⊥,面ABC ⊥面11BB C C AO ⇒⊥面11BB C C 同理:11AO ⊥面11BB C C 得:1111//,,,AO AO A O A O ⇒共面 又11,OO BC OO AO O ⊥=⇒ BC ⊥面111AOO A AA BC ⇒⊥(Ⅱ)延长11AO 到D ,使1O D OA = 得:11////O D OA AD OO ⇒ 1O O B C ⊥,面111A BC ⊥面11BB C C 1OO ⇒⊥面111A B C ⇒AD ⊥面111A B C 222214(21)5A A A D D A =+=++= (Ⅲ)11,AO BC AO BC AOA ⊥⊥⇒∠是二面角1A BC A --的平面角 在11Rt OO A ∆中,222211114225A O OO AO =+=+=在1Rt OAA ∆中,22211115cos 25AO AO AA AOA AO AO +-∠==-⨯ 得:二面角1A BC A --的余弦值为55-。
[VIP专享]2012年安徽高考数学理科试卷及答案(精美Wor...
的距离是 _________ .
14.若平面向量
满足|2
|≤3,则 的最小值是 ___ .
15.设△ABC 的内角 A,B,C 所对边的长分别为 a,b,c,则下列 命题正确的是 _________ (写出所有正确命题的编号).
①若 ab>c2,则 C<
②若 a+b>2c,则 C<
③若 a3+b3=c3,则 C<
④若(a+b)c=2ab,则 C>
1) B2Ak+22+12=+15+c51mc+=5m=2c111++m+12+21+++2=12=2+1+2+1+2+2+22+32k+1+2
88.8918÷.12990.÷1=4214÷3922=.0034=1÷15251371=8.535.78208÷.0232173c0*0÷1=m920.30392.2c=1÷203m=2÷1202.52=3535=42314)c*5232m40341*.31252=3.*1.153.5*03134.2*920522..104455=+21*3*50202.2.0285.4850.13*50+5c8*125*12m0.2+050.+0*014.852*0051000+0+/038.T+0÷+=55*+1011+010+91÷0145405*00010200+5+0+080+40*04+***115.103910*-%*C%6(+÷*M==5M÷5)0*3*0(31÷3110**5*+*÷414.m2371e=%7)8n08%.=s8.5=77.93cc60.mc*m4*m13,101w9.9o.k24mc-.cem5nm2csp2665m*9..03-4.50c60*5.pc3m85,9cm0.5g.i50mr0l-.p.s85p/6c50bc.0om7m.yp.cs6pc5m+;c0m..m7.ckm; 1+1k+12+1+k2234=1c+m1++4+4+2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高校招生全国统一考试(安徽卷)数 学(理科)试题参考答案一、选择题:每小题5分,共50分.(1) B (2) A (3) C (4) C (5) D (6) D (7) C (8) B (9) C (10) C二、填空题:每小题5分,共25分.(11) [92,10] (12) -17 (13) 161 (14) 260 (15) ①②④三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.(16) (本小题满分13分) PG FA DB EC 第(16)题解答用图 (Ⅰ)证明:取PA 的中点G ,连GF ,GB ,∵F 为PD 的中点,GF ∥AD ∥BE , ………2分 ∴BEFG 为平行四边形,∴EF ∥BG ,∴EF ∥平面PAB. ………4分 (Ⅱ)解:∵PA ⊥平面ABCD ,连AE ,则∠PEA 为PE 与平面ABCD 的角. 设BE=t ,则AE=9+2t , ………5分∴tan ∠PEA=3≥9+30=2t AE PA ,∴0≤t ≤1,∴所求概率P=31. ………6分 (Ⅲ)解:∵PA ⊥平面ABCD ,BC ⊥AB , ∴BC ⊥PB ,同理可证:CD ⊥PD. ∴54=++22x h x hx ,则58-80=4x hx . ………8分∵V (x )=)-80(5241=3152x h x , ………10分 求导得V ’(x )0=)+4)(+2)(-2(245=2x x x ,得x =2. ………12分∵当0<x <2时,V ’(x )>0;当x >2时,V ’(x )<0, ∴V (x )max = V (2)=15516. ………13分 (17) (本小题满分12分) 解:(Ⅰ)由f (x )=kx -xk-2ln2x ,得 f ’(x )222x +2-=x 2-+=kx kx x k k , ………2分由x =2是f (x )的一个极值点,得 f ’(2)54=0=4+4-4=k k k ,. f ’(x )2225)1-2)(2-(2=54+10-4=x x x x x x , ………4分 当x >2或0<x <21时,f ’(x ) >0;当21<x <2时,f ’(x ) <0, …5分所以f (x )在x =21时取得极大值-56,f (x )在x =2时取得极小值4ln 2-56. …6分(Ⅱ)由f ’(x )222x +2-=x 2-+=kx kx x k k ,令h (x )=k x kx +2-2,要使f (x )在其定义域(0,+∞)上单调递增,只需h (x )在(0,+∞)上满足h (x ) ≥0恒成立, ………8分 由h (x ) ≥0得k x kx +2-2≥0,即k ≥=1+22x xxx 1+2在x ∈(0,+∞)上恒成立, ………10分∵x >0,∴xx 1+≥2,∴xx 1+2≤1,∴k ≥1, ………11分综上,k 的取值范围为[1,+∞). (12)分(18) (本小题满分12分)解:(Ⅰ)由f (x )≤31,得n x m x 3-6+)-1(3+2≥0恒成立, ∴Δ1=)3-6(4-)-1(92n m ≤0, ……… 2分∴n ≤2+)1-(43-2m . ………3分 又由f (x ) ≥-51,得6+5+)5+3(+2n x m x ≥0恒成立,∴Δ2=)6+5(4-)5+3(2n m ≤0,∴n ≥56-)53+(452m . ………5分 n ≤2+)1-(43-2m ,∴m ,n 应满足的条件为 ………6分n ≥56-)53+(452m .(Ⅱ)由(Ⅰ)中m ,n 满足的条件知,若点P (m ,n )所在区域D 为抛物线n =2+)1-(43-2m ,n =56-)53+(452m 所围成的区域,如图所示8分n =2+)1-(43-2m , 联立 A n =56-)53+(452m , m=1, m=-1, 得 10分 n=1, n=-1, 即A ,B 两点的坐标为A(1,2),B(-1, ∴区域D 的面积S =∫1 -1[56+)53+(45-2+)1-(43-22m m ]dm =∫1-138=)2+32-(=)2+2-(11-32m m dm m . ………12分(19) (本小题满分12分)解:(Ⅰ)设A 队得分为2分的事件为A 0. P(A 0)=7528=52×53×32+52×52×31+53×52×32. ………5分 (Ⅱ)设A 队得分为ξ,则ξ所有的可能取值为0,1,2,3. P(ξ=0)=,253=53×53×31 P(ξ=1)=,52=52×53×31+53×52×31+53×53×32P(ξ=2) =7528=52×53×32+52×52×31+53×52×32,P(ξ=3) =758=52×52×32,∴ξ的分布列为10分ξ的数学期望E ξ=1522=758×3+7528×2+52×1+253×0. ………12分 (20) (本小题满分13分)解:(Ⅰ)依题意,3-2=-,23=c a a c ,所以a =2,3=c , ………2分 所以椭圆方程为1=+422y x . ………3分 (Ⅱ)① 当A(x 0,y 0)在左、右两端点时,切线的斜率不存在,切线方程为x=±2. ………4分 ② 当A(x 0,y 0)不在左、右两端点时,切线的斜率存在,设为k ,则l 的方程为: y- y 0=k (x- x 0).y- y 0=k (x- x 0),由 得,1=+422y x []0=1-)-(+)-(2+)+41(2000022kx y x kx y k x k , ………6分 因为l 是椭圆的切线,所以Δ=[][]0=1-)-()+41(4-)-(22002200kx y k kx y k ,所以004-=y x k ,所以切线l 的方程为y- y 0=04-y x (x- x 0), ………7分 即1=+400y y xx , 所以过A(x 0,y 0)的切线方程为1=+400y y xx . ………8分 (Ⅲ)假定存在两点B ,C ,使OA + OB + OC =0,设B(x 1,y 1),C(x 2,y 2),则OB =(x 1,y 1),OC =(x 2,y 2),由OA + OB + OC =0可知,x 1+ x 2+ x 0=0,y 1+ y 2+ y 0=0. ………9分 又因为A ,B ,C 在椭圆上,所以1=+42020y x , ①1=+42121y x , ②1=+42222y x , ③ 由x 1+ x 2+ x 0=0,y 1+ y 2+ y 0=0可得x 1=-( x 2+ x 0),y 1=-( y 2+ y 0), ………10分代入②得:1=)+(+4)+(202202y y x x ,则1=)+4(+)2+42(+)+4(222220202020y x y y x x y x ,将①③代入上式化简得:21-=+42020y y x x , 所以点C(x 2,y 2)在直线21-=+42020y y x x 上, 同理可证点B(x 1,y 1)也在直线21-=+42020y y x x 上. ………11分 作A(x 0,y 0)关于原点的对称点A ’,则A ’的坐标为(-x 0,-y 0),且在椭圆上,由(Ⅱ)知,过A ’ (-x 0,-y 0)的切线l ’的方程为:1=)-(+4)-(00y y x x ,即1-=+400y y xx , ………12分 观察直线BC ,l ,l ’的方程可知BC ∥l ∥l ’,且BC 介于直线l 和l ’之间,故直线BC 与椭圆比有两个交点.所以对于椭圆上任一点A(x 0,y 0),始终在椭圆上存在两点B ,C ,使OA + OB + OC=0,10x x ………13分第(20)题解答用图(21) (本小题满分13分)(Ⅰ)解:由-nx +2n ﹥0及x >0得0<x <2,因为x ∈R ,所以x =1. ………2分 又x =1与y =-nx +2n 的交点为(1,n ),所以D n 内的整点,按由近到远排列为:(1,1),(1,2),…,(1,n ). ………3分 (Ⅱ)证明:n ≥2时,a n = y n 2(21-22211+•••+1+1n y y y )=2222)1-(1++21+11(n n ), 所以2222)1-(1++21+11=n n a n , ………5分22221+1++21+11=)1+(n n a n , ………6分 两式相减得:2221+1=-)1+(n n a n a n n . ………7分 (Ⅲ)当n =1时,2=1+11a ﹤4,n =2时,25=)1+1)(1+1(21a a ﹤4,可猜想:n ∈N*时,)1+1(••)1+1)(1+1(21na a a ﹤4. ………8分事实上n ≥2时,由(Ⅱ)知221+)1+(=+1n n a a n n , ………9分 所以)1+1(••)1+1)(1+1(21n a a a =nn a a a a a a a a +1••+1•+1•+1332211 =)+1(•)+1••+1•+1(1•+11-4332211n nn a a a a a a a a a a =1+2222•)1+(•)1-(••)43(•)32(•41•2n a n n n n =)1++31+21+11(2=)1+(2222221+n n a n ………11分 ﹤2[ nn ×)1-(1++3×21+2×11+1 ] =2)1-1-1++31-21+21-1+1(nn ﹤4. ………12分 综上,)1+1(••)1+1)(1+1(21na a a ﹤4. ………13分。