【苏州分校】2017江苏省苏州市星海中学初三二模数学试卷
江苏省苏州市重点中学2017年中考数学二模试卷及答案

苏州市XX 中学2016-2017学年第二学期初三二模试卷数学 2017.5本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.﹣ 的相反数是 A .3B .﹣3 C.D.﹣2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 3)4=a 12C .5a ﹣2a =3a 2D .(x +y )2=x 2+y 23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是A.B.C.D.4.函数y=3-x 中自变量x 的取值范围是A .x ≥3B .x ≥﹣3C .x ≠3D .x >0且x ≠35.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,则∠2等于A .70°B .75°C .80°D .85° 6.下列一元二次方程中,有两个相等实数根的是A .x 2﹣8=0B .2x 2﹣4x +3=0C .5x +2=3x 2D .9x 2+6x +1=07.抛物线223y x x =++的对称轴是A .直线x =1B .直线x = -1C .直线x =-2D .直线x =2 8.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为A .4B .﹣4C .16D .﹣1612ba c)5(题第9.如图△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( ) A .2B .C .3D .210.如图点A 、B 在反比例函数y =(k >0,x >0)图象上,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为A .B .C .D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.分解因式:29a -= ▲ .12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 ▲ .13.如图,等腰三角形ABC 的顶角为1200,底边BC 上的高AD= 4,则腰长为 ▲ .第13题 第14题 第15题14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 ▲ .15.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为 ▲ . 16.已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于▲ .17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 ▲ 米(结果保留根号).OBCD A第17题 第18题18.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME =108°;②2AN AM AD =⋅;③MN =31BE =.其中正确结论的序号是 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:202(π--+.20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩21.(本题满分6分)21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 1. 22.(本题满分6分)某校学生利用双休时间去距学校10 km 的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.(本题满分8分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.24.(本题满分8分)为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A ,B ,C ,D 四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为 ▲ ; (2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y=(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3, (1)求反比例函数y=的解析式; (2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.26(本题满分10分)如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长. 27.(本题满分10分)在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF . (1)如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为: ▲ .②BC ,CD ,CF 之间的数量关系为: ▲ ;(将结论直接写在横线上)(2)如图2,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论,再给予证明.(3)如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若已知AB=2,CD=BC ,请求出GE 的长.28.(本题满分10分)如图平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)经过△ABC 的三个顶点,与y 轴相交于(0,),点A 坐标为(﹣1,2),点B 是点A 关于y 轴的对称点,点C 在x 轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F 为线段AC 上一动点,过F 作FE ⊥x 轴,FG ⊥y 轴,垂足分别为E 、G ,当四边形OEFG 为正方形时,求出F 点的坐标.第26题图BAE PO DC(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动,设平移的距离为t ,正方形的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连接DM ,是否存在这样的t ,使△DMN 是等腰三角形?若存在,求t 的值;若不存在请说明理由.苏州市XX 学校2017届初三二模试卷数学参考答案及评分标准一、选择题(每小题3分,共30分)二、选择题(每小题3分,共24分) 11.(a + 3)(a - 3) 12.4.51×107 13.8 14.2915.60016.103∏ 17.418.①、②、③三、解答题(共11大题,共76分) 19.(本题共5分)解:原式= 3-2 + 1 ··············································································· 3分=2 ·························································································· 5分20.(本题共5分)解:由①式得:x>3. ············································································ 2分由②式得:x 4≤. ··········································································· 4分∴不等式组的解集为: 34x <≤. ····················································· 5分21.(本题共6分) 解:原式=211x x x x ÷-- ············································································ 1分 =1(1)(1)x x x x x-⋅+- ····································································· 2分=11x + ····················································································· 4分当x 1时,原式··································································· 5分. ··················································································· 6分 22.(本题满分6分)解:设骑电瓶车学生的速度为x km /h ,汽车的速度为2x km /h ,可得:··········1分10x =102x +2060, ···············································································3分解得x =15,······················································································4分 经检验,x =15是原方程的解,······························································5分 2x =2×15=30.答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h .·························6分 23.(本题共8分)····1分 ····2分 ······3分 ····4分 ·····5分 ·······6分 ,······7分2AEBF ······8分 24.(本题共8分)1)由题意可得,本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为:×100%=20%.··················································2分(2)由题意可得,选择C 的人数有:30÷﹣36﹣30﹣44=70(人)补全的图②柱状图正确 ·········································5分(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.········································8分 25.(本题共8分)解:(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,).∵点C 、点D 均在反比例函数y=的函数图象上,∴,···························1分解得:.·········2分 ∴反比例函数的解析式为y=.········································3分 (2)∵m =1,∴点A 的坐标为(4,4),········································4分 ∴OB =4,AB =4.在Rt △ABO 中,OB =4,AB =4,∠ABO =90°, ∴OA==4,cos ∠OAB===.········································5分 (3))∵m =1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y =ax +b,则有,解得:.·····7分 ∴经过C 、D 两点的一次函数解析式为y =﹣x +3. ········································8分 26.(本题共10分)证明: ⑴如图,连接OC ,∵P A 切⊙O 于A .∴∠P AO =90º. ····································································································· 1分 ∵OP ∥BC ,∴∠AOP =∠OBC ,∠COP =∠OCB .∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP . ······························································································· 2分 又∵OA =OC ,OP =OP , ∴△P AO ≌△PCO (SAS ).∴∠P AO =∠PCO =90 º, 又∵OC 是⊙O 的半径,∴PC 是⊙O 的切线. ······························································································ 3分 ⑵解法不唯一. 解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90 º,∴∠P AD+∠DAO =∠DAO+∠AOD , ∴∠P AD =∠AOD ,∴△ADO ∽△PDA . ······························································································ 4分 ∴AD DOPD AD =,∴2AD PD DO =⋅,∵AC =8, PD =163, ∴AD =12AC =4,OD =3,AO =5, 5分 由题意知OD 为△ABC 的中位线,∴BC =2OD =6,AB =10.∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭. 答:阴影部分的面积为22548cm 2π-. ······································································· 6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ················································ 7分第23题答图B∴∠CMB =∠EMB =∠AEB =90º,又∵点E 是AB ︵的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB =,BE =AB cos450 = ···························· 8分∴ EM CE =CM +EM =()cm .·······················9分答:CE 的长为. ······················································································· 10分 27.(本题共10分)解:(1)①垂直; ································································································· 1分 ②BC =CF +CD ; ···························2分 (2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△F AC 中,,∴△DAB ≌△F AC ,···························4分 ∴∠B =∠ACF ,CF =BD ∴∠ACB +∠ACF =90°,即CF ⊥BD ;∵BC =BD +CD , ∴BC =CF +CD ;···························6分 (3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,∵∠BAC =90°,AB =AC ,∴BC =AB =4,AH =BC =2,∴CD =BC =1,CH =BC =2,∴DH =3,···························7分 由(2)证得BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°, ∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,···························8分 ∴NE =CM ,EM =CN ,∵∠AHD =∠ADC =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM ,在△ADH 与△DEM 中,,∴△ADH ≌△DEM ,∴EM =DH =3,DM =AH =2, ∴CN =EM =3,EN =CM =3,···························9分 ∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形,∴CG =BC =4,∴GN =1,∴EG ==.··························10分 28.(本题共10分)解:(1)∵点B 是点A 关于y 轴的对称点,∴抛物线的对称轴为y 轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y =ax 2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;··························2分(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.·········3分设正方形OEFG边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).·························4分②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.··························5分综上所述:点F的坐标为(1,1);··························6分(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.··························7分①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;··························8分②当ND=NM时,﹣t+==,解得t=3﹣;··························9分③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.··························10分综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。
江苏省苏州市2017届九年级上期中数学模拟试卷(二)含答案解析

试卷第1页,总17页绝密★启用前江苏省苏州市2017届九年级上期中数学模拟试卷(二)含答案解析题号 一 二 得分注意事项:1.本试卷共XX 页,二个大题,满分134分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共54分)评卷人 得分1.一元二次方程x 2+4x=0的解是( )(3分) A. x=﹣4 B. x 1=0,x 2=﹣4 C. x=4 D. x 1=0,x 2=42.用配方法解方程x 2﹣4x ﹣5=0时,原方程应变形为( )(3分) A. (x+1)2=6 B. (x+2)2=9 C. (x ﹣1)2=6 D. (x ﹣2)2=93.方程x 2=x 的解是( )(3分) A. x=1 B. x=0 C. x 1=1,x 2=0试卷第2页,总17页○………○……… D. x 1=﹣1,x 2=04.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为( )(3分) A. 20(1+2x)=80 B. 2×20(1+x)=80 C. 20(1+x 2)=80 D. 20(1+x)2=805.若抛物线y=ax 2经过P(1,﹣2),则它也经过( )(3分) A. (2,1) B. (﹣1,2) C. (1,2) D. (﹣1,﹣2)6.抛物线y=2(x ﹣3)2+1的顶点坐标是( )(3分) A. (3,1) B. (﹣3,1) C. (1,﹣3) D. (1,3)7.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )(3分) A. k >﹣1 B. k >﹣1且k≠0 C. k <1 D. k <1且k≠08. (3分)A. 0试卷第3页,总17页……○……………………装…………○…………订…………○…………线校:___________姓名:___________班级:___________考号:___________……○……………………装…………○…………订…………○…………线 B. 1 C. 2 D. 39.已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )(3分)A.B.C.D.10.(3分) A. 3个 B. 4个 C. 5个 D. 6个 11. (3分)12. (3分)试卷第4页,总17页………外……………装…………○…………订…………○…………线…………○……※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………内……………装…………○…………订…………○…………线…………○……13.(3分)14.(3分)15.(3分)16.(3分)17.(3分)18.(3分)二、解答题(共80分)评卷人 得分19.(8分)试卷第5页,总17页……内…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________……外…………○…………装…………○…………订…………○…………线…………○……20.(8分)21.(8分)22.(8分)23.(8分)24.(8分)。
中学中考数学二模试题

江苏省苏州市星海中学 中考数学二模试题1.所有题目都须在答卷纸上(英语、化学、政治、历史选择题均在答题卡上)作答,答在试卷和草稿纸上无效;2.答题前,考生务必将学校、班级、姓名、考试号、考场号、座位号,用毫米黑色墨水签字笔填写在答卷纸的相应位置上(答卷纸最左侧),英语、化学、政治、历史的考试号用2B 铅笔涂在答题卡相应的位置上;3.答卷纸上答客观题(选择题)必需用2B 铅笔涂在相应的位置;4.答卷纸上答主观题(非选择题)必需用毫米黑色墨水签字笔写在指定的位置上,不在答题区域内的答案一概无效,不得用其它笔答题,假设修改答案,用笔画去或用橡皮擦去,不能用涂改液、修正带等;5. 英语、化学、政治、历史学科答题卡答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,修改答案时用画图橡皮轻擦干净,不要擦破,维持答题卡清洁,不要折叠、弄破,不能任意涂画或作标记。
一、选择题:(本大题共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上..........) 1.2021的相反数是( ▲ ) A 、错误!未找到引用源。
B 、错误!未找到引用源。
C 、﹣2021D 、20132.H7N9禽流感病毒的直径大约为0.00000008米,用科学记数法表示为( ▲ )A .×10-7米B .8×10-8米C .8×10-9米D .8×10-7米3.假设m•23=43,那么m 等于( ▲ )A 、2B 、4C 、6D 、8 4.以下函数中自变量x 的取值范围是x >1的是( ▲ ) A .11-=x y 错误!未找到引用源。
B .1-=x y C .11-=x y 错误!未找到引用源。
D .xy -=11错误!未找到引用源。
5.某商场为促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指 针指向阴影区域时,顾客才能取得奖品,以下有四个大小相同的转盘可供选择, 使顾客取得奖品可能性最大的是( ▲ )A .B .C .D .学校 班级姓名_________ _ 考试号 考场号 座位号6.小明测得持续五天的日最低气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是(▲)A.3℃,2 B.3℃,65C.2℃,2 D.2℃,857.如图,在平面直角坐标系中,在x轴、y轴的正半轴上别离截取OA、OB,使OA=OB;再别离以点A, B为圆心,以大于12AB长为半径作弧,两弧交于点C.假设点C的坐标为(m -1,2n),则m与n的关系为(▲)A.m+2n=1 B.m-2n=1 C.2n-m=1 D.n-2m=18.如图,抛物线()2123y a x=+-与()221312y x=-+交于点A(1,3),过点A作x轴的平行线,别离交两条抛物线于点B,C.那么以下结论:①不管x取何值,y2的值老是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是(▲)A.①② B.②③ C.③④ D.①④(第7题图)(第8题图)9.如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB别离交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,那么EF的长(▲)A.等于4B.等于4C.等于6 D.随P点转变而转变10.在平面坐标系中,正方形ABCD的位置如下图,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,那么点C2坐标为(▲)A.3727,44⎛⎫⎪⎝⎭B.1929,24⎛⎫⎪⎝⎭C.3729,44⎛⎫⎪⎝⎭D.1927,24⎛⎫⎪⎝⎭(第9题图)(第10题图)二、填空题:(本大题共8小题,每题3分,共24分,把答案直接填在答题卡相对应......的位置上....)11.分解因式:2x2-8 x+8=▲ .12.把一张矩形纸片AB CD 按如图方式折叠,使极点B 和极点D 重合,折痕为EF .假设BF=4,FC=2,那么∠DEF的度数是 ▲ °.13.某班50名同窗踊跃响应“为雅安地震灾区献爱心捐钱活动”,并将所捐钱情形统计并制成统计图,依照图中信息,捐钱金额的众数和中位数别离是▲ 元.14.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中AB=8cm ,量角器O 刻度线的端点N 与点A 重合,射线CP 从CA 处动身沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,第35秒时,点E 在量角器上对应划过的AE 的长度是▲ cm .(结果保留π).(第12题图) (第13题图) (第14题图) 15.设函数y =3x 与y =x -2的图象的交点坐标为(a ,b),那么11a b-的值为 ▲ . 16.如图,在△ABC 中,已知AB =AC =5,BC =6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一路,△ABC 不动,△DEF 运动,并知足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终通过点A ,EF 与AC 交于M 点。
最新江苏省苏州市中考数学二模试卷附解析

江苏省苏州市中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数2x y =的图象向右平移3个单位,得到新的图象的函数表达式是( )A .32+=x yB .32-=x yC .2)3(+=x yD .2)3(-=x y 2.下列图形中,是中心对称图形而不是轴对称图形的是( )A . 平行四边形B . 正方形C . 正三角形D . 线段AB 3.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )A .43B .33C .23D .34.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=5.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀的硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大6.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤ 7.从1 到9这九个自然教中任取一个,是2 的倍数或是3 的倍数的概率是( ) A .19 B . 29 C .12D .23 8.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积9.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A.1个 B 2个C.3个D.4个10.下列说法中正确的是()A.直线大于射线B.连结两点的线段叫做两点的距离C.若AB=BC,则B是线段AC的中点D.两点之间线段最短11.运用分配律计算:(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是()A.-3×8-3×2-3×3 B.-3×(-8)-3×2-3×3C.(-3)×(-8)+3×2-3×3 D.(-3)×(-8)-3×2+3×3二、填空题12.如图1,先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上,再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B点的坐标为;点C的坐标.解答题13.如果一个几何体的主视图、左视图与俯视图都是一样的图形,那么这个几何体可能是.14.已知 CD 是 Rt△ABC 斜边上的高线,且 AB= 10,若 sin∠ACD=45,则CD= .15.如图,铁道口栏杆的短臂长为1.2m,长臂长为8m,当短臂端点下降0.6m时,长臂端点升高________m(杆的粗细忽略不计).16.如图,△EDC 是由△ABC 缩小后得到的,那么点E的坐标是.17.如图,AB = CD,∠AOC= 85°,则∠BOD= .18.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为.19.如果菱形的周长为24 cm,一条较短的对角线长是6 cm,那么两相邻内角分别为、.20.已知2m n+=,2mn=-,则(1)(1)m n--= .21.认真观察图中的4个图中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征.特征 1:;特征2: .22.请举出生活中两个常见的反映旋转变换的例子:______________.23.长方形的长为2ab(m),面积为22a b(m2),则这个长方形的宽为 m,周长为 m. 24.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题25.在△ABC 中,∠C=900,∠A=300, BD是∠B的平分线,如图所示.(1)如果AD=2,试求BD和BC的长;(2)你能猜想AB与DC的数量关系吗,请说明理由.26.如图,AB、AC 是⊙O的两条弦,且AB=AC,延长CA 到点 D,使 AD=AC,连结 DB 并延长,交⊙O于点 E,求证:CE 是⊙O 的直径.27.如图所示,Rt△ACB中,∠ABC=90°,点B、C在x轴上,点A是直线y=x+m与双曲线my在第一象限内的交点,O为坐标轴原点,若△AOB 的面积为3.x(1)求m的值,并写出直线和双曲线的函数解析式;(2)求△ABC 的面积.28.如图.(1)如果此图形中四个点的纵坐标不变,横坐标都乘-1,在直角坐标中画出新图形,并比较新图形与原图形有何关系;(2)如果原图中四个点的横坐标不变,纵坐标都加上-2,在直角坐标系中画出新图形,并比较新图形与原图形有何关系.29.已知:如图,AD、BE是△ABC的高,F是DE中点,G是AB的中点.试说明GF⊥DE.30.计算:(1)(-2x)3·(4x2y) (2)(4×106)(8×104)·105 (3)(m3)4+m10·m2+m·m5·m6【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.D6.C7.D8.C9.D10.D11.D二、填空题12.B(4,0)、(32,2), C(4,3)、(2334-,2433+)13.球体或正方体14.24515.416.(—2,2)17.85°18.平行四边形19.60°,l20°20.-321.都是轴对称图形;这些图形的面积都等于4个单位面积22.略23.12ab,5ab24.135°三、解答题25.(1)BD=2,BC=3; (2)AB=32DC.26.连结 CB.∵AB=AC, ∵∠1=∠2 ,∵AD=AC, ∴AB=AD,∴∠ABD=∠D,∵∠1+∠2+∠ABD+∠D=180°,∴∠2+∠ABD=90,∴∠CBE=90°,∴CE 是⊙O 的直径.27.(1)设A 点坐标为(x A ,y A ),∵3AOB S ∆=,∴1||32A A x y ⋅=, ∴||6A A x y ⋅=,由图象在第一象限知m>0,∴6A m x y λ=⋅=,直线的解析式为:6y x =+,双曲线的解析式是6y x= (2)由66y x y x =+⎧⎪⎨=⎪⎩,2660x x +-=,得1153x =,2153x =-(舍去) 由点A 在第一象限知,x>0∴153153),C(一6,0) ∴ABC AOC AOB 12315S S S ∆∆∆=+=+28.(1)图略,四个点的坐标变为(0,0),(-6,3),(-4,0),(-6,-3),新图形与原图形关于 y 轴对称 (2)图略,四个点的坐标变为(0,-2),(6,1),(4,-2),(6,-5),新图形是由原图形向下平移 2个单位长度得到的29.先说明EG=DG ,再利用三线合一说明30.(1)-32x 5y ,(2)3.2×1016,(3)3m 12。
最新江苏省苏州市中考数学二模试题附解析

江苏省苏州市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知△ABC ∽△DEF ,∠A =∠D =30°,∠B=50°,AC 与DF 是对应边,则∠F=( )A .50°B .80°C .100°D .150°2. 在同一直角坐标系中,函数k y x=与函数2(1)y k x =-的图象大致是( )A .B .C .D .3. 函数y kx k =-与k y x=-在同一坐标系中的大致图象是( )A .B .C .D .4.从正方形的铁片上,截去2 cm 宽的一条长方形铁片,余下铁片的面积是48cm 2,则原来正方形铁片的面积是( )A .6cm 2B .8 cm 2C .36 cm 2D .64 cm 25. 23,625-11651492326( )A .2 个B .3 个C .4 个D .5 个 6.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( )A .y>0B .y<OC .-2<y<OD .y<-27.已知点P (4,a+1)到两坐标轴的距离相等,则a 的值为( )A .3B .4C .-5D .3或-5 8.如图所示,AD ⊥BC 于D ,那么以AD 为高的三角形有( )A . 3个B .4个C . 5个D .6个9.下列各个变形正确的是( )A .由 7x=4x-3,移项,得 7x-4x=3B .由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C .由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D .由 2(x+1)=x+8,去括号,移项,合并,得x=610.已知|2006||2007|0x y -++=,则x 与y 的大小关系是( )A .x y <B .x y >C .0x y <-<D .0x y >->二、填空题11.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .12.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 . 13.某人从地面沿着坡度为3:1=i 的山坡走了100米,这时他离地面的高度是______米. 14.二次函数y=x 2-2x-3与x 轴两交点之间的距离为 . 15.已知:251 ,251+=-=y x ,求2xy y x ++的值. EOD C B A16.如图,某同学不小心把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.17.如图,在Rt△ABC中,∠C=Rt∠,AC=6,AB=BC+2,则斜边AB长为.18.若12xy=⎧⎨=⎩是关于 x,y 方程312mx y-=的一个解,则m= .19.如图是某中学就“月球上有水吗”这一问题调查结果的扇形统计图,则该统计图中,“不知道”部分的圆心角的度数为,已知认为“无水”的同学共有100位,那么参加这次调查的人数是.20.用代数式填空.(1)七年级全体同学,参加市教育局组织的国际教育活动,一共分成n个排,每排3个班,每班 10 人,那么七年级一共有名同学;(2)某班有共青团员 m 名,分成两个团小组,第一团小组有 x名,则第二团小组有名;(3)在 2005 年“世界献血日宣传周”期间,某市总计献血 4.483×lO5 mL,设献血人数为 n 人,则平均每人献血 ml.三、解答题21.如图,已知⊙O1与⊙O2外切于A,⊙O1的直径 CE 的延长线与⊙O2相切于B,过 C作⊙O1的切线与O2O1的延长线相交于D,⊙O1和⊙O的半径长分别是2和 3,求 CD 的长.A B CD M N D ′22.如图,在△ABC 中,AB=AC ,E 是AB 的中点,以点E 为圆心,EB 为半径画弧交 BC 于点 D ,连结 ED ,并延长 ED 到点 F ,使 DF =DE ,连结 FC . 求证:∠F=∠A .23.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.24.某乡镇企业中有20名工人在同一道工序生产同一零件,以下列出了20名工人在一个正常的工作日中的产量,请你列一个工人日产量的频率统计表.画出频数直方图,并指出多数工人的日产量在哪个范围内变动?220,222,219,230,228,220,236,212,227, 238,240,200,236,215,258,227,228,235, 240,21225.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?26.如图,是一个楼梯的侧面示意图.(1)如果用(4,2)来表示点D的位置,那么点A、C、H又该如何表示呢?(2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?27.如图,O是△ABC外一点,以点O为旋转中心,将△ABC逆时针方向旋转90°,作出经旋转变换后的像.O.B C28.如图所示,把方格纸上的四边形ABCD作相似变换,使所成的像是原图形的2倍.29.为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?30.把下列实数在数轴上表示,并比较它们的大小:-2 ,,3.3, π2 3.3π-<<【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.D5.B6.D7.D8.D9.D10.B二、填空题11.312. 21 13. 50 14.415.20.16.③17.1018.5319. 72°,400人20.(1)30n (2)m-x (3)448300n三、解答题21.连结O 2B ,则 O 2B ⊥BC ,∴2221122534BO O O O B =-=-=,又∵CD 为⊙O 1的切线,∴CD ⊥BC ,∴CD ∥O 2B ,∴211O B BO CD O C =, ∴342CD =,∴CD=1.5. 22.∵以点 E 为圆心,EB 为半径画弧交 BC 于点D ,∴EB=DE ,∵E 点是AB 的中点,且 AB=AC ,∴ ED=12AC .∵ DE= DF ,∴ EF=AC ,∵AB=AC ,∴∠ABC=∠ACB , ∵∵EB=DE ,∴∠EBD=∠EDB ,∴∠EDB=∠ACB ,∴EF ∥AC ,∵ EF=AC ,∴四边形AEFC 是平行四边形,∴∠.A=∠F.23.△AMD ′是正三角形.24.图略,多数工人的日产量在220~229之间25.长 40 cm ,宽 20 cm26.(1)A(0,0),C(2,2),H(8,6);(2)B ,F ,I27.略.28.图略29.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好30.2 3.3π-<<。
苏州市中考数学二模试卷

苏州市中考数学二模试卷姓名:________班级:________成绩:________一、 选择题 (共 8 题;共 16 分)1. (2 分) 计算 6﹣(﹣4)+7 的结果等于( )A.5B.9C . 17D . ﹣92. (2 分) (2016·临沂) 如图,一个空心圆柱体,其主视图正确的是( )A.B.C. D. 3. (2 分) (2017 八下·胶州期末) 下列四个图形中,是中心对称图形的是( ) A. B.第 1 页 共 13 页C.D. 4. (2 分) 下列说法正确的是( ) A . 为了解我国中学生课外阅读的情况,应采用全面调查的方式 B . 一组数据 1,2,5,5,5,3,3 的中位数和众数都是 5 C . 抛掷一枚硬币 100 次,一定有 50 次“正面朝上” D . 甲组数据的方差是 0.03,乙组数据的方差是 0.1,则甲组数据比乙组数据稳定 5. (2 分) (2020 九下·重庆月考) 如图,在△ABC 中,∠B=2∠C,以点 A 为圆心,AB 长为半径作弧,交 BC 于点 D,交 AC 于点 G;再分别以点 B 和点 D 为圆心,大于 BD 的长为半径作弧,两弧相交于点 E,作射线 AE 交 BC 于点 F。
若以点 G 为圆心,GC 长为半径作两段弧,一段弧过点 C,而另一段弧恰好经过点 D,则此时∠FAC 的度 数为( )A . 54° B . 60° C . 66° D . 72° 6. (2 分) (2017·河南) 八年级某同学 6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分, 100 分,则该同学这 6 次成绩的众数和中位数分别是( ) A . 95 分,95 分 B . 95 分,90 分第 2 页 共 13 页C . 90 分,95 分 D . 95 分,85 分 7. (2 分) 在一间屋子里的屋顶上挂着一盏白炽灯,在它的正下方有一个球,如图所示,下列说法: (1)球在地面上的影子是圆;(2)当球向上移动时,它的影子会增大; (3)当球向下移动时,它的影子会增大;(4)当球向上或向下移动时,它的影子大小不变. 其中正确的有( )A . 0个 B . 1个 C . 2个 D . 3个 8. (2 分) (2020 七下·揭阳期末) 下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此 规律,第 n 个图形中白色正方形的个数为( )A . 4n+1 B . 4n-1 C . 3n-2 D . 3n+2二、 填空题 (共 10 题;共 11 分)9. (1 分) (2017 八上·深圳月考) 在函数中,自变量 x 的取值范围是________10. (1 分) (2020 八上·阳泉期末) 成人每天维生素 D 的摄入量约为 0.000006 克数据”0.0000046”用科学记数法表示为________。
江苏省苏州市中考数学二模试卷
江苏省苏州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)小明做了以下4道计算题:①;②;③;④.请你帮他检查一下,他一共做对了()A . 1题B . 2题C . 3题D . 4题2. (2分)(2019·凤庆模拟) 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为l,则tan∠BAC 为()A .B .C .D . 13. (2分)如图是一个以点A为对称中心的中心对称图形,若∠C =90°,∠B = 30°,AC = 1,则BB′的长为()A . 2B . 4C .D . 84. (2分)用科学记数法表示310000,结果正确的是()A . 3.1×104B . 3.1×105C . 31×104D . 0.31×1065. (2分)(2017·黔南) 我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A .B .C .D .6. (2分) (2016七上·萧山月考) 估计的运算结果应在()A . 6与7之间B . 7与8之间C . 8与9之间D . 9与10之间7. (2分)计算﹣的结果是()A .B .C .D .8. (2分)方程x2=16的解是()A . x=0B . x=16C . x1=0,x2=16D . x1=-4,x2=49. (2分)(2018·青岛模拟) 实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A . 小于或等于3的实数B . 小于3的实数C . 小于或等于﹣3的实数D . 小于﹣3的实数10. (2分)如图,平行四形ABCD中,∠A=100°,则∠B+∠D的度数是()A . 80°B . 100°C . 160°D . 180°11. (2分) (2016七下·宝丰期中) 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是()A .B .C .D .12. (2分)(2017·微山模拟) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc<0;②9a+3b+c=0;③4ac﹣b2<2a;④2b=3a.其中正确的结论是()A . ①③B . ②④C . ①④D . ②③二、填空题 (共6题;共16分)13. (2分) (2016七上·县月考) 计算 ________, =________.14. (1分) (2016九上·瑞安期中) 已知抛物线的对称轴是直线,则的值为________.15. (1分) (2016九下·江津期中) 从﹣3,﹣2,﹣1,0,1,2这六个数字中随机抽取一个数,记为a,a 的值即使得不等式组无解,又在函数y= 的自变量取值范围内的概率为________.16. (1分) (2017八下·郾城期末) 如图,直线y=kx+b与y= x交于A(3,1)与x轴交于B(6,0),则不等式组0 的解集为________.17. (1分)(2019·上海模拟) 如图,把边长为单位1的正方形一边与数轴重叠放置,以O为圆心,对角线OB长为半径画弧,交数轴正半轴于点A,则点A对应的数是________.18. (10分)如图,在正方形网格中,已知△ABC(不写作法):(1)画出△ABC关于x轴的对称△A1B1C1(2)画出△A1B1C1关于y轴的对称△A2B2C2.三、解答题 (共7题;共46分)19. (1分)(2018·乌鲁木齐) 不等式组的解集是________.20. (5分)小明调查了学校50名同学本学期购买课外书的花费情况,并将结果绘制成了下面的统计图,由于不小心滴上了墨水,导致花费为100元的人数看不清楚了.求出这50名学生本学期购买课外书花费的众数、中位数和平均数.21. (5分)(2019·云霄模拟) 如图,已知△ABC内接于⊙O , AD为直径,点C在劣弧AB上(不与点A ,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°猜想:α关于β的函数表达式,并给出证明.22. (5分) (2016九上·无锡期末) 如图,小明从P处出发,沿北偏东60°方向行驶200米到达A处,接着向正南方向行驶一段时间到达B处.在B处观测到出发时所在的P处在北偏西37°方向上,这时P、B两点相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (5分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)24. (10分)(2017·盘锦模拟) 由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?25. (15分) (2016九上·南岗期末) ⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC 的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共16分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题 (共7题;共46分) 19-1、20-1、21-1、22-1、23-1、24-1、24-2、25-1、25-2、25-3、。
苏州市2017初中数学毕业考试模拟卷及答案
苏州市2017年初中毕业暨升学考试模拟数学试卷本试卷由选择题、填空题和解答题三大题构成,共29小题,考试时间为120分钟,试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水署名笔将自己的姓名、准考据号填写在答题卷的相应地点上.2.答选择题一定用2B铅笔将答题卷上对应题目中的选项标号涂黑.如需变动,请用橡皮擦洁净后,再选涂其余答案.答非选择题一定用0.5毫米黑色墨水署名笔写在答题卡指定的地点上,不在答题地区内的答案一律无效,不得用其余笔答题.3.考生答题一定答在答题卷上,保持卷面洁净,答在试卷和底稿纸上一律无效。
一、选择题(本大题共l0小题.每题3分.共30分.在每题所给出的四个选项中,只有一项为哪一项切合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的地点上)1.2的倒数是(▲) A.2B.-2C.1D.-1222.以下运算中,结果正确的选项是(▲)A.a4a4a8B.a3a2a5C.a8a2a4D.2a236a6 3.以下图形中,既是轴对称图形,又是中心对称图形的是(▲)4.抛物线y(x8)22的极点坐标是(▲) A.(—8,2)B.(—8,—2)C.(2,8)D.(8,2)5.一组数据1.2,1.3,1.6,1.6,1.8的众数是(▲)A.1.2B.1.3C.1.6D.1.86.2016年一季度全国城镇新增就业人数3320000人,用科学记数法表示(▲)A.332104B.0.332107C.3.32106D.3.32107 7.若m、n是一元二次方程x25x20的两个实数根,则m nmn的值是(▲)A.7B.-7C.3D.-38.如图,△ABC内接于⊙O,连结OA,OB,∠OBA=40°,则∠C的度数是(▲)A.60°B.50°C.45°D.40°9.如图,矩形ABCD的对角线AC和BD订交于点点E、F,AB=2,BC=3,则图中暗影部分的面积为O,过点O的直线分别交(AD▲和)BC于A.6B.3C.2D.1A E DCO OABFCB(第8题)(第9题)(第10题)10.如图,平面直角坐标系中,在边长为1的菱形ABCD的边上有一动点P从点A出发沿A BCDA匀速运动一周,则点P的纵坐标y与点P走过的行程S之间的函数关系用图象表示大概是(▲)A B C D二、填空题(本大题共 8小题,每题3分,共24分.把答案直接填在答题卡上相应的地点上)11.函数y x 3中,自变量x取值范围是▲.12.因式分解:2x28=▲.13.如图,在△ABC中,D,E分别是边AC、BC的中点,若DE=3,则AB=▲.14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有▲人.15.半径为2,圆心角为120°的扇形的面积为▲(结果保存).(第13题)(第16题)416.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A按顺时针3方向旋转90°后获得△AO1B1,则点B1的坐标是▲.17.以下图的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟对付电话费▲元.18.已知点A、B分别在反比率函数28y=(x>0),y=(x>0)的图像上,且OA⊥OB,则tanB x x为▲.AOB(第17题)(第18题)三、解答题(本大题共11小题.共76分.把解答过程写在答题卡相对应的地点上,解答时应写出必需的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水署名笔)19.(此题满分5分)计算: 2 (3)0920.(此题满分3x145分)解不等式组x,并把它的解集表示在数轴上2x221.(此题满分5分)先化简,再求值:a24a24a4,此中a=32a22a a22.(此题满分116分)解分式方程:x2x1123.(此题满分6分)已知:如图,在等腰梯形ABCD中,AB//CD,点E、F分别在AD、BC上,且DE=CF.求证:AF=BED CE FA B(第23题)24.(此题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完整同样.现随机从两个信封中各拿出一张卡片,与信封外的卡片放在一同,用卡片上注明的数目分别作三条线段的长度.1)求这三条线段能构成三角形的概率(画出树状图);2)求这三条线段能构成直角三角形的概率.A B5cm(第24题)25.(此题满分8分)某工程队承包了某段过江地道施工任务,甲、乙两个班组分别从东、西两头同时掘进.已知甲组比乙组均匀每日多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组均匀每日各掘进多少米?26.(此题满分8分)城市规划时期,欲拆掉一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=1:2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.1)求BF的长;2)在拆掉电线杆AB时,为保证行人安全,能否需要将这人行道封上?请说明原因.(在地面上,以点B为圆心,以AB?长为半径的圆形地区为危险地区)(3≈1.732,2≈1.414)AG300C 1:2人B E行D F道(第26题)27.(此题满分8分)如图,AB是⊙O的直径,CD 是⊙O 的切线,切点为C .延伸 AB交CD 于点E .连结AC ,作∠DAC =∠ACD ,作AF ⊥ED 于点F ,交⊙O 于点G .1)求证:AD 是⊙O 的切线;2)假如⊙O 的半径是6cm ,EC =8cm ,求GF 的长.AOEBCGFD28.(此题满分9分)(第如图,现有一张边长为27题)4的正方形纸片ABCD,点P 为正方形AD边上的一点(不与点A 、点 D重合)将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于H ,折痕为EF ,连结BP 、BH . 1)求证:∠APB=∠BPH ;2)当点P 在边AD 上挪动时,△PDH 的周长能否发生变化?并证明你的结论;(3)设AP 为x ,四边形 EFGP 的面积为 S ,求出S 与x 的函数关系式,试问 S 能否存在最小值?若存在,求出 这个最小值;若不存在,请说明原因.APDA P DEEHHGGFF BCB(备用图)C(第28题)29.(此题满分 10分)如图1,已知直线y=kx 与抛物线y=4 x 2 22 交于点A (3,6).273(1)求直线y=kx 的分析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点 P 作直线PM ,交x 轴于点M (点M 、O不重合),交直线OA 于点Q ,再过点 Q 作直线PM 的垂线,交 y 轴于点N .尝试究: 线段QM 与线段QN 的长度之比能否为定值?假如是,求出这个定值;假如不是,说 明原因;(3)如图2,若点B为抛物线上对称轴右边的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且知足∠BAE=∠BED=∠AOD.持续研究:m在什么范围时,切合条件的E点的个数分别是1个、2个?(第29题)参照答案一.选择题(每题3分,共30分)题号12345678910选项C B B D C C A B B A二.填空题(每题3分,共24分)11、x312、2(x2)(x2)13、614、204 16、(7,3)17、7.4115、18、32三.解答(本大共 11,共76分)19、解:原式=2-1+3⋯⋯⋯⋯3分 =4⋯⋯⋯⋯5分20、解:由①得 x >-1⋯⋯⋯⋯1分 由②得x <2⋯⋯⋯⋯2分∴原不等式的解集-1<x <2⋯⋯3分数略⋯⋯⋯⋯5分21、解:原式=a 24 a 22 ⋯⋯1分a2a2 aa 2 a2a⋯⋯2分a 2 a22aa 2⋯⋯3分当a32,原式=32⋯⋯4分33 23 ⋯⋯5分3110 ⋯⋯1分22、解:(x1)(x 1)x1x11 0⋯⋯3分x 0⋯⋯4分 ,x=0是原方程的解⋯⋯6分23、解:∵四形ABCD 是等腰梯形∴AD=BC, DAB=CBA⋯⋯⋯2分∵DE=CF∴AE=BF ⋯⋯⋯⋯3分又∵AB=BA∴△ABE ≌△BAF⋯⋯⋯5分∴AF=BE⋯⋯⋯6分24、解:(1)5A 信封73B 信封246 246⋯⋯⋯2分P (能成三角形)2⋯⋯⋯4分=3(2)P (能成直角三角形)1 ⋯⋯⋯6分=625、解:甲、乙班均匀每日掘 x 米,y 米, ⋯⋯⋯1分xy 0.6⋯⋯⋯5分依据意,得y)455(xx 4.8 ⋯⋯⋯7分解得4.2y答:甲班均匀每日掘4.8米,乙班均匀每日掘4.2米.⋯⋯⋯8分26、解:(1)∵Rt △CFD 中,CF=2,坡度i=1:2A∴DF=4⋯⋯⋯1分 ∴BF=BD+DF=14+4=18⋯⋯⋯2分(2)需要将这人行道封上⋯⋯⋯3分G300C∵BF=181:2∴CG=18人BE 行DF又∵Rt △CGA 中,∠ACG=30°道∴AG=18×tan30=18°×363⋯⋯⋯5分3632∴AB=AG+GB=AG+CF=≈6×1.732+2≈12.392⋯⋯⋯6分又∵BE=BD-ED=14-2=12 ⋯⋯⋯7分∴AB >BE所以,需要将这人行道封上⋯⋯⋯8分27、解:(1)接OC∵CD 是⊙O 的切∴∠OCD=90° ⋯⋯⋯1分∵OA=OC∴∠OCA=∠OAC ⋯⋯⋯2分又∵∠DAC=∠ACD∴∠OAD=∠OCD=90°∴AD 是⊙O 的切⋯⋯⋯3分(2)接BG∵OC=6cm ,EC=8cm∴在Rt △CEO 中,OE= OC 2+EC 2=10⋯⋯⋯4分 AE=OE+OA=16AF ⊥ED∴∠AFE=∠OCE=90°,∠E=∠E ∴Rt △AEF ∽Rt △OEC⋯⋯⋯5分∴AFAE 即AF 16 OCOE610∴AF=9.6⋯⋯⋯6分∵AB 是⊙O 的直径 ∴∠AGB=90° ∴∠AGB=∠AFE ∵∠BAG=∠EAF∴Rt △ABG ∽Rt △AEF ⋯⋯⋯7分∴AGAB即AG12AF AE 9.616AG=7.2GF=AFAG=9.67.2=2.4(cm)⋯⋯⋯8分28、解:(1)∵折叠PE=BE∴EBP=EPB⋯⋯⋯⋯⋯1分又∵EPH=EBC=90°∴PBC=BPH⋯⋯⋯⋯⋯2分又∵AD∥BC∴APB=PBC∴APB=BPH⋯⋯⋯⋯⋯3分(2)△PHD的周不,定8A B作BQ⊥PH,垂足Q由(1)知APB=BPH又∵A=E BQP=90°,BP=BP∴△ABP≌△QBP∴AP=QP,AB=BQ⋯⋯⋯⋯4分又∵AB=BC B ∴BC=BQ又∵C=BQH=90°,BH=BH∴△BCH≌△BQH∴CH=QH⋯⋯⋯⋯⋯5分∴△PHD的周:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. 3)F作FM⊥AB,垂足M,FM=BC=AB又EF折痕,∴EF⊥BP PD QH G FC 6分∴∠EFM+∠MEF=∠ABP+∠BEF=90°∴∠EFM=∠ABP又∵A=EMF=90°∴△EFM≌△BPA∴EM=AP=x⋯⋯⋯⋯⋯⋯7分∴在Rt△APE中,(4BE)2x2BE2BE2x2解得8CF BE EM2x2x8∴⋯⋯⋯⋯⋯⋯8分又四形PEFG与四形BEFC全等S 1CF)BC1x2x)4 (BE(44∴221x2262∴当x=2,S有最小6⋯⋯⋯⋯⋯9分29、解:(1)把点A(3,6)代入y=kx得∵6=3k∴k=2AEMBPDHGFC(∴y=2x ⋯⋯⋯⋯⋯1分OA= 32 62 35 ⋯⋯⋯⋯⋯2分 2)QM是一个定,原因以下:QN如答1,点Q 作QG ⊥y 于点G ,QH ⊥x 于点H ①当QH 与QM 重合,然QG 与QN 重合 此QM QH QH tan AOM 2QN QG OH②当QH 与QM 不重合 QN ⊥QM ,QG ⊥QH不如点 H ,G 分在x 、y 的正半上 ∴∠MQH=∠GQN又∵∠QHM=∠QGN=90°∴△QHM ∽△QGN ∴QMQH QH tanAOM2 QNQG OH当点P 、Q 在抛物和直上不一样地点,同理可得QM2⋯⋯⋯⋯⋯6分QN3)如答2,延AB 交x 于点F ,点F 作FC ⊥OA 于点C ,点A 作AR ⊥x 于点R∴ ∵∠AOD=∠BAEAF=OF1352OC=AC=OA2∵∠ARO=∠FCO=90°,∠AOR=∠FOC ∴△AOR ∽△FOC∴OFAO 3 55OC OR 3∴OF=35 515∴点F (15,0)222直AF y=kx+b (k ≠0)把A (3,6),F (15,0)代入得2k=4,b=10,即y4x1033∴4x103y4 x 2 22273x 3 x 6∴(舍去),2y6y∴B (6,2) ∴AB=5⋯⋯⋯⋯7分(其余方法求出AB 的酌情分)精选文档11在△ABE 与△OED 中 ∵∠BAE=∠BED∴∠ABE+∠AEB=∠DEO+∠AEB , ∴∠ABE=∠DEO ∵∠BAE=∠EOD ∴△ABE ∽△OEDOE=x ,AE=3 5x (0<x <3 5)由△ABE ∽△OED 得AEAB 即3 5-x 5ODOE mx∴m1x(35x)1 (x 35)2 9⋯⋯⋯⋯8分552 4∴点(35,9)24∴如答3,当m9 ,OE=x=35,此E 点有1个⋯⋯⋯⋯⋯9分42当0<m <9,任取一个m 的都着两个x ,此E 点有2个⋯10分4。
【6套打包】苏州市中考第二次模拟考试数学试卷含答案
【6套打包】苏州市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)1.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式2.-1的相反数是()A. 1B. 0C.D. 23.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.55.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支6.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 47.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.8.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.10.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数11.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.35989.76用科学记数法表示为______.14.方程x2-4x-3=0的解为______.15.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.16.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.17.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.18.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)19.已知x=+1,求的值.20.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)21.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)(1)请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.22.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.23.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.24.张强两次共购买香蕉(第二次多于第一次),共付出元,请问张强第一次,第二次分别购买香蕉多少千克?25.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.26.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).故选:B.求出总的阅读时间与总人数的商即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.5.【答案】C【解析】解:设小明最多能买钢笔x支,则小明买笔记本(30-x)本,故5x+2(30-x)≤100,解得x≤13.因为钢笔的支数应为整数,故小明最多能买钢笔13支.故选:C.先设小明最多能买钢笔x支,则小明买笔记本(30-x)本,再根据题意列出不等式求解即可.此题是一元一次不等式在实际生活中的运用,解答此题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.6.【答案】A【解析】解:法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出==,OA=2,BD=6,===∵OD=OC+CD=6∴OC=6×=1.5.AC===2.5,BC=2.5×3=7.5,AC+BC=2.5+7.5=10;法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,∴BF=6,EF=OE+OF=6+2=8,在Rt△BEF中,根据勾股定理得:BE==10,则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.故选:A.法1:B点作x轴的垂线与X轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OA与BD、OC与CD、AC与BC的关系,然后求的A点到B点所经过的路程为AC+BC;法2:延长BC,交y轴与E,由题意得到A与E关于x轴对称,得到E(0,-2),过B作BF垂直于y轴,利用勾股定理求出BE的距离,即为光线从点A到点B所经过的路程.本题考查镜面反射的原理与性质、三角形相似的性质以及勾股定理的应用.7.【答案】D【解析】解:由树状图可知共有4×3=12种可能,两个转盘指针指向数字之和不超过4的有6种,∴两个转盘指针指向数字之和不超过4的概率是,故选:D.列举出所有情况,看两个转盘指针指向数字之和不超过4的情况占总情况的多少即可.本题主要考查列表法与树状图法,画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】B【解析】解:∵EC∥AB,DE∥BC,∴四边形DBCE为平行四边形,∴BC=DE,DB=EC,∵∠ABC=∠BAC,∴CB=CA,∴AC=DE,A结论正确,不符合题意;∵∠ABC与∠ACB不一定相等,∴AB与AC不一定相等,B结论错误,符合题意;∵AD=DB,DB=EC,∴AD=EC,C结论正确,不符合题意;∵DE∥BC,∴∠ADO=∠ABC,∴∠ADO=∠A,∴OA=OD,∵DE∥BC,D是AB的中点,∴OD=BC=DE=OE,∴OA=OE,D结论正确,不符合题意;故选:B.根据平行四边形的性质判定定理和性质定理判断A;根据等腰三角形的判定定理判断B;根据平行四边形的性质判断C,根据等腰三角形的性质判断D.本题考查的是三角形中位线定理、平行四边形的判定和性质、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.【答案】C【解析】解:∵直线L经过(0,0)、(1,2),∴直线l为y=2x,∵直线l沿x轴正方向向右平移2个单位得到直线l′,∴直线l′为y=2(x-2),即y=2x-4,故选:C.先确定直线l的解析式,然后根据平移的规律即可求得.本题考查了一次函数图象与几何变换,解决本题的关键是求直线解析式和熟练掌握平移的规律.10.【答案】B【解析】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.根据中位数的意义分析.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.【答案】D【解析】解:如图,观察图象可知,满足条件的点P有4个.故选:D.根据等腰三角形的定义画出图形即可.本题考查等腰三角形的判定,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.【答案】A【解析】解:∵BD=2,∠B=60°∴点D到AB距离为当0≤x≤2时,y=当2≤x≤4时,y=根据函数解析式,A符合条件故选:A.根据题意,将运动过程分成两段.分段讨论求出解析式即可.本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.13.【答案】3.598976×104【解析】解:将35989.76用科学记数法表示为:3.598976×104.故答案为:3.598976×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】x1=2+,x2=2-【解析】解:x==2所以x1=2+,x2=2-.本题可用公式法对方程进行求解,公式为:x=,由此可解此题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是公式法.15.【答案】2或8【解析】解:①当圆心在三角形内部时,BC边上的高AD=+5=8;②当圆心在三角形外部时,BC边上的高AD=5-=2.因此BC边上的高为2或8.分两种情况讨论:当圆心在三角形内部时和当圆心在三角形的外部时.本题利用了勾股定理和垂径定理求解,注意要分两种情况讨论求解.16.【答案】33【解析】解:设这100个数为:1,0,-1,-1,0,1,1,0,-1,-1…,∴通过观察得:第1个数开始6个数一循环,∴100÷6=16 (4)又每组的6个数中有两个0,则这100个数中“0”的个数为:16×2+1=33个故这100个数中“0”的个数为33个.根据题意可知数列为:1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0…从第1个数开始6个数一循环,所以100÷6=16…4,所以100个数中“0”的个数为33个.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【答案】3【解析】解:∵2AB=2BC=CD=10,∴AB=BC=5,过A作AF⊥CD于F,过C作CE⊥AB于E,则∠AEC=∠AFD=∠BEC=90°,AF∥CE,∵AB∥CD,∴四边形AECF是矩形,∴AE=CF,AF=CE,∵在Rt△BEC中,tanB==,又∵BC=5,CE=3,BE=4,∴AE=CF=5-4=1,AF=CE=3,∵CD=10,∴DF=10-1=9,在Rt△AFD中,由勾股定理得:AD===3,故答案为:.过A作AF⊥CD于F,过C作CE⊥AB于E,根据矩形的性质得出AF=CE,AE=CF,求出AF和DF长,再根据勾股定理求出即可.本题考查了解直角三角形和矩形的性质和判定、平行线的性质等知识点,能构造直角三角形是解此题的关键.18.【答案】-【解析】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF=1×2-×1×1-=-.故答案为:-.利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF,求出答案.此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.19.【答案】解:原式===;当x=+1时,原式=.【解析】先将所求的代数式化简,再将未知数的值代入计算求解.此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分:分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.【答案】解:(1)∵y=ax2-2ax-3a=a(x-1)2-4a,∴D(1,-4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2-2ax-3a=a(x-3)(x+1)知,A(3,0)、B(-1,0)、C(0,-3a),则:AC2=(0-3)2+(-3a-0)2=9a2+9、CD2=(0-1)2+(-3a+4a)2=a2+1、AD2=(3-1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=-1即,抛物线的解析式:y=-x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,-x2+2x+3),则OF=x,MF=-x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(-x2+2x+3)=x+1,化简,得:2x2-3x-5=0解得:x1=-1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4-b,QB2=QG2=(1+1)2+(b-0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4-b)2=2(b2+4),化简,得:b2+8b-8=0,解得:b=-4±2;即点Q的坐标为(1,-4+2)或(1,-4-2).【解析】(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值,由此得出抛物线的解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.21.【答案】解:(1)(2)甲成绩的众数是84,乙成绩的众数是90,从两人成绩的众数看,乙的成绩较好;甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;甲成绩、乙成绩的中位数、平均数都是84,但从(85分)以上的频率看,乙的成绩较好.【解析】(1)根据中位数、众数、频率的计算方法,求得甲成绩的中位数,乙成绩的众数,85分以上的频率.(2)可分别从众数、方差、频率三方面进行比较.本题重点考查平均数,中位数,众数及方差、频率的概念及求法,以及会用这些知识来评价这组数据.22.【答案】(1)证明:∵AB =CD ,∴= . ∴- = - . ∴= . ∴BD =CA .在△AEC 与△DEB 中, ∠∠ ∠,∴△AEC ≌△DEB (AAS ).(2)解:点B 与点C 关于直线OE 对称.理由如下:如图,连接OB 、OC 、BC .由(1)得BE =CE .∴点E 在线段BC 的中垂线上,∵BO =CO ,∴点O 在线段BC 的中垂线上,∴直线EO 是线段BC 的中垂线,∴点B 与点C 关于直线OE 对称.【解析】(1)要证△AEC ≌△DEB ,由于AB=CD ,根据等弦所对的弧相等得=,根据等量减等量还是等量,得=,由等弧对等弦得BD=CA ,由圆周角定理得,∠ACE=∠DBE ,∠AEC=∠DEB ,即可根据AAS 判定;(2)由△AEC ≌△DEB 得,BE=CE ,得到点E 在直线BC 的中垂线上,连接BO ,CO ,BO 和CO 是半径,则BO 和CO 相等,即点O 在线段BC 的中垂线上,亦即直线EO 是线段BC 的中垂线,所以点B 与点C 关于直线OE 对称.本题利用了圆周角定理、等弦所对的弧相等,等弧对等弦、全等三角形的判定和性质求解.23.【答案】解:(1)由图可知,b =-7.(1分)故抛物线为y=(1-a)x2+8x-7.又因抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点.∴ ,解之,得1<a<.(3分)即a的取值范围是1<a<.(6分)(2)设B(x1,0),由OA=20B,得7=2x1,即x1=.(7分)由于x1=,方程(1-a)x2+8x-7=0的一个根,∴(1-a)()2+8×-7=0∴.(9分)故所求所抛物线解析式为y=-x2+8x-7.(10分)【解析】(1)因为二次函数过点A,所以可以确定b的值,又因为抛物线为y=(1-a)x2+8x-7又抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点,所以可以确定1-a<0,△>0,解不等式组即可求得a的取值范围;(2)因为OA=2OB,可求得点B的坐标,将点A,B的坐标代入二次函数的解析式即可求得a,b的值,即可求得二次函数的解析式.此题考查了二次函数的图象的性质,开口方向,与x轴的交点个数与△的关系,待定系数法求函数解析式等;解题的关键是数形结合思想的应用.24.【答案】解:设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<25.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x≤20,y>40时,由题意可得.解得.(不合题意,舍去)③当20<x<25时,则25<y<30,此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去);④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=264.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<25时,则25<y<30.本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.25.【答案】解:(1)如图所示;(2)在Rt△AOB中,AB===,∴扇形BAA1的面积==π,梯形A1A2O2B的面积=×(2+4)×3=9,∴变换过程所扫过的面积=扇形BAA1的面积+梯形A1A2O2B的面积=π+9.【解析】(1)根据旋转的性质,结合网格结构找出点A、O的对应点A1、O1,再与点B顺次连接即可得到△BO1A1;再根据中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)27.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式28.-1的相反数是()A. 1B. 0C.D. 229.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时30.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.531.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支32.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 433.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.34.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.35.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.36.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数37.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个38.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)39.35989.76用科学记数法表示为______.40.方程x2-4x-3=0的解为______.41.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.42.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.43.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.44.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)45.已知x=+1,求的值.46.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)47.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识10()请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.48.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.49.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.50.第二次分别购买香蕉多少千克?51.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.52.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).。
2017年江苏省苏州市中考数学二模试卷(有答案)
2017年江苏省苏州中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)﹣3的相反数是( ) A .﹣3 B .3C.D.2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO 的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为( ) A .0.4×103 B .0.4×104 C .4×103 D .4×104 3.(3分)下列运算中,正确的是( ) A.=3 B .(a +b )2=a 2+b 2 C .()2=(a ≠0) D .a 3•a 4=a 124.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是( )5.(3分)如图所示,AB∥CD ,∠CAB=116°,∠E=40°,则∠D 的度数是( )A .24° B .26° C .34° D .22°6.(3分)已知反比例函数的图象经过点P (a ,a ),则这个函数的图象位于( ) A .第一、三象限 B .第二、三象限 C .第二、四象限 D .第三、四象限7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是( ) A . B . C . D . 8.(3分)因为sin30°=,sin210°=,所以sin210°=sin (180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3),点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.3+3 B.3+3 C.3 D.310.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是()A.B.2 C.1 D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣4=.12.(3分)若分式的值为0,则x的值等于.13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是(填“甲”或“乙”).14.(3分)不等式组的最大整数解是.15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE 所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为.17.(3分)已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n﹣3时多项式x2﹣4x+1的值为.18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明).19.(5分)计算:﹣3tan30°﹣()﹣2.20.(5分)先化简,再求值:,其中a满足a2+3a=5.21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.n(1)在统计表中,m= ,n= ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 .(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?25.(8分)如图,一次函数y=kx ﹣4(k ≠0)的图象与y 轴交于点A ,与反比例函数y=(x>0)的图象交于点B (6,b ).(1)b=;k=.(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P 的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S 与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.28.(10分)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.2017年江苏省苏州中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C.D.【解答】解:﹣3的相反数是3.故选:B.2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103B.0.4×104C.4×103D.4×104【解答】解:4000=4×103,故选:C.3.(3分)下列运算中,正确的是()A.=3 B.(a+b)2=a2+b2C.()2=(a≠0)D.a3•a4=a12【解答】解:(﹣3)3=﹣27,负数没有平方根,故A错误;(a+b)2=a2+2ab+b2,故B错误;()2=,故C正确;a3•a4=a7,故D错误.故选:C.4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4;4出现了2次,故众数为4.故选:A.5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A.24°B.26°C.34°D.22°【解答】解:∵AB∥CD,∠CAB=116°,∴∠ACD=180°﹣∠CAB=64°,∵∠E=40°,∴∠D=∠ACD﹣∠E=24°.故选:A.6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限【解答】解:设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选:A.7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A.B.C.D.【解答】解:在2、6,3,4,1这5张卡片中,数字为偶数的有2、6、4这3张,∴得到卡片的数字为偶数的概率为,故选:C.8.(3分)因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【解答】解:∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3),点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.3+3 B.3+3 C.3 D.3【解答】解:如图,连接CD交OB于P,连接PA,此时△AD P的周长最小.作BH⊥x轴于H.∵B(9,3),∴OH=9,BH=3,∵∠BHO=90°,∴OB==6,∴OB=2BH,∴∠BOH=30°,∠OBH=60°,∵四边形OABC为菱形,∴设OC=BC=x,∴CH=OH﹣OC=9﹣x,在Rt△BCH中,∠BHC=90°,∴BC2=CH2+BH2,∴x2=(9﹣x)2+27,∴x=6,∴A(3,3),B(9,3),C(6,0),∵D为AB中点,∴D(6,3),∴CD=3,AD=3,∴△ADP的周长的最小值=AD+CD=3+3,故选:B.10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是()A.B.2 C.1 D.【解答】解:由上图可知,当P在O点时,△AOB1为正三角形,当P在N点时,△ANB2为正三角形,H1,H2分别为AB1与AB2的中点,∵P在直线ON上运动,∴B1B2的运动轨迹也为直线,∵△OAB1为正三角形,∴∠OAB1=∠1+∠2=60°,同理∠NAB2=∠2+∠3=60°,∴∠1=∠3,在△OAN与△B1AB2中,,∴△OAN≌△B1AB2,∴B1B2=ON,∴点A横坐标为,∵AN⊥x轴,∴M(,0),∵直线ON的解析式为:y=﹣x,∴∠MON=45°,∴N(,﹣),∴ON=2=B1B2,∵H1,H2分别为AB1与AB2的中点,∴H1H2=B1B2=1,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣4=(x+2)(x﹣2).【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.(3分)若分式的值为0,则x的值等于3.【解答】解:由题意得:x﹣3=0,且x≠0,解得:x=3,13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是乙(填“甲”或“乙”).【解答】解:∵S甲2=3,S乙2=2.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.14.(3分)不等式组的最大整数解是2.【解答】解:,由①得,x<3;由②得,x≥﹣1;∴不等式组的解为﹣1≤x<3,它所包含的整数为﹣1,0,1,2.∴它的最大整数解为2.故答案为2.15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为2﹣.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,=BA•AB′=2,S△ABE=1,∴S△ABB′∴CB′=2B E﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故答案为:2﹣.17.(3分)已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n﹣3时多项式x2﹣4x+1的值为﹣2.【解答】解:∵x=m和x=n时,多项式x2﹣4x+1的值相等,∴y=x2﹣4x+1的对称轴为直线x==﹣,解得m+n=4,∴x=m+n﹣3=4﹣3=1,x2﹣4x+1=12﹣4×1+1=﹣2.故答案为:﹣218.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故答案为:.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明).19.(5分)计算:﹣3tan30°﹣()﹣2.【解答】解:原式=2﹣3×﹣4=﹣4.20.(5分)先化简,再求值:,其中a满足a2+3a=5.【解答】解:原式=÷=÷=•=,当a2+3a=5时,原式=.21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.【解答】解:画树状图如下:由上面的树状图可知,一共有4种情况,一男一女所占的情况有2种,∴概率为=.22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.(1)在统计表中,m= 30,n= 20 ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 90° .(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.【解答】解:(1)抽查的总人数是:15÷15%=100(人), 则m=100×30%=30, n=100×20%=20..故答案是:30,20;(2)扇形统计图中“C 组”所对应的圆心角的度数是:360°×=90°.故答案是:90°;(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?【解答】解:设甲、乙两种票各买x张,y张,根据题意,得:,解得:,答:甲、乙两种票各买20张,15张.25.(8分)如图,一次函数y=kx﹣4(k≠0)的图象与y轴交于点A,与反比例函数y=(x >0)的图象交于点B(6,b).(1)b=2;k=1.(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.【解答】解:(1)∵点B在反比例函数y=(x>0)的图象上,将B(6,b)代入y=,得b=2,∴B(6,2),∵点B在直线y=kx﹣4上,∴2=6k﹣4,解得k﹣1,故答案为:2,1.(2)∵点C的横坐标为3,把x=3代入y=x﹣4,得y=﹣1,∴C(3,﹣1),∵CD∥y轴,∴点D的横坐标为3,把x=3代入y=,可得y=4,∴D(3,4).由平移可得,△OCD≌△O'C'D',设O'(a,),则C'(a+3,﹣1),∵点C'在直线y=x﹣4上,∴﹣1=a+3﹣4,∴=a,∵a>0,∴a=2,∴O'(2,2),∴D'(2+3,2+4).26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【解答】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2,sin∠BCP=,∴sin∠BCP=sin∠DBC===,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN,∵AC为直径,∴∠ANC=90°,∴Rt△ACN中,AC==5,又CD=2,∴AD=AC﹣CD=5﹣2=3.∵BD∥CP,∴,∴CP=.在Rt△ACP中,AP==,AC+CP+AP=5++=20,∴△ACP的周长为20.27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P 的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为(t﹣1)cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S 与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【解答】解:(1)由勾股定理可知AB==10.∵D、E分别为AB和BC的中点,∴DE=AC=4,AD=AB=5.∴点P在AD上的运动时间==1s,当点P在线段DE上运动时,DP段的运动时间为(t﹣1)s,∵DE段运动速度为1cm/s,∴DP=(t﹣1)cm,故答案为:t﹣1.(2)当正方形PQMN与△ABC重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP时,重叠部分为五边形,∴3>t﹣1,t<4,DP>0,∴t﹣1>0,解得t>1.∴1<t<4.∵△DFN∽△ABC,∴===,∵DN=PN﹣PD,∴DN=3﹣(t﹣1)=4﹣t,∴=,∴FN=,∴FM=3﹣=,S=S梯形FMHD+S矩形DHQP,∴S=×(+3)×(4﹣t)+3(t﹣1)=﹣t2+3t+3(1<t<4).(3)①当圆与边PQ相切时,如下图,当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm,∵r以0.2cm/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=mq+cq=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=s(舍),综上所述,当t=s时,⊙O与正方形PQMN的边所在直线相切.28.(10分)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2﹣6ax+6,得64a﹣48a+6=0,∴16a=﹣6,a=﹣,∴y=﹣x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6.(2)∵E(m,0),∴N(m,﹣m+6),P(m,﹣m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴=,∴PM=AN=×=12﹣m.又∵PM=﹣m2+m+6﹣6+m=﹣m2+3m,∴12﹣m=﹣m2+3m,整理得:m2﹣12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年第二学期初三练习卷(星海中学)
数学
一、选择题(10×
3分=30分) 1.23
-的绝对值是(). A .23
B .23-
C .32
D .32
- 【答案】A 【解析】正数、负数的绝对值都是正数.
2.已知地球上陆地面积约为2510000000km ,510000000这个数用科学计数法表示为(). A .65.110⨯
B .75.110⨯
C .85.110⨯
D .95.110⨯
【答案】C
【解析】科学计数法的表示形式为10n a ⨯,其中110a ≤≤,n 为整数,确定n 的值时,要看把原数变 为a ,小数点移动了多少位,n 的绝对值与小数点移动位数相同,当原数绝对值1>时,n 是正数,原数绝对值1<时,n 是负数.
3.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中 位数分别是().
A .19和20
B .20和19
C .20和20
D .20和21 【答案】C
【解析】中位数要按照大小顺序将数据排序,若数据总数为奇数,则中间的数为中位数.
4.如图,AB EF ∥,直线EF 分别交AB ,CD 于E ,F 两点,BEF ∠的平分线交CD 于点G ,若
72EFG ∠=︒,则EGF ∠等于().
A .36︒
B .54︒
C .72︒
D .108︒ 【答案】B 【解析】∵EG 平分BEF ∠, ∴12
BEG FEG BEF ∠=∠=∠, ∵AB CD ∥,BEF ∠与EFG ∠是同旁内角,
∴180BEF EFG ∠+∠=︒,
∵72EFG ∠=︒,
∴108BEF ∠=︒, ∴1542
FEG BEF ∠=∠=︒, G F
E D C B
A
∴18054EGF EFG FEG ∠=︒-∠-∠=︒.
5.下列算式中,正确的是().
A .221a a a a ÷⋅
= B .2223a a a -=- C .326()a a --= D .3262()a b a b =
【答案】D
【解析】根据同底数幂的乘除及幂的乘方法则进行计算.
6.如图所示,河堤横断面迎水坡AB
的坡比是5m BC =,则坡面AB 的长度是().
A .10m
B
. C .15m D
.
【答案】A 【解析】AB
坡比是
:BC AC =
∴tan BAC ∠= ∴30BAC ∠=︒,
∴22510AB BC ==⨯=.
7.某书店把一本新书按标价的九折出售,仍获利20%,若该书的进价为21元,则标价为().
A .26元
B .27元
C .28元
D .29元
【答案】C
【解析】设标价为x ,依题意知
(90%21)2120%x -÷=,解得28x =.
8.如图,A 、B 是双曲线(0)y kx k =>上的点,A 、B 两点的横坐标分别是m 、2m ,线段AB 的延
长线交x 轴于点C ,若6AOC S =△,则k 的值为().
A .1
B .2
C .4
D .无法确定
【答案】C 【解析】分别过A ,B 作x 轴的垂线,垂足分别为D ,E ,
C
B
A
则AD BE ∥,2k AD BE a
==
, ∴B 、E 分别是AC ,DC 的中点, ∴ADC BEC △∽△,
∵:1:2BE AD =,
∴:1:2EC CD =,
∴EC DE a ==,
∴3OC a =, 又∵,k A m m ⎛⎫ ⎪⎝⎭,2,2k B m m ⎛⎫ ⎪⎝
⎭, ∴113622AOC k S AD CO a a
=
⨯=⨯⨯=△, 解得4k =,
∴答案为C 项.
9.将一副三角尺(在Rt ABC △中,90ACB ∠=︒,60B ∠=︒,在Rt EDF △中,90EDF ∠=︒,45E ∠=︒)
如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF △绕点D 顺时针方向旋转(060)αα︒<<︒,DE '交AC 于点M ,DF 交BC 于点N 则PMCN 的值为().
A
B
C
D .12
【答案】B
【解析】∵D 为斜边AB 中点,
∴CD AD DB ==, ∴30ACD A ∠=∠=︒,60BCD B ∠=∠=︒, ∵90EDF ∠=︒,
∴60CPD ∠=︒,
∴MPD NCD ∠=∠,
E'
F'P
N M F
E
D C B A。