常州大学数值分析课后习题答案第二章第三章第四章节资料
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析习题含答案

第一章 绪论** 班级习题主要考察点:有效数字的计算、计算方法的比拟选择、误差和误差限的计算。
1假设误差限为5105.0-⨯,则近似数0.003400有几位有效数字.〔有效数字的计算〕 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少.〔有效数字的计算〕 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取〔3.14109 , 3.14209〕之间的任意数,都具有4位有效数字。
32031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字.〔有效数字的计算〕 解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差.〔误差的计算〕 解:δ=-**xx x ,则误差为 δ=-=-***ln ln x x x x x则相对误差为 ******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得*圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
〔误差限的计算〕解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v6设x 的相对误差为%a ,求nx y =的相对误差。
数值分析课程第五版课后习题答案

=
1 = 1.7863 × 10 − 2 。 55.982
8、当 N 充分大时,怎样求 ∫ [解]因为 ∫
N +1 N
1 dx ? 1+ x2
1 dx = arctan( N + 1) − arctan N ,当 N 充分大时为两个相近数相 1+ x2
减,设 α = arctan( N + 1) , β = arctan N ,则 N + 1 = tan α , N = tan β ,从而 tan(α − β ) = 因此 ∫
5、计算球体积要使相对误差限为 1%,问度量半径 R 允许的相对误差是多少? 4 ε * ( π (R* )3 ) 4 3 [解]由 1% = ε r* ( π ( R * ) 3 ) = 可知, 4 3 * 3 π (R ) 3 ′ 4 4 4 ε * ( π ( R * ) 3 ) = 1% × π ( R * ) 3 = π ( R * ) 3 ε * ( R * ) = 4π ( R * ) 2 × ε * ( R * ) , 3 3 3
ε * ( y n ) = 10ε * ( y n −1 ) = 10 n ε * ( y 0 ) ,
1 1 从而 ε * ( y10 ) = 1010 ε * ( y 0 ) = 1010 × × 10 − 2 = × 10 8 ,因此计算过程不稳定。 2 2 12、计算 f = ( 2 − 1) 6 ,取 2 ≈ 1.4 ,利用下列公式计算,哪一个得到的结果最 好? 1 ( 2 + 1)
* r
x= x
*
ε ( x * ) = n( x * ) n −1 2% x * = 2n% ⋅ x * ,
数值分析第二章答案

∑
n
i=1
ln x i = 0
θ
∧
= −
n
∑ ∑
n
n
i=1
ln x i n
θ
= =
解之得:
i=1
ln x i
(2)母体 X 的期望
E (x) =
∫
+∞ −∞
xf ( x ) d x =
∫
1 0
θ xθ dx =
θ θ +1
而样本均值为:
1 n X = ∑ xi n i =1 令E ( x) = X 得 θ =
x e 2σ 1 n
d x = 2 x ) =
∫
+ ∞ 0
x 2σ
e
−
x σ
d x = − x e ) = 1 ⋅ nσ n
−
x σ
+ ∞
+
0
∫
+ ∞ 0
e
−
x σ
d x =
E (σ ) = E (
∑
n
i=1
i
1 n
∑
n
E ( x
i=1
i
= σ
所以
σ=
∧
1 n ∑ xi σ n i=1 为 的无偏估计量。
∧
X 1− X
5.。解:其似然函数为:
L (σ ) = ∏
i =1
n
1 ⋅e 2σ
−
xi σ
=
1 ⋅e (2σ ) n 1 σ
n i =1
−
1 σ
∑ xi
i =1
n
ln L (σ ) = − n ln(2σ ) − 得: σ =
∧
数值分析第三版课本习题及答案

数值分析第三版课本习题及答案第⼀章绪论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====?4. 利⽤公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多⼤误差?7. 求⽅程25610x x -+=的两个根,使它⾄少具有四位有效数字.8. 当N 充分⼤时,怎样求211Ndx x +∞+?9. 正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝210. 设212S gt =假定g 是准确的,⽽对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,⽽相对误差却减⼩. 11. 序列{}n y 满⾜递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多⼤?这个计算过程稳定吗?12.计算61)f =,1.4≈,利⽤下列等式计算,哪⼀个得到的结果最好?13.()ln(f x x =,求f (30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式ln(ln(x x =-计算,求对数时误差有多⼤?14. 试⽤消元法解⽅程组{101012121010;2.x x x x +=+=假定只⽤三位数计算,问结果是否可靠?15. 已知三⾓形⾯积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c 证明⾯积的误差s ?满⾜.s a b cs a b c ≤++第⼆章插值法1. 根据定义的范德蒙⾏列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==LLL L L L L L L证明()n V x 是n 次多项式,它的根是01,,n x x -L ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--L L .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的⼆次插值多项式.3. 给出f (x )=ln x 的数值表⽤线性插值及⼆次插值计算ln 的近似值.x 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nkkj jj x l x x k n =≡=∑Lii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑L7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若⽤⼆次插值求x e 的近似值,要使截断误差不超过610-,问使⽤函数表的步长h 应取多少?9. 若2n n y =,求4n y ?及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分()(0)kf x k m ?≤≤是m k -次多项式,并且()0(m lf x l +?=为正整数).11. 证明1()k k k k k k f g f g g f +?=?+?.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==?=--?∑∑13. 证明12n j n j y y y -=?=?-?∑14. 若1011()n nn n f x a a x a x a x --=++++L 有n 个不同实根12,,,n x x x L ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =L L ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+L L L .16. 74()31f x x x x =+++,求0172,2,,2f L 及0182,2,,2f L . 17. 证明两点三次埃尔⽶特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔⽶特插值的误差限.18. 求⼀个次数不⾼于4次的多项式()P x ,使它满⾜(0)(1)P P k =-+并由此求出分段三次埃尔⽶特插值的误差限.19. 试求出⼀个最⾼次数不⾼于4次的函数多项式()P x ,以便使它能够满⾜以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造⼀个台阶形的零次分段插值函数()n x ?并证明当n →∞时,()n x ?在[],a b 上⼀致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()hI x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔⽶特插值,并估计误差.24. 给定数据表如下:(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-";ii) 若()()(0,1,,)i i f x S x i n ==L ,式中i x 为插值节点,且01n a x x x b =<<<=L ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可⽤式的表达式).第三章函数逼近与计算1. (a)利⽤区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳⼀致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳⼀致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极⼩,⼜问这个解是否唯⼀?6. 求()sin f x x =在[]0,/2π上的最佳⼀次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳⼀次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最⼩?r 是否唯⼀? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*的正交多项式.12. 在[]1,1-上利⽤插值极⼩化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极⼩化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ?=-----,试将()x ?降低到3次多项式并估计误差. 15. 在[ ]1,1-上利⽤幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dxπ+-?为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们是否构成内积?19. ⽤许⽡兹不等式估计6101x dx x +?的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20. 选择a ,使下列积分取得最⼩值:112221110010121,,,span x span x x 1?=?=,分别在1?、2?上求出⼀个元素,使得其为[]20,1x C ∈的最佳平⽅逼近,并⽐较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ?=上的最佳平⽅逼近.23.sin (1)arccos ()n n x u x +=是第⼆类切⽐雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25. 把()arccos f x x =在[]1,1-上展成切⽐雪夫级数.26. ⽤最⼩⼆乘法求⼀个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均⽅误差.28. 在某化学反应⾥,根据实验所得分解物的浓度与时间关系如下:⽤最⼩⼆乘拟合求.29. 编出⽤正交多项式做最⼩⼆乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出⼀张记录{}{}4,3,2,1,0,1,2,3k x =,试⽤改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =L第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++?;(2)21012()()(0)()hh fx dx A f h A f A f h --≈-++?;(3)[]1121()(1)2()3()/3()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'?.2. 分别⽤梯形公式和⾟普森公式计算下列积分: (1)120,84xdx n x =+?; (2)1210(1),10x e dx n x --=?;(3)1,4n =?; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. ⽤⾟普森公式求积分1xedx-?并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-?; (2)2()()()()()2baf f x dx b a f b b a 'η=---?;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-?.6. 证明梯形公式和⾟普森公式当n →∞时收敛到积分7. ⽤复化梯形公式求积分()baf x dx,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍⼊误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是⼀个椭圆,椭圆周长的计算公式是S a =θ,这⾥a 是椭圆的半长轴,c 是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记h 为近地点距离,H 为远地点距离,6371R =公⾥为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第⼀颗⼈造卫星近地点距离439h =公⾥,远地点距离2384H =公⾥,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-L试依据sin(/)(3,6,12)n n n π=的值,⽤外推算法求π的近似值.11. ⽤下列⽅法计算积分31dyy ?并⽐较结果.(1) 龙贝格⽅法;(2) 三点及五点⾼斯公式;(3) 将积分区间分为四等分,⽤复化两点⾼斯公式.12. ⽤三点公式和五点公式分别求21()(1)f x x =第五章常微分⽅程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解bx ax y +=221相⽐较。
数值分析部分答案

计算, 解
Q f(x) ln(x Jx21),f(30)In(30 s/899)设u ^y899, y f (30)则u*
yu
u
1*
g u
0.0167
3
若改用等价公式
ln(x•.厂1)In (x1)
贝卩f(30)In(30x899)
此时
* *
yr u
u
1*
u
59.9833
7
第二章插值法
2
X
0.4
0.5
(y2*)10 (y「)
2
(y2*)10 (y°*)
S*)1010(yo*)
101011022
(x1)7
6* *
7y x
(x 1)
* *
y x
*2*
(32x)g x
6* *
*y g x
3 2x
* *
y x
(3 2.2)3计算y值,则
1
(3 2x )4
1*
7y x
(3 2x )7'
* *
y x
(3 2 <2)
(3)(x2/x4)
0.031 385.6
1.1021 385.6
x;
*ቤተ መጻሕፍቲ ባይዱ
(X4)
X4(X2)
* 2
X4
131
1056.43010
2 2
56.430 56.430
5
解:球体体积为V 4R
3
则何种函数的条件数为
2
Rgl R
1 V丨
43
-R3
3
3
r(V*) Cpgr(R*)3r(R*)
Cp
又Qr(V*)1
数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析作业第二章1、用Gauss消元法求解下列方程组:2x1-x2+3x3=1,(1) 4x1+2x2+5x3=4,x1+2x2=7;(2) 解:A=[2 -1 3 1;4 2 5 4;1 2 0 7]n=size(A,1);x=zeros(n,1);flag=1;% 消元过程for k=1:n-1for i=k+1:nif abs(A(k,k))>epsA(i,k+1:n+1)=A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); elseflag=0;returnendendend% 回代过程if abs(A(n,n))>epsx(n)=A(n,n+1)/A(n,n);elseflag=0;returnendfor i=n-1:-1:1x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); endreturnxA = 2 -1 3 14 25 41 2 0 7x = 9-1-611x1-3x2-2x3=3,(2)-23x1+11x2+1x3=0,x1+2x2+2x3=-1;(2) 解:A=[11 -3 -2 3;-23 11 1 0;1 2 2 -1]n=size(A,1);x=zeros(n,1);flag=1;% 消元过程for k=1:n-1for i=k+1:nif abs(A(k,k))>epsA(i,k+1:n+1)=A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k);elseflag=0;returnendendend% 回代过程if abs(A(n,n))>epsx(n)=A(n,n+1)/A(n,n);elseflag=0;returnendfor i=n-1:-1:1x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i);endreturnxA = 11 -3 -2 3-23 11 1 01 2 2 -1x = 0.21240.5492-1.15544、用Cholesky分解法解方程组3 2 3 x1 52 2 0 x2 33 0 12 x3 7解:.A=[3 2 3;2 2 0;3 0 12];b=[5 3 7];lambda=eig(A);if lambda>eps&isequal(A,A')[n,n]=size(A);R=chol(A);%解R'y=by(1)=b(1)/R(1,1);if n>1for i=2:ny(i)=(b(i)-R(1:i-1,i)'*y(1:i-1)')/R(i,i);endend%解Rx=yx(n)=y(n)/R(n,n);if n>1for i=n-1:-1:1x(i)=(y(i)-R(i,i+1:n)*x(i+1:n)')/R(i,i);endendx=x';elsex=[];disp('该方法只适用于对称正定的系数矩阵!');endR= 1.7321 1.1547 1.73210 0.8165 -2.44950 0 1.7321y= 2.8868 -0.4082 0.5774x= 1.0000 0.5000 0.33335. 用列主元Doolittle分解法解方程组解:A=[3 4 5; -1 3 4; -2 3 -5;]; 3 4 5 X1 2 b=[2,-2 6]'; -1 3 4 X2 -2 [L,U,pv]=luex(A); -2 3 -5 X3 6y = L\b(pv);x = U\y结果如下:x = 11-114.已知,计算.解:A=[100 99;99 98];cond(A,inf)ans =3.9601e+04cond(A,2)ans =3.9206e+0427.编写LU分解法,改进平方根法,追赶法的Matlab程序,并进行相关数值试验。
解:LU分解法程序Function [L,U]=lup(A)%lup: LU factorization%Synopsis:[L,U]=lup(A)%Input: A=coefficient matrix%Output: L:lower triangular matrix% U upper triangular matrixFormat short[m,n]=size(A);If m~=n,error(`A matrix needs to be square`); EndPv=(1:n)`;%LU factorizationFor i=1:n-1Pivot=A(i,i);For k=i+1;nA(k,i)=A(k,i)/pivot;A(k,i+1;n)=A(k,i+1;n)-A(k,i)*A(i,i+1;n); EndEndL=eye(size(A))+tril(A,-1);%extract L and UU=triu(A)改进平方根法程序Function[x]=ave(A,b,n)L=zeros(n,n);D=diag(n,0);S=L*D;For i=1:nL(i;i)=1;EndFor i=1;nFor j=1;nIf (eig(A)<=0)|(A(i,j)~=A(j,i))disp(`wrong`);Break;EndEndEndD(1,1)=A(1,1);For i=2;nFor j=1;i-1S(i,j)=A(i,j)-sum(S(i,1;i-1)*L(j,1;j-1)`);L(i,1;i-1)=S(i,1;i-1)/D(1;i-1, 1;i-1);endD(i,i)=A(i,i)-sum(L(i,1;i-1)*L(i,1;i-1)`);EndD(i,i)=A(i,i)-sum(S(i,1;i-1)*D(1;i-1, 1;i-1)*y(1;i-1)))/D(i,i);Y=zeros(n,1);X=zero(n,1);For i=1;nY(i)=(b(i)-sum(L(i,1;i-1)*D(1;i-1, 1;i-1)*y(1;i-1)))/D(i,i); EndFor i=n;-1;1X(i)=y(i)-sum(L(i+1;n,i)`*x(i+1;n));End追赶法程序Function[x,L,U]=Thomas(a,b,c,f)N=length(b);%对A进行分解U(1)=b(1);For i=2;nIf(u(i-1)`=0)L(i-1)=a(i-1)/u(i-1);U(i)=b(i)-l(i-1)*c(i-1);ElseBreak;EndL=eye(n)+diag(1,-1);U=diag(u)+diag(c,1);X=zeros(n,1);Y=x;%?求解ly=b?Y(1)=f(1);For i=2;nY(i)=f(i)-l(i-1)*y(i-1);End%?求解Ux=y?If(u(n)`=0)X(n)=y(n)/u(n);EndFor i=n-1;-1;1X(i)=(y(i)-c(i)*x(i+1))/u(i);End第三章1、设节点x0=0,x1=π/8,x2=π/4,x3=3π/8,x4=π/2,适当选取上述节点用Lagrange插值法分别构造cosx在区间[0, π/2]上的一次,二次和四次插值多项式P1(x)P2(x)和P4(x),并分别计算P1(x),P2(x),P4(x)其中X取π/3。
A=fliplr(A); Returnx = [π/8,3π/8]; y = cos(x); x0 = π/3;[A,Y] = lagrange(x,y,x0); P1 = vpa(poly2sym(A),3) YP1 =1.19x - 0.689 Y =0.4729 x0 = π/3;[A,Y] = lagrange(x,y,x0); P2=vpa(poly2sym(A),3) YP2 = x2 - 0.109x - 0.336 Y =0.5174x = [0,π/8,π/4,3π/8,π/2]; y= cos(x); x0 = π/3;[A,Y]=lagrange(x,y,x0); P4=vpa(poly2sym(A),3) YP4 =x4 + 0.00282x3 - 0.514x2 + 0.0232x + 0.0287 Y =0.50017.根据列表函数选取适当的节点,用逐次线性插值法给出三次多项式在2.8处的值。
答:Matlab 程序 function[T,y0]=aitken(x,y,x0,T0) if nargin==3 T0=[];endn0=size(T0,1);m=max(size(x));n=n0+m;T=zeros(n,n+1);T(1:n0,1:n0+1)=T0;T(n0+1:n,1)=x;T(n0+1:n,2)=y;if n0==0 i0=2;elsei0=n0+1;endfor i=i0:nfor j=3:i+1T(i,j)=fun(T(j-2,1),T(i,1),T(j-2,j-1),T(i,j-1),x0);endy0=T(n,n+1);returnfunction [y]=fun(x1,x2,y1,y2,x) y=y1+(y2-y1)*(x-x1)/(x2-x1); return%选取0、1、3、4四个节点,求三次插值多项式 x=[0,1,3,4];y=[0.5,1.25,3.5,2.75];x0=2.8;[T,y0]=aitken(x,y,x0)y0 =3.4190000000000008.根据上题中的列表函数,写出差商表,并写出Newton插值多项式N2(x)和N4(x)。
答:差商表:由Nn(x)=a0+a1(x-x0)+a2(x-x0)(x-x1)+…+an(x-x0)(x-x1)…(x-xn-1)得(x) =0.5+0.75(x-0.00) + 0.375(x-0.0)(x-1.0)N2=0.375x2+0.375x+0.5N(x) =0.5+0.75(x-0.00) + 0.375(x-0.0)(x-1.0) - 0.25(x-0.0)(x-1.0) 4(x-2.0) + 0.03125(x-0.0)(x-2.0)(x-1.0)(x-3.0)=0.03125x4-0.4375x3+1.46875x2-0.3125x+0.516、选取适当的函数y=f(x)和插值节点,编写Matlab程序,分别利用Lagrange插值方法,Newton插值方法确定的插值多项式,并将函数y=f(x)的插值多项式和插值余项的图形画在同一坐标系中,观测节点变化对插值余项的影响。