2007年内蒙古鄂尔多斯市中考数学试题及答案

合集下载

2007年内蒙古呼伦贝尔市锡林郭勒盟兴安盟通辽市中考数学试卷DOC

2007年内蒙古呼伦贝尔市锡林郭勒盟兴安盟通辽市中考数学试卷DOC

2007年内蒙古呼伦贝尔市锡林郭勒盟兴安盟通辽市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2007•呼伦贝尔)下列计算结果为负数的是( )A . ﹣(﹣3)B . ﹣|﹣3|C . ()﹣1D .2.(3分)(2007•呼伦贝尔)锐角三角形的三个内角是∠A ,∠B ,∠C ,如果α=∠A+∠B ,β=∠B+∠C ,γ=∠C+∠A ,那么α,β,γ这三个角中( )A . 没有锐角B . 有1个锐角C . 有2个锐角D . 有3个锐角3.(3分)(2007•呼伦贝尔)2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)( )A . 4.28×104千米B . 4.29×104千米C . 4.28×105千米D . 4.29×105千米4.(3分)(2007•呼伦贝尔)下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ) A .B .C .D .5.(3分)(2007•呼伦贝尔)如图,在Rt △AEB 和Rt △AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于N ,∠E=∠F=90°,∠EAC=∠FAB ,AE=AF .给出下列结论:①∠B=∠C ;②CD=DN ;③BE=CF ;④△ACN ≌△ABM .其中正确的结论是()A . ①③④B . ②③④C . ①②③D . ①②④6.(3分)(2007•呼伦贝尔)图中4个正方形的边长都相等,其中阴影部分面积相等的图形个数是( )A . 0B . 2C . 3D . 47.(3分)(2007•呼伦贝尔)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x ,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A . 10B . 9C . 8D . 78.(3分)(2007•呼伦贝尔)黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2﹣n+3 D.4n,2n+19.(3分)(2007•呼伦贝尔)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD 的长为()A.4B.5C.8D.1010.(3分)(2007•呼伦贝尔)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.(3分)(2010•双流县)函数y=中,自变量x的取值范围是_________.12.(3分)(2007•呼伦贝尔)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为_________.13.(3分)(2007•呼伦贝尔)分解因式:a3+a2b﹣ab2﹣b3=_________.14.(3分)(2007•呼伦贝尔)如图,电路图上有四个开关,A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光,现任意闭合其中两个开关,则小灯泡发光的概率为_________.15.(3分)(2007•呼伦贝尔)如果半径为2和7的两个圆相切,那么这两圆的圆心距为_________.16.(3分)(2007•呼伦贝尔)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是_________.(请将自己认为正确结论的序号都填上)17.(3分)(2007•呼伦贝尔)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是_________m.(结果不取近似值)三、解答题(共9小题,满分69分)18.(6分)(2007•呼伦贝尔)计算:(﹣1)﹣2007﹣+2cos30°﹣(﹣1)219.(6分)(2007•呼伦贝尔)解方程:+=20.(6分)(2007•呼伦贝尔)先化简分式:,然后请你给a选取一个合适的值,再求此时原式的值.21.(6分)(2007•呼伦贝尔)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?22.(7分)(2007•呼伦贝尔)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?23.(8分)(2007•呼伦贝尔)如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.(1)出发后几小时两船与港口P的距离相等;(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参考数据:≈1.41,≈1.73)24.(8分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.(10分)(2007•呼伦贝尔)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.(1)用列表法(或树状图)求丁洋获胜的概率;(2)你认为这个游戏对双方公平吗?请说明理由.26.(12分)(2007•呼伦贝尔)图1是边长分别为和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F (图2).探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR (图3).探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.2007年内蒙古呼伦贝尔市锡林郭勒盟兴安盟通辽市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2007•呼伦贝尔)下列计算结果为负数的是()A.﹣(﹣3)B.﹣|﹣3| C.D.()﹣1考点:负整数指数幂;相反数;绝对值;算术平方根.专题:计算题.分析:根据绝对值、相反数、负整数指数的运算法则计算即可.解答:解:A、﹣(﹣3)=3;B、﹣|﹣3|=﹣3;C、()﹣1=3;D、=3.故选B.点评:本题主要考查了相反数,绝对值,负整数指数和算术平方根,这些运算法则要牢记.2.(3分)(2007•呼伦贝尔)锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角考点:三角形的外角性质.分析:根据三角形的外角性质,及锐角三角形的性质作答.解答:解:由于锐角三角形中三个都是锐角,而α,β,γ分别是其外角,根据三角形外角的性质,可知α,β,γ这三个角都是钝角.故选A.点评:此题主要考查了三角形内角与外角的关系.(1)三角形的任一外角等于和它不相邻的两个内角之和;(2)三角形的任一外角>任何一个和它不相邻的内角.3.(3分)(2007•呼伦贝尔)2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行(用科学记数法表示保留三个有效数字)()A.4.28×104千米B.4.29×104千米C.4.28×105千米D.4.29×105千米考点:科学记数法与有效数字.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入.解答:解:60万÷14≈4.29×104.故选B.点评:本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动4位,应该为4.29×104.4.(3分)(2007•呼伦贝尔)下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()A.B.C.D.考点:统计图的选择.专题:图表型.分析:此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据统计图的特点,知条形统计图能清楚地表示出每个项目的具体数目,也正符合这道题要把不同品种的奶牛的平均产奶量显示清楚的目的;而图B中的奶牛瓶这样一个立体物显示,容易使人们从体积的角度比较这几种不同品种奶牛的平均产奶量,从而扩大了它们的差距,是不合适的.故选D.点评:本题考查的是统计图的选择,注意条形统计图能看出具体产量的多少.此题虽是一道小题,但把三种统计图各自的特点和补足都进行了考查,而且还考查了数据与图形的关系所造成的误导,把各个知识点都融合在一道题中,非常巧妙,又顺理成章,很有新意.5.(3分)(2007•呼伦贝尔)如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB 与CF相交于N,∠E=∠F=90°,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④考点:全等三角形的判定与性质.分析:根据题目中所给的大部分选项先判断该证明哪两个三角形全等,然后对各选项采取排除法得到正确选项.解答:解:∵∠EAC=∠FAB∴∠EAB=∠CAF又∵∠E=∠F=90°,AE=AF∴△ABE≌△ACF∴∠B=∠C,BE=CF.由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选A.点评:本题考查了全等三角形的判定和性质,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.6.(3分)(2007•呼伦贝尔)图中4个正方形的边长都相等,其中阴影部分面积相等的图形个数是()A.0B.2C.3D.4考点:扇形面积的计算.分析:从图中可以看出阴影部分的面积=正方形的面积﹣圆的面积.解答:解:第一个阴影部分的面积=正方形的面积﹣圆的面积,圆的半径为边长的一半;第二个也是;第三个不是;第四个也是;所以有三个图形的阴影部分面积相等.故选C.点评:本题关键是看出阴影部分的面积公式是由哪几部分组成的.7.(3分)(2007•呼伦贝尔)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是()A.10 B.9C.8D.7考点:中位数;算术平均数.专题:应用题.分析:将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.解答:解:因为这组数据的众数与平均数恰好相等,所以9+9+x+7=9×4,∴x=11;题目中数据共有4个,故中位数是按从小到大排列后第2,第3两个数的平均数作为中位数.故这组数据的中位数是(9+9)=9.故选B.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.(3分)(2007•呼伦贝尔)黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1 B.2n+2,2n+1 C.4n,n2﹣n+3 D.4n,2n+1考点:平面镶嵌(密铺).专题:规律型.分析:第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n﹣1)×2=2n+1.解答:解:第1个图案中,黑色正三角形和白色正六边形的个数分别是4,2×1+1=3;第2个图案中,黑色正三角形和白色正六边形的个数分别是2×4=8,2×2+1=5;第3个图案中,黑色正三角形和白色正六边形的个数分别是3×4=12,2×3+1=7;…第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n﹣1)×2=2n+1.故选D.点评:找规律的题,应以第一个图象为基准,细心观图形之间的关系.9.(3分)(2007•呼伦贝尔)如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD 的长为()A.4B.5C.8D.10考点:相交弦定理.专题:压轴题.分析:运用相交弦定理求解.解答:解:设CE=x,则DE=3+x.根据相交弦定理,得x(x+3)=2×2,x=1或x=﹣3(不合题意,应舍去).则CD=3+1+1=5.故选B.点评:此题可以根据相交弦定理列方程求解.10.(3分)(2007•呼伦贝尔)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()A.B.C.D.考点:翻折变换(折叠问题).专题:压轴题.分析:根据轴对称的大小不变,位置变化,对应边和对应角相等和勾股定理求解.解答:解:根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.点评:本题利用了:1、折叠的性质;2、矩形的性质.二、填空题(共7小题,每小题3分,满分21分)11.(3分)(2010•双流县)函数y=中,自变量x的取值范围是x>﹣2.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:压轴题.分析:根据二次根式数大于等于0,分母不等于0,列不等式求解.解答:解:根据题意得:x+2>0,解得x>﹣2.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)(2007•呼伦贝尔)把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为±.考点:算术平方根;平方根;展开图折叠成几何体.分析:由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解答:解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.点评:此题主要考查了平方根、算术平方根的定义,解题关键是找出这个正方体的相对面,要求学生自己动手,慢慢体会哪二个面是相对面.13.(3分)(2007•呼伦贝尔)分解因式:a3+a2b﹣ab2﹣b3=(a+b)2(a﹣b).考点:因式分解-分组分解法.分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.解答:解:a3+a2b﹣ab2﹣b3,=a2(a+b)﹣b2(a+b),=(a+b)(a2﹣b2),=(a+b)2(a﹣b).点评:本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.此题主要用到了提取公因式法和平方差公式进行因式14.(3分)(2007•呼伦贝尔)如图,电路图上有四个开关,A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光,现任意闭合其中两个开关,则小灯泡发光的概率为.考点:概率公式.专题:跨学科.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:.故本题答案为:.点评:本题考查了概率的公式,用满足条件的个数除以总的个数即可得出概率的值.考点:圆与圆的位置关系.分析:两圆相切,包括两圆外切或两圆内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.解答:解:当两圆外切时d=7+2=9;内切时d=7﹣2=5.所以两圆的圆心距为9或5.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.16.(3分)(2007•呼伦贝尔)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是②,③,④.(请将自己认为正确结论的序号都填上)考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论向上,与y轴交于负半轴,对称轴在y轴右侧,能得到:a>0,c<0,﹣>0,b<0,∴abc>0,错误;②∵对称轴在1的左边,∴﹣<1,又a>0,∴2a+b>0,正确;③图象经过点(﹣1,2)和点(1,0),可得,消去b项可得:a+c=1,正确;④图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确.故正确结论的序号是②,③,④.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.(3分)(2007•呼伦贝尔)如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)考点:平面展开-最短路径问题.专题:压轴题;转化思想.分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.展开图中BP=m.故小猫经过的最短距离是m.故答案是:3.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.三、解答题(共9小题,满分69分)18.(6分)(2007•呼伦贝尔)计算:(﹣1)﹣2007﹣+2cos30°﹣(﹣1)2考点:实数的运算;立方根;负整数指数幂;特殊角的三角函数值.分析:根据负整数指数幂、特殊角的三角函数值、三次根式化简,平方的计算四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣4+﹣3+2﹣1=3﹣9.点评:本题考查实数决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、立方根的运算、平方等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;平方的运算;三次根式的化简.19.(6分)(2007•呼伦贝尔)解方程:+=考点:解分式方程.专题:计算题.分析:把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解答:解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方代入最简公分母验根.20.(6分)(2007•呼伦贝尔)先化简分式:,然后请你给a选取一个合适的值,再求此时原式的值.考点:分式的化简求值.专题:开放型.分析:首先把除法运算转化成乘法运算,然后进行约分,最后进行加减运算.解答:解:原式=1﹣×=1﹣=﹣当a=2时,原式=﹣.点评:本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键,代值时一定注意分母的值不能为0.21.(6分)(2007•呼伦贝尔)某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.现要求加工甲种零件的人数不少于加工乙种零件人数的2倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?考点:二次函数的应用.分析:人数安排:设安排x人加工甲种零件,则(20﹣x)人加工乙种零件;每天所获获利润+乙每天所获利润,根据基本等量关系列出一次函数,由“要求加工甲种零件的人数不少于加工乙种零件人数的2倍”,得出自变量x范围,求函数最大值.解答:解:设安排x人加工甲种零件,则(20﹣x)人加工乙种零件依题意得:y=5x•16+4(20﹣x)•24=﹣16x+1920又x≥2(20﹣x),x≥13∵y是x的一次函数,且﹣16<∴当x=14时,y=1696最大即安排14人加工甲种零件时,每天所获利润最大,每天所获最大利润是1696元.点评:本题考查了列一次函数解决实际问题的能力,此题为数学建模题,借助一次函数解决实际问题.22.(7分)(2007•呼伦贝尔)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图,甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,结合统计图回答下列问题:(1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?考点:频数(率)分布直方图;频数与频率;中位数.专题:常规题型;压轴题.分析:(1)根据题意:结合各小组频数之和等于数据总和,各小组频率之和等于1;易得第二组的频率0.08;再由频率、频数的关系频率=;可得总人数.(2)根据题意:从左至右第二、三、四组的频数比为4:17:15,和(1)的结论;容易求得各组的人数,这样就能求出优秀率.(3)由中位数的意义,作答即可.解答:解:(1)第一组的频率为1﹣0.96=0.04,第二组的频率为0.12﹣0.04=0.08,故总人数为(人),即这次共抽调了150人;(2)第一组人数为150×0.04=6(人),第三、四组人数分别为51人、45人,这次测试的优秀率为×100%=24%;(3)前三组的人数为69,而中位数是第75和第76个数的平均数,而120是第四组中最小的数值,因而第75和第76都是120,所以成绩为120次的学生至少有76﹣69=7人.点评:本题考查了中位数的运用和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.同时对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系频率23.(8分)(2007•呼伦贝尔)如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.(1)出发后几小时两船与港口P的距离相等;(2)出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:(1)求几小时后两船与港口的距离相等,可以转化为方程的问题解决.(2)过点P作PE⊥CD,垂足为E.则点E在点P的正南方向,则得到相等关系,C、D两点到在南北方向上经过的距离相等,因而根据方程就可以解决.解答:解:(1)设出发后x小时两船与港口P的距离相等.根据题意得81﹣9x=18x.解这个方程得x=3.∴出发后3小时两船与港口P的距离相等.。

2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案

2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案

2007年乌兰察布市初中升学考试数 学本试卷分第 卷(选择题)和第Ⅱ卷(非选择题)两部分。

本卷满分120分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(共36分)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、38-等于( ) A 、2B 、-2C 、22D 、22-2、我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克。

某地今年计划栽插这种超级杂交稻3000亩,预计该地今年收获这种杂交稻的总产量(用科学记数法表示)是( ) A 、62.4610⨯千克B 、52.4610⨯千克C 、62.510⨯千克D 、52.510⨯千克3、在坐标平面内,若点P (21)x x -+,在第二象限,则x 的取值范围是( ) A 、2x > B 、2x < C 、1x >- D 、 12x -<<4、下列美丽的图案中,既是轴对称图形,又是中心对成图形的个数是( )A 、4个B 、3个C 、2个D 、1个5、如图,已知等边△ABC 中,BC 是⊙O 的切线,BD=CE ,AD 与BE 相交于点P ,则∠APE 的读书是( ) A 、40° B 、55° C 、60° D 、75°6、如图,AB 为⊙O 的直径,BC 是⊙O 的切线,AC 交⊙O 于D ,AB=6,BC=8,则BD 的长为( ) A 、4 B 、4.8 C 、5.2 D 、67、现规定一种新的运算“※”:a ※b =ab ,如3※2=32=8,则3※12等于( ) A 、18B 、8C 、16 D 、328、设“○”、“□”、“△”分别表示三种不同的物体。

用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大的顺序排列为( )A 、○□△B 、○△□C 、□○△D 、□△○9、十位学生的鞋号由小到大分别是20、21、22、22、22、22、23、23、24、24。

2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。

文档:da2007年鄂尔多斯市中考数学(课标)

文档:da2007年鄂尔多斯市中考数学(课标)

2007年鄂尔多斯市初中毕业升学考试 数学题库参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项BCCDAADBBA二、填空题(本大题8个小题,每小题3分,共24分.) 11.38(或38)12.3713.(12)--, 14.23x -<≤ 15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:101(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分2= ································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分) 950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分) 答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分 95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =∠60CBA =∠ 90ACB =∠ ·································1分 30DCB ∴=∠ ···················································2分 ∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC = ································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域.A B C DA AB AC AD B A BB C B D C A C B C D C D A D B D D C A B C D D B C A D C A B D A B C1 北北AD CB603023.(本小题满分9分) 证法一:(1)连结DF ,90ACB =∠,D 是AB 的中点12BD DC AB ∴==·············································2分 DC 是O 的直径DF BC ∴⊥ ·······················································4分 BF FC ∴=,即F 是BC 的中点. ·························5分 (2)D F ,分别是AB BC ,的中点DF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:(1)连结DF DE , DC 是O 直径90DEC DFC ∴==∠∠ ················································································ 1分 90ECF =∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ·······································2分 D 是AB 的中点,90ACB =∠12EF CD BD AB ∴=== ·····································3分 DBF EFC ∴△≌△ ·············································4分 BF FC ∴=,即F 是BC 的中点. ·························5分 (2)DBF EFC △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分 90ACB =∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)A BC D EFGOA BCD E F GO2当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =∠ EC BC ∴=,60BCE =∠ ······················································ 7分 30DCB =∠ 90DCE ∴=∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分26.(本小题满分12分) 解(1)抛物线过(00),点.290n ∴-= ·························································· 1分 3n ∴=± ······································································································ 2分 顶点在第一象限,02bn a∴-=>且22244044ac b n n a --==>-(不写不扣分) 3n ∴= ········································································································ 3分 ∴抛物线26y x x =-+ ···················································································· 4分顶点坐标为(39), ···························································································· 5分 yB O MMA x ABC DE 60②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴=·······················7分 28x y∴= 4y x ∴= ··············································8分 由抛物线的对称性可知:62QP MN x ==- ·············9分 24(62)824MNPQ S x x x x ∴=-=-+ ······················ 10分 ∴当2432162b x a =-=-=-时, ······································································ 11分 3MN =时,938241842MNPQ S =-⨯+⨯=最大答:MN 等于3时,矩形MNPQ 的最大面积是18. ··········································· 12分y A MO Q H (39),B NP C x。

内蒙古鄂尔多斯市中考数学试卷

内蒙古鄂尔多斯市中考数学试卷

内蒙古鄂尔多斯市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列各数中,是负数的是()A . -(-3)B . -|-3|C . (-3)2D . |-3|2. (2分) (2019八上·江阴月考) 下列四个图形中,是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019九下·台州期中) 关于x的方程的一个根是,则方程的另一个根是A .B . 1C . 2D .4. (2分)某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是().A . 0.1B . 0.2C . 0.3D . 0.45. (2分) (2016八上·卢龙期中) 如图,AD⊥BC,垂足为D,∠BAC=∠CAD,下列说法正确的是()A . 直线AD是△ABC的边BC上的高B . 线段BD是△ABD的边AD上的高C . 射线AC是△ABD的角平分线D . △ABC与△ACD的面积相等6. (2分)如果(x﹣1)2=2,那么代数式x2﹣2x+7的值是()A . 8B . 9C . 10D . 11二、填空题 (共10题;共10分)7. (1分)(2017·安次模拟) 计算:(﹣1)0+|﹣1|=________.8. (1分)若分式有意义,则a的取值范围是________ .9. (1分) (2016九上·沙坪坝期中) 2016年9月19日,重庆市第五届运动会开幕式将在涪陵区拉开大幕,组委会面向社会公开征集了主题口号、会徽、会歌、吉祥物等元素,共收到有效作品16000余件,数据16000用科学记数法表示为________.10. (1分)(2018·河南) 不等式组的最小整数解是________.11. (1分)如图,计算∠A+∠B+∠C+∠E+∠F+∠AGF= ________°.12. (1分)命题“对顶角相等”的逆命题是________命题(填“真”或“假”).13. (1分)护士若要统计一病人一昼夜体温情况,应选用________统计图.14. (1分)已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为________ .15. (1分)(2018·哈尔滨) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是________.16. (1分)(2018·邯郸模拟) 如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。

2007年内蒙古高考理科数学真题及答案

2007年内蒙古高考理科数学真题及答案

2007年内蒙古高考理科数学真题及答案注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟. 2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上. 3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上. 4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚 5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件互斥,那么 球的表面积公式A B ,()()()P A B P A P B +=+24πS R =如果事件相互独立,那么其中表示球的半径 A B ,R球的体积公式()()()P A B P A P B = 如果事件在一次试验中发生的概率是,那么A p 34π3V R =次独立重复试验中事件恰好发生次的概率其中表示球的半径n A k R()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题1.( )sin 210=AB .C .D . 1212-2.函数的一个单调增区间是( )sin y x =A . B . C .D . ππ⎛⎫- ⎪44⎝⎭,3ππ⎛⎫ ⎪44⎝⎭,3π⎛⎫π ⎪2⎝⎭,32π⎛⎫π⎪2⎝⎭3.设复数满足,则( ) z 12ii z +=z =A .B .C .D .2i -+2i --2i -2i +4.下列四个数中最大的是( )A .B .C .D .2(ln 2)ln(ln 2)ln ln 25.在中,已知是边上一点,若,则ABC △D AB 123AD DB CD CA CB λ==+,λ=( ) A .B .C .D . 231313-23-6.不等式的解集是( ) 2104x x ->-A .B .C .D .(21)-,(2)+∞,(21)(2)-+∞ ,,(2)(1)-∞-+∞ ,,7.已知正三棱柱的侧棱长与底面边长相等,则与侧面所成角的111ABC A B C -1AB 11ACC A 正弦值等于( )A B C D 8.已知曲线的一条切线的斜率为,则切点的横坐标为( )23ln 4x y x =-12A .3B .2C .1D .129.把函数的图像按向量平移,得到的图像,则e xy =(23)=,a ()y f x =()f x =( ) A . B . C . D .3e2x -+3e2x +-2e3x -+2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设分别是双曲线的左、右焦点,若双曲线上存在点,使12F F ,2222x y a b-A 1290F AF ∠= 且,则双曲线的离心率为( )123AF AF =A B C D 12.设为抛物线的焦点,为该抛物线上三点,若,F 24y x =A B C ,,FA FB FC ++=0则( )FA FB FC ++=A .9B .6C .4D .3第Ⅱ卷(非选择题) 本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.的展开式中常数项为 .(用数字作答)821(12)x x x ⎛⎫+- ⎪⎝⎭14.在某项测量中,测量结果服从正态分布.若在内取值的概ξ2(1)(0)N σσ>,ξ(01),率为0.4,则在内取值的概率为 .ξ(02),15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm .216.已知数列的通项,其前项和为,则 .52n a n =-+n n S 2limnn S n ∞=→三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在中,已知内角,边.设内角,周长为. ABC △A π=3BC =B x =y (1)求函数的解析式和定义域; ()y f x =(2)求的最大值. y 18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件A 产品中至多有1件是二等品”的概率. ()0.96P A =(1)求从该批产品中任取1件是二等品的概率;p (2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,ξ求的分布列.ξ19.(本小题满分12分)如图,在四棱锥中,底面为正方形, S ABCD -ABCD 侧棱底面分别为的中点. SD ⊥ABCD E F ,,AB SC ,(1)证明平面;EF ∥SAD (2)设,求二面角的大小. 2SD DC =A EF D --AC20.(本小题满分12分)在直角坐标系中,以为圆心的圆与直线相切. xOy O 4x =(1)求圆的方程;O (2)圆与轴相交于两点,圆内的动点使成等比数列,求O x A B ,P PA PO PB ,,的取值范围.PA PB21.(本小题满分12分)设数列的首项. {}n a 113(01)2342n n a a a n --∈==,,,,,,…(1)求的通项公式;{}n a(2)设,证明,其中为正整数. n b a =1n n b b +<n 22.(本小题满分12分) 已知函数.3()f x x x =-(1)求曲线在点处的切线方程;()y f x =(())M t f t ,(2)设,如果过点可作曲线的三条切线,证明:. 0a >()a b ,()y f x =()a b f a -<<参考答案评分说明: 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则. 2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题13.14.15.16. 42-0.82+52-三、解答题17.解:(1)的内角和,由得ABC △A B C ++=π00A B C π=>>3,,. 20B π<<3应用正弦定理,知,sin 4sin sin BC AC B x x A ===. 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭因为,y AB BC AC =++所以,224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭(2)因为14sin sin 2y x x x ⎛⎫=++ ⎪ ⎪⎝⎭,5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭所以,当,即时,取得最大值. x ππ+=62x π=3y 18.解:(1)记表示事件“取出的2件产品中无二等品”, 0A 表示事件“取出的2件产品中恰有1件二等品”. 1A 则互斥,且,故01A A ,01A A A =+01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=- 于是.20.961p =-解得(舍去). 120.20.2p p ==-,(2)的可能取值为.ξ012,,若该批产品共100件,由(1)知其二等品有件,故 1000.220⨯=. 2802100C 316(0)C 495P ξ===. 1180202100C C 160(1)C 495P ξ===. 2202100C 19(2)C 495P ξ===所以的分布列为ξξ0 1 2P 316495 160495 1949519.解法一:(1)作交于点,则为的中点.FG DC ∥SD G G SD 连结,又, 12AG FG CD ∥,CD AB ∥故为平行四边形.FG AEFG ∥,,又平面平面. EF AG ∥AG ⊂SAD EF ⊄,SAD 所以平面.EF ∥SAD (2)不妨设,则为等2DC =42SD DG ADG ==,,△腰直角三角形.取中点,连结,则.AG H DH DH AG ⊥又平面,所以,而, AB ⊥SAD AB DH ⊥AB AG A = 所以面.DH ⊥AEF 取中点,连结,则. EF M MH HM EF ⊥连结,则.DM DM EF ⊥故为二面角的平面角 DMH ∠A EF D --tan DH DMH HM ∠===所以二面角的大小为. A EF D --解法二:(1)如图,建立空间直角坐标系.D xyz -设,则(00)(00)A a S b ,,,,,(0)(00)B a a C a ,,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,AC.02b EF a ⎛⎫=- ⎪⎝⎭ ,,取的中点,则.SD 002b G ⎛⎫ ⎪⎝⎭,,02b AG a ⎛⎫=- ⎪⎝⎭ ,,平面平面,EF AG EF AG AG =⊂,∥,SAD EF ⊄,SAD 所以平面.EF ∥SAD (2)不妨设,则.(100)A ,,11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,中点EF 111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥又,,1002EA ⎛⎫=- ⎪⎝⎭ ,0EA EF EA EF =,⊥所以向量和的夹角等于二面角的平面角.MD EAA EF D -- .cos MD EA MD EA MD EA<>==,所以二面角的大小为. A EF D --20.解:(1)依题设,圆的半径等于原点到直线的距离,O rO 4x -=即 .2r ==得圆的方程为.O 224x y +=(2)不妨设.由即得 1212(0)(0)A x B x x x <,,,,24x =.(20)(20)A B -,,,设,由成等比数列,得 ()P x y,PA POPB ,,,22x y =+即 . 222x y -=(2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点在圆内,故P O 222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得.21y <所以的取值范围为.PA PB[20)-,21.解:(1)由 132342n n a a n --==,,,,…, 整理得 .111(1)2n n a a --=--又,所以是首项为,公比为的等比数列,得 110a -≠{1}n a -11a -12-1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知,故. 302n a <<0n b >那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=- 又由(1)知且,故, 0n a >1n a ≠2210n n b b +->因此为正整数.1n n b b n +<,方法二:由(1)可知, 3012n n a a <<≠,因为,132nn aa +-=所以.1n n b a ++==由可得,1n a ≠33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭即223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a -<即 为正整数.1n n b b n +<,22.解:(1)求函数的导数;. ()f x 2()31x x f '=- 曲线在点处的切线方程为: ()y f x =(())M t f t ,,()()()y f t f t x t '-=-即 .23(31)2y t x t =--(2)如果有一条切线过点,则存在,使 ()a b ,t.23(31)2b t a t =--于是,若过点可作曲线的三条切线,则方程 ()a b ,()y f x =32230t at a b -++=有三个相异的实数根. 记 , 32()23g t t at a b =-++则 2()66g t t at '=-.6()t t a =-当变化时,变化情况如下表:t ()()g t g t ', t(0)-∞,0(0)a ,a()a +∞, ()g t '+0-0+()g t 极大值a b + 极小值()b f a -由的单调性,当极大值或极小值时,方程最多有()g t 0a b +<()0b f a ->()0g t =一个实数根;当时,解方程得,即方程只有两个相异的实0a b +=()0g t =302at t ==,()0g t =数根;当时,解方程得,即方程只有两个相异()0b f a -=()0g t =2a t t a =-=,()0g t =的实数根.综上,如果过可作曲线三条切线,即有三个相异的实数根,()a b ,()y f x =()0g t =则0()0.a b b f a +>⎧⎨-<⎩,即 . ()a b f a -<<。

文档:da2007年内蒙古赤峰市中考数学试题

2007年赤峰市初中毕业、升学统一考试试卷数 学参考答案及评分标准一、选择题:(每小题3分,共30分)1.B 2.D 3.D 4.A 5.A 6.B 7.A 8.C 9.C 10.A 二、填空:(每空2分,共28分) 11.3(2)(2)x x +- 12.3 13.4.2 14.25° 15.6 16.2π 17.1 18.22(105)(1)1005n n n +=+⨯+ 三、作图与实验探究题:(共30分) 19.1sin30220072-+-+-0°111222=+-+ ······························································································· 4分 2= ············································································································· 6分 20.应用题:我家里有60棵树,其中杨树是柳树的2倍,求杨树和柳树各有多少棵? ·················································································································· 5分 解答过程:设杨树x 棵,柳树y 棵 ····································································· 6分 依题意:602x y x y +=⎧⎨=⎩①②················································································· 7分解得4020x y =⎧⎨=⎩································································································· 9分答:我家有杨树40棵,柳树20棵. ································································ 10分 21.解:(1)过点B '作B D x '⊥轴于D ····························································· 3分 由题意知,30A '∠=°,60A OB ''∠=°,24OB OA ''==,………………………………2分1cos60212OD OB '===∴°·…………………4分3sin 60232DB OB ''===°·………………5分 B '∴的坐标为:(13)B ',………………………6分(2)60AOB ∠=∵°,18060120AOA '∠=-=∴°°° ········································· 7分A ∴由开始到结束所经过的路径长为:120π48π1803= ········································· 10分22.解:(1)解方程2560x x -+=得1223x x ==, ············································ 1分y xA 'B 'A B O D列表:2 3 4 1 1,2 1,3 1,4 2 2,2 2,3 2,4 33,23,33,4(或用树状图) ···························································································· 4分 由表知:指针所指两数都是该方程解的概率是:49················································ 6分 指针所指两数都不是该方程解的概率是:19························································· 8分 (2)不公平!411399⨯≠⨯∵ ··········································································· 9分 修改得分规则为:指针所指两个数字都是该方程解时,王磊得1分. ·············································· 10分 指针所指两个数字都不是该方程解时,张浩得4分. ··········································· 11分 此时411499⨯=⨯ ························································································· 12分 23.(1)三角形的中位线平行于第三边且等于第三边的一半. ································· 2分(2)··················································································································· 3分 已知:DE 是ABC △的中位线 ········································································· 4分求证:DE BC ∥,12DE BC =······································································· 5分 证明:延长DE 到F ,使EF DE = ··································································· 6分 连接CFAE CE =∵,AED CEF ∠=∠ ······································································· 7分 ADE CEF ∴△≌△ ······················································································ 8分 AD CF ADE CFE =∠=∠∴, ········································································ 9分 AD CF ∴∥ ······························································································· 10分 AD BD =∵BD CF =∴ ······························································································· 11分 ∴四边形BCFD 是平行四边形 ········································································ 12分 DE BC ∴∥,12DE BC = ··········································································· 13分 24.解:(1)设高级教师招聘x 人,则中级教师招聘(40)x -人 ······························· 1分 依题意得:22002000(40)83000x x +-≤ ························································ 2分A B C D E F解此不等式得:15x ≤ ··················································································· 3分 又13x ∵≥1315x ∴≤≤ ····························································································· 4分 x ∵是正整数,131415x =∴,, ········································································· 5分 ∴学校对高级教师,中级教师有三种招聘方案 :13,27:14,26:15,25⎧⎪⎨⎪⎩方案一高级教师人中级教师人方案二高级教师人中级教师人方案三高级教师人中级教师人 (2)22002000>∵,即高级教师的月薪大于中级教师的月薪. ······························· 7分∴高级教师的招聘人数越小,学校所支付的月工资越少. ······································· 8分 131415<<∵ ································································································· 9分 ∴当高级教师招聘13人,中级教师招聘27人时,学校所支付的月工资最少. ·········· 10分 (3)补表:13、27 ······················································································· 11分 在学校所支付的月工资最少时,中位数是2100元,众数是2000元 ························· 13分 25.解:(1)解方程2230x x +-= 得1231x x =-=, ····························································································· 1分∴抛物线与x 轴的两个交点坐标为:(30)(10)C B -,,, ·············································· 2分 设抛物线的解析式为(3)(1)y a x x =+- ···························································································· 3分 (36)A ∵,在抛物线上 6(33)(31)a =+-∴· 12a =∴ ········································································· 4分 ∴抛物线解析式为:21322y x x =+- ··································································· 5分 (2)由22131(1)2222y x x x =+-=+- ·································································· 6分∴抛物线顶点P 的坐标为:(12)--,,对称轴方程为:1x =- ·································· 7分 设直线AC 的方程为:y kx b =+ (36)(30)A C -∵,,,在该直线上 3630k b k b +=⎧⎨-+=⎩∴解得31b k =⎧⎨=⎩∴直线AC 的方程为:3y x =+ ········································ 9分 将1x =-代入3y x =+得2y =Q ∴点坐标为(12)-,······················································································ 10分 (3)作A 关于x 轴的对称点(36)A '-,,连接A Q ';A Q '与x 轴交于点M 即为所求的点 ················································································································· 11分 设直线A Q '方程为y kx b =+ 362k b k b +=-⎧⎨-+=⎩∴解得02b k =⎧⎨=-⎩∴直线A C ':2y x =- ···················································································· 12分 令0x =,则0y = ························································································· 13分M ∴点坐标为(00),······················································································· 14分说明:考生在解答第三题(19 -25题)时,如有其它解法,只要正确,均可参照本标准合理赋分.xy A (3,6)Q C O B P (36)A -,。

内蒙古鄂尔多斯中考数学试卷(及答案)

2010年鄂尔多斯市初中毕业升学考试数学注意事项:1.本试题满分120分,考试用时120分钟.答题前将密封线内的项目填写清楚.题号一二三总分1~10 11~18 19 20 21 22 23 24 25 26得分一、选择题(本大题10个小题,每小题3分,共30分.每小题给出的四个选项中只有一个是正确的,请把正确选项填在下面的选项栏内)题号 1 2 3 4 5 6 7 8 9 10 选项1.如果a与1互为相反数,则a等于().A.2B.2-C.1D.1-2.如图,数轴上的点P表示的数可能是().A.5B.-5-C. 3.8-D.10-3.下列计算正确的是().A.2323a a a+=B.326a a a=gC.329()a a=D.341(0)a a a a-÷=≠4.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是().5.用折纸的方法,可以直接剪出一个正五边形.折纸过程如图所示,则α∠等于().A.108︒B.90︒C.72°D.60°第5题图第4题图(俯视图)A.B.C.D.第2题图6.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( ).7.如图,在ABCD Y中,E 是BC 的中点,且AEC DCE ∠=∠,则下列结论不正确...的是( ). A .2ADF EBF S S =△△B .12BF DF =C .四边形AECD 是等腰梯形D .AEB ADC ∠=∠8.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如右表所示,点1122()()A x y B x y ,,,在函数的图象上,当12123o x x <<<<,时,1y 与2y 的大小关系正确的是( ).A .12y y ≥B .12y y >C .12y y <D .12y y ≤9.定义新运算:1()(0)a a b a b a a b b b⎧-⎪⊕=⎨->≠⎪⎩且≤,则函数3y x =⊕的图象大致是( ).10.某移动通讯公司提供了A 、B 两种方案的通讯费用y (元)与通话时间x (分)之间的关系,如图所示,则以下说法错误..的是( ).A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分第6题图D .C .B .A . D .第9题图C .B .A .第7题图第10题图二、填空题(本大题8个小题,每小题3分,共24分) 11.在函数2y x =-中,自变量x 的取值范围是__________.12.把[]332(1)a a +--化简得_________.13.“五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为140元的运动服,打折后他比按原价购买节省了________元. 14.为参加“初中毕业升学体育考试”,小亮同学在练习掷实心球时,测得5次投掷的成绩分别为:8,8.2,8.5,8,8.6(单位:m ),这组数据的众数、中位数依次是___________. 15.如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n 个图形需要__________根小棒(用含n 的代数式表示).16.已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为________. 17.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径为50cm .小红同学为了在“圣诞”节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是______度.18.如图,1O ⊙和2O ⊙的半径分别为1和2,连接12O O ,交2O ⊙于点P ,125O O =,若将1O ⊙绕点P 按顺时针方向旋转360°,则1O ⊙与2O ⊙共相切_________次.三、解答题(本大题8个小题,共66分,解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:12031227(π2)3-⎛⎫-+--⨯- ⎪⎝⎭;第15题图第17题图第18题图1O2OP(2)先化简:再求值:22222a b ab baa ab a⎛⎫-+÷+⎪-⎝⎭,其中211a b=-=,.20.(本小题满分7分)近年来,随着经济的快速发展,我市城市环境不断改观,社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来我市观光的首选景点作了一次抽样调查,调查结果图表如下:(1)此次共调查了多少人?并将上面的图表补充完整.(2)如果将上表制成扇形统计图,那么“恩格贝”所对的圆心角是多少度?(3)该旅行社预计6月份接待外地来我市的游客2 500人,请你估算一个首选去成陵观光的约有多少人?景点频数频率成陵116 29%响沙湾25%恩格贝84 21%七星湖63 15.75%巴图湾37 9.25%21.(本小题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一张卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度.(1)求这三条线段能组成三角形的概率(画出树状图);(2)求这三条线段能组成直角三角形的概率.第20题图第21题图22.(本小题满分8分)如图,在梯形ABCD 中,90AD BC C E ∠=∥,°,为CD 的中点,EF AB ∥交BC 于点F .(1)求证:BF AD CF =+; (2)当17AD BC ==,,且BE 平分ABC ∠时,求EF 的长. 23.(本小题满分7分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(2 1.43 1.7)≈,≈(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答) ①求树与地面成45°角时的影长; ②求树的最大影长.第22题图 第23题图24.(本小题满分9分)如图,AB 为O ⊙的直径,劣弧»»BCBE BD CE =,∥,连接AE 并延长交BD 于D . 求证:(1)BD 是O ⊙的切线; (2)2AB AC AD =·. 25.(本小题满分10分)在实施“中小学校舍安全工程”之际,某市计划对A 、B 两类学校的校舍进行改造,根据预算,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校的校舍和一所B 类学校的校舍所需资金分别是多少万元?(2)该市某县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所.第24题图26.(本小题满分11分)如图,四边形OABC 是一张放在平面直角坐标系的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,159OA OC ==,,在AB 上取一点M ,使得CBM △沿CM 翻折后,点B 落在x 轴上,记作N 点. (1)求N 点、M 点的坐标;(2)将抛物线236y x =-向右平移(010)a a <<个单位后,得到抛物线l ,l 经过N 点,求抛物线l 的解析式;(3)①抛物线l 的对称轴上存在点P ,使得P 点到M N ,两点的距离之差最大,求P 点的坐标;②若点D 是线段OC 上的一个动点(不与O 、C 重合),过点D 作DE OA ∥交CN 于E ,设CD 的长为m ,PDE △的面积为S ,求S 与m 之间的函数关系式,并说明S 是否存在最大值.若存在,请求出最大值;若不存在,请说明理由.第26题图2010年鄂尔多斯市初中毕业升学考试数学试题参考答案及评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期予以复查,防止前后期评分标准宽严不一致. 2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分. 5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准二、填空题(本大题8个小题,每小题3分,共24分) 11.2x ≥ 12.5a + 13.28 14.8,8.215.41n -16.64m m >-≠-且17.18(18)°18.3三、解答题(本大题8个小题,共66分) 19.(本小题满分8分)(1)计算:12012(π3-⎛⎫-⨯ ⎪⎝⎭解:原式=433--- ····························································· 3分(一处正确给1分)10=-. ······································································································· 4分(2)先化简:再求值:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中11a b ==,.解:原式=2()()()()a b a b a b a a b a+-+÷- ·········································· 2分(一处正确给1分)=1a b+ ·········································································································· 3分2==·························································································· 4分 20.(本小题满分7分)景点 频数 频率 成陵 116 29% 响沙湾 100 25% 恩格贝 84 21% 七星湖 63 15.75% 巴图湾379.25%解:(1)8421%400÷=(人).答:共调查了400人. ········································ 2分40025%100⨯=(人),补充图表如下 ················································ 4分(各1分) (2)36021%75.6⨯=°°.答:“恩格贝”所对的圆心角是75.6°. ·························· 6分 (3)250029%725⨯=(人).答:首选去成陵的人数约725人. ··························· 7分 21.(本小题满分6分) 解:(1)树状图:············································· 3分42()63P ==组成三角形.···················································································· 5分 (2)1()6P =组成直角三角形. ··········································································· 6分 22.(本小题满分8分) (1)证法一: 如图(1),延长AD 交FE 的延长线于N ,90NDE FCE DEN FEC DE EC ∠=∠=∠=∠=Q °,,,NDE FCE ∴△≌△. ····················································································· 3分 DN CF ∴=. ······························································································· 4分 AB FN AN BF Q ∥,∥,∴四边形ABFN 是平行四边形. ··································· 5分 BF AD DN AD FC ∴=+=+. ······································································· 6分 (2)解:1.AB EF BEF ∴∠=∠Q ∥,122BEF ∠=∠∴∠=∠Q ,.EF BF ∴=. ································································································ 7分 17422AD BC EF AD CF ++∴=+=+=. ························································· 8分 (1)证法二:如图(2)过D 点作DN AB ∥交BC 于N ,AD BN AB DN AD BN ∴=Q ∥,∥,. ····················· 1分 EF AB DN EF ∴Q ∥,∥. ····································· 2分 CEF CDN ∴△∽△. ············································· 3分 图(1)图(2)CE CFDC CN∴=. ······························································································ 4分 1122CE CF NF CF DC CN ===∴Q,,即. ····································································· 5分 BF BN NF AD FC ∴=+=+. ········································································ 6分 23.(本小题满分7分) 解:(1)tan30AB AC =° ··············································································· 1分3124373=⨯=≈(米).(结果也可以保留一位小数,下同) 答:树高约7米. ···························································································· 2分(2)①如图(2),112sin 454352B N AN AB ===⨯°≈(米) ························ 3分 11tan602638NC NB ==⨯°≈(米) ··························································· 4分 115813AC AN NC =+=+=(米).答:树与地面成45°角时影长约13米. ······························································· 5分 ②如图(2)当树与地面成60°角时影长最大2AC (或树与光线垂直时影长最大或光线与半径为AB 的A ⊙相切时影长最大) ······································································ 6分22214AC AB =≈(米).答:树的最大影长约14米. ·············································································· 7分24.(本小题满分9分)证明:(1)»»CBBE =Q , »»12AC AE AC AE ∴∠=∠==,,, ······························ 2分AB CE ∴⊥. ·························································· 3分 CE BD AB BD ∴⊥Q ∥,. ········································ 4分 BD ∴是O ⊙的切线. ················································ 5分 (2)连接CB .AB Q 是O ⊙的直径,90ACB ∴∠=°. ······························································ 6分 90ABD ACB ABD ∠=∴∠=∠Q °,. ································································· 7分 12ACB ABD ∠=∠∴Q ,△∽△. ····································································· 8分2AC AB AB AD AC AB AD∴=∴=,·. ····································································· 9分 (证法二,连接BE ,证明略) 25.(本小题满分10分)解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则34803400x y x y +=⎧⎨+=⎩ ···························································· 3分(正确一个方程组2分) 解之得90130x y =⎧⎨=⎩. ·························································································· 4分 答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元. ···················································································································· 5分(2)设A 类学校应该有a 所,则B 类学校有(8)a -所,则2030(8)210(9020)(13030)(8)770a a a a +-⎧⎨-+--⎩≥≤ ························· 7分(正确一个不等式给1分) 解得31a a ⎧⎨⎩≤≥. ································································································ 8分 13a ∴≤≤,即123a =,,. ············································································· 9分 答:有3种改造方案:方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所. ··························································· 10分26.(本小题满分11分)解:如图(1)159CN CB OC ===Q ,,2215912(120)ON N ∴=-=∴,,.································ 1分 又15123AN OA ON =-=-=Q ,设AM x =,2223(9)x x ∴+=-, ···················································· 2分4(154)x M ∴=,,. ······················································································· 3分(2)解法一:设抛物线l 为2()36y x a =--,则2(12)36.a -= ···························································································· 4分 16a ∴=或218a =(舍去). ············································································· 5分∴抛物线2:(6)36l y x =--. ·········································································· 6分解法二:21236066x x x -==-=Q ,,,236y x ∴=-与x 轴的交点为(60)-,和(60),. ···················································· 4分 由题意知,交点(60),向右平移6个单位到N 点, ·················································· 5分 所以236y x =-向右平移6个单位得到抛物线2:(6)36l y x =--. ························· 6分(3)①由“三角形任意两边的差小于第三边”知,P 点是直线MN 与对称轴6x =的交点,···································· 7分 设直线MN 的解析式为y kx b =+,则120154k b k b +=⎧⎨+=⎩,解之得4316k b ⎧=⎪⎨⎪=-⎩ 416.(68)3y x P ∴=-∴-,. ············································································· 8分 ②DE OA ACB ABD ∴Q ∥,△∽△,49123m DE DE m ∴==,. ···························· 9分 214234(98)2333S m m m m ∴=⨯⨯+-=-+. ···················································· 10分 203a =-<Q ,开口向下,又343431739234223m ⨯=-==<⨯⎛⎫⨯- ⎪⎝⎭,S ∴有最大值, 2217341728932326S ⎛⎫=-⨯+⨯= ⎪⎝⎭最大. ······························································ 11分。

鄂尔多斯市中考数学试题与答案

2007年鄂尔多斯市初中毕业升学考试数 学(课标)注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;3.考试结束后将试卷按页码顺序排好,全部上交.一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.) 题号 1 2 3 4 5 6 7 8 9 10 选项 1.3-的相反数是( ) A .3-B .3C .13-D .132.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .81.510⨯B .91.510⨯C .101.510⨯D .111.510⨯4.能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图2).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.图1 A . B . C . D . A B MAB M ()A ()B 图2A .1个B .2个C .3个D .4个8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%B .(120)30(110)3012y xy x =+⎧⎨--=⎩%%C .(120)30(110)3012y xy x =-⎧⎨--=⎩%%D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… …………………………A .20,25,24B .25,20,24C .18,25,24D .20,30,25二、填空题(本大题8个小题,每小题3分,共24分)11.如图5,AB CD ∥,58B =o∠,20E =o∠,则D ∠的度数为 .16 a20 bc30图3(a )图3(b )图3(c )图3(d )AABCDP图4 1A 2A 3A 4A 5A O h t A . O h tB . O h tC . O ht D .图5 A BC D E F图6B (12)A , yx O 1 212.若43x y =,则y x y=+ . 13.如图6,双曲线1k y x=与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .14.不等式组30240x x -⎧⎨+>⎩≤的解集是 .15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2cm (结果用π表示).16.如图8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭.图7 A B P O图8ABP O图9(1) 图9(2) ab图10 猫 房间 门 1米(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭.20.(本小题满分6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分) 有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60o方向,在B 镇的北偏西30o方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?初一 初二 初三 年级人数 0100 200 300 400 500 450 350 150 参加综合实践活动人数统计图60% 14% 16%文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11正三角形 A 正方形 B 菱 形 C 等腰梯形D图12 北北 A C B60o30o 图1323.(本小题满分9分)如图14,在ABC △中,90ACB =o∠,D 是AB 的中点,以DC 为直径的O e 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.24.(本小题满分10分)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60o,得到DBE △,连结月租费 通话费 2.5元 0.15元/分钟A B C D E F GO图14图15 ()t 分()y 元O 100 20020 40 y B O A x 图16(1)AD DC ,,30DCB =o ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)如图17,抛物线2229y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.ABCDE60o图16(2)yOC x图173.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38o(或38)12.3713.(12)--, 14.23x -<≤ 15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分)950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分)答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =o∠60CBA =o ∠ 90ACB =o∠ ································· 1分 30DCB ∴=o∠ ··················································· 2分 ∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC =o································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一: (1)连结DF ,90ACB =o Q ∠,D 是AB 的中点12BD DC AB ∴==············································· 2分 DC Q 是O e 的直径DF BC ∴⊥ ······················································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)D F Q ,分别是AB BC ,的中点A B C D A A BA C A DB A B BC BD C A C B C D C D A D B D D C AB C D D B C A D C A B D A B C 1 北北AD CB60o30oABCDEF GODF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:(1)连结DF DE , DC Q 是O e 直径90DEC DFC ∴==o ∠∠ ················································································ 1分 90ECF =o Q ∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ······································· 2分 D Q 是AB 的中点,90ACB =o∠12EF CD BD AB ∴=== ····································· 3分 DBF EFC ∴△≌△ ············································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)DBF EFC Q △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分 90ACB =o Q ∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =Q ∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)2250.15y t =+ ····························································································· 7分当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)A BCD E F GO(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE Q △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =o Q ∠ EC BC ∴=,60BCE =o ∠ ······················································ 7分 30DCB =o Q ∠ 90DCE ∴=o ∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分26.(本小题满分12分)解(1)Q 抛物线过(00),点.290n ∴-= ·························································· 1分 3n ∴=± ······································································································ 2分 Q 顶点在第一象限,02bn a∴-=>且22244044ac b n n a --==>-(不写不扣分) 3n ∴= ········································································································ 3分 ∴抛物线26y x x =-+ ···················································································· 4分顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分 ②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴= ······················· 7分28x y∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分y B O MMA x ABC DE 60o y A MO Q H (39),B NP C x。

内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案

鄂尔多斯市初中毕业升学考试数 学(课标)注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;3.考试结束后将试卷按页码顺序排好,全部上交.一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.) 题号 1 2 3 4 5 6 7 8 9 10 选项 1.3-的相反数是( ) A .3-B .3C .13-D .132.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .81.510⨯B .91.510⨯C .101.510⨯D .111.510⨯4.能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图2).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.图1 A . B . C . D . A B MAB M ()A ()B 图2A .1个B .2个C .3个D .4个8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%B .(120)30(110)3012y xy x =+⎧⎨--=⎩%%C .(120)30(110)3012y xy x =-⎧⎨--=⎩%%D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… …………………………A .20,25,24B .25,20,24C .18,25,24D .20,30,25二、填空题(本大题8个小题,每小题3分,共24分)11.如图5,AB CD ∥,58B =o∠,20E =o∠,则D ∠的度数为 .16 a20 bc30图3(a )图3(b )图3(c )图3(d )AABCDP图4 1A 2A 3A 4A 5A O h t A . O h tB . O h tC . O ht D .图5 A BC D E F图6B (12)A , yx O 1 212.若43x y =,则y x y=+ . 13.如图6,双曲线1k y x=与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .14.不等式组30240x x -⎧⎨+>⎩≤的解集是 .15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2cm (结果用π表示).16.如图8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭.图7 A B P O图8ABP O图9(1) 图9(2) ab图10 猫 房间 门 1米(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭.20.(本小题满分6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分) 有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张. (1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60o方向,在B 镇的北偏西30o方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?初一 初二 初三 年级人数 0100 200 300 400 500 450 350 150 参加综合实践活动人数统计图60% 14% 16%文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11正三角形 A 正方形 B 菱 形 C 等腰梯形D图12 北北 A C B60o30o 图1323.(本小题满分9分)如图14,在ABC △中,90ACB =o∠,D 是AB 的中点,以DC 为直径的O e 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.24.(本小题满分10分)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ; (2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60o,得到DBE △,连结月租费 通话费 2.5元 0.15元/分钟A B C D E F GO图14图15 ()t 分()y 元O 100 20020 40 y B O A x 图16(1)AD DC ,,30DCB =o ∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)如图17,抛物线2229y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.ABCDE60o图16(2)yOC x图173.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38o(或38)12.3713.(12)--, 14.23x -<≤ 15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分) 950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分) 答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人. 21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =o∠ 60CBA =o∠ 90ACB =o∠ ································· 1分 30DCB ∴=o ∠ ··················································· 2分 ∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC =o································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一: (1)连结DF ,90ACB =o Q ∠,D 是AB 的中点12BD DC AB ∴==············································· 2分 DC Q 是O e 的直径DF BC ∴⊥ ······················································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)D F Q ,分别是AB BC ,的中点A B C D A A BA C A DB A B BC BD C A C B C D C D A D B D D C AB C D D B C A D C A B D A B C 1 北北AD CB60o30oABCDEF GODF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 证法二:(1)连结DF DE , DC Q 是O e 直径90DEC DFC ∴==o ∠∠ ················································································ 1分 90ECF =o Q ∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ······································· 2分 D Q 是AB 的中点,90ACB =o∠12EF CD BD AB ∴=== ····································· 3分 DBF EFC ∴△≌△ ············································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)DBF EFC Q △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分 90ACB =o Q ∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =Q ∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分 (此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分)2250.15y t =+ ····························································································· 7分当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)A BCD E F GO(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分) (2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE Q △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =o Q ∠ EC BC ∴=,60BCE =o ∠ ······················································ 7分 30DCB =o Q ∠ 90DCE ∴=o ∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分 26.(本小题满分12分)解(1)Q 抛物线过(00),点.290n ∴-= ·························································· 1分 3n ∴=± ······································································································ 2分 Q 顶点在第一象限,02bn a∴-=>且22244044ac b n n a --==>-(不写不扣分) 3n ∴= ········································································································ 3分 ∴抛物线26y x x =-+ ···················································································· 4分顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分 ②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴= ······················· 7分28x y∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分y B O MMA x ABC DE 60o y A MO Q H (39),B NP C x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年鄂尔多斯市初中毕业升学考试数 学(课标)注意事项:1.本试题满分120分,考试用时120分钟; 2.答题前将密封线内的项目填写清楚;3.考试结束后将试卷按页码顺序排好,全部上交.一、选择题(本大题10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在下面的选项栏内.)题号1 2 3 4 5 6 7 8 9 10 选项1.3-的相反数是( ) A .3-B .3C .13-D .132.图1是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )3.我市2006年财政收入近150亿元,居自治区首位.150亿用科学记数法可表示为( ) A .81.510⨯B .91.510⨯C .101.510⨯D .111.510⨯4.能够刻画一组数据离散程度的统计量是( )A .平均数B .众数C .中位数D .方差 5.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(如图2).如果将这个纸筒沿线路B M A →→剪开铺平,得到的图形是( ) A .平行四边形 B .矩形C .三角形D .半圆6.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为105公里,在一张比例尺为1:2000000的交通旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 7.下列说法正确的有( ) (1)如图3(a ),可以利用刻度尺和三角板测量圆形工件的直径; (2)如图3(b ),可以利用直角曲尺检查工件是否为半圆形; (3)如图3(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图3(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.图1 A . B . C . D . A B MA B M ()A()B 图2A .1个B .2个C .3个D .4个8.一种蔬菜加工后出售,单价可提高20%,但重量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y 元,根据题意,所列方程组正确的是( ) A .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%B .(120)30(110)3012y xy x =+⎧⎨--=⎩%%C .(120)30(110)3012y xy x =-⎧⎨--=⎩%%D .(120)30(110)3012y xy x =-⎧⎨+-=⎩%%9.如图4,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )10.观察表1,寻找规律.表2是从表1中截取的一部分,其中a b c ,,的值分别为( ) 表1 表2 1 2 3 4 …… 2 4 6 8 …… 3 6 9 12 …… 4 8 12 16 …… …………………………A .20,25,24B .25,20,24C .18,25,24D .20,30,25二、填空题(本大题8个小题,每小题3分,共24分)11.如图5,AB CD ∥,58B =∠,20E =∠,则D ∠的度数为 .16 a20bc30图3(a ) 图3(b ) 图3(c ) 图3(d )AABC DP图4 1A2A 3A 4A 5A O h t A . O h t B . O h t C . O ht D .图5 A BC D E F图6B(12)A , yx O 1 212.若43x y =,则yx y=+ . 13.如图6,双曲线1k y x=与直线2y k x =相交于A B ,两点,如果A 点的坐标是(12),,那么B 点的坐标为 .14.不等式组30240x x -⎧⎨+>⎩≤的解集是 .15.如图7,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于P ,如果4cm AB =,则图中阴影部分的面积为 2cm (结果用π表示).16.如图8,点P 在AOB ∠的平分线上,若使AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线). 17.在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图9(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图9(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).18.如图10,房间里有一只老鼠,门外蹲着一只小猫,如果每块正方形地砖的边长为1米,那么老鼠在地面上能避开小猫视线的活动范围为 平方米(不计墙的厚度).三、解答题(本大题8个小题,共66分.解答时要写出必要的文字说明、演算步骤或推证过程) 19.(本小题满分8分)(1)计算:11(12)42-⎛⎫++-- ⎪⎝⎭.图7 A B P O图8AB PO图9(1) 图9(2) ab图10 猫 房间 门 1米(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭.20.(本小题满分6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图11所示,请你根据图中的信息回答问题.(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名? 21.(本小题满分6分)有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的几何图形(如图12).小明将这4张纸牌背面朝上洗匀后摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求摸出的两张牌面图形既是轴对称图形又是中心对称图形纸牌的概率.22.(本小题满分6分) 如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60方向,在B 镇的北偏西30方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?初一 初二 初三 年级人数 0100 200 300 400 500 450 350 150 参加综合实践活动人数统计图60% 14% 16%文体活动 社会调查 社区服务 科技活动 参加综合实践活动人数分布统计图 图11正三角形 A 正方形 B 菱 形 C 等腰梯形D图12 北北 AC B60 30图1323.(本小题满分9分)如图14,在ABC △中,90ACB =∠,D 是AB 的中点,以DC 为直径的O 交ABC △的边于G F E ,,点. 求证:(1)F 是BC 的中点;(2)A GEF =∠∠.24.(本小题满分10分)有甲、乙两家通迅公司,甲公司每月通话的收费标准如图15所示;乙公司每月通话收费标准如表3所示.表3(1)观察图15,甲公司用户月通话时间不超过100分钟时应付话费金额是 元;甲公司用户通话100分钟以后,每分钟的通话费为 元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择? 25.(本小题满分9分) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 , ;(2)如图16(1),已知格点(小正方形的顶点)(00)O ,,(30)A ,,(04)B ,,请你画出以格点为顶点,OA OB ,为勾股边且对角线相等的勾股四边形OAMB ;(3)如图16(2),将ABC △绕顶点B 按顺时针方向旋转60,得到DBE △,连结月租费 通话费 2.5元 0.15元/分钟A B C D E F GO图14图15 ()t 分()y 元O 100 20020 40 y B O A x 图16(1)AD DC ,,30DCB =∠.求证:222DC BC AC +=,即四边形ABCD 是勾股四边形. 26.(本小题满分12分)如图17,抛物线2229y x nx n =-++-(n 为常数)经过坐标原点和x 轴上另一点C ,顶点在第一象限.(1)确定抛物线所对应的函数关系式,并写出顶点坐标;(2)在四边形OABC 内有一矩形MNPQ ,点M N ,分别在OA BC ,上,点Q P ,在x 轴上.当MN 为多少时,矩形MNPQ 的面积最大?最大面积是多少?2007年鄂尔多斯市初中毕业升学考试 数学试题参考答案及评分说明(课标)(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准.试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.ABCDE60图16(2)yOC x图173.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分.对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分. (二)参考答案及评分标准一、选择题(本大题10个小题,每小题3分,共30分.)题号1 2 3 4 5 6 7 8 9 10 选项B C C D A A D B B A 二、填空题(本大题8个小题,每小题3分,共24分.) 11.38(或38)12.3713.(12)--, 14.23x -<≤15.4π16.OA OB =(或OAP OBP =∠∠或APO BPO =∠∠)17.22()()a b a b a b -=+-(或22()()a b a b a b +-=-)18.17(填空正确给3分,图形不正确不扣分;图形正确,计算不正确可给1分.) 三、解答题(本大题8个小题,共66分.) 19.(本小题满分8分)(1)计算:101(12)42-⎛⎫++-- ⎪⎝⎭解:原式124=+- ······················································· 3分(一处计算正确给1分) 1=- ······························································································· 4分(2)化简:212111a a a a a -+⎛⎫+- ⎪-⎝⎭解:原式2(1)(1)1a a a -=+-- ············································ 2分(一处计算正确给1分)(1)(1)a a =+-- ··············································································· 3分 2= ········································································································· 4分 20.(本小题满分6分) 解:(1)450350150950++=(人) ······································· 1分(无单位不扣分)950(1601614)95⨯---=%%%(人) ···································· 3分(无单位不扣分)答:参加综合实践活动的有950人,参加科技活动的有95人. ································ 4分(2)95030000105003⨯⨯⨯% ············································································· 5分95201900=⨯=(人) ··················································· 6分(无单位不扣分)答:参加科技活动的学生估计有1900人.21.(本小题满分6分)树状图: 列表:··········································································· 4分 注:出现3处(共12处)错误扣1分,扣完为止.(2)21126P == ··························································································· 6分 答:概率是16.22.(本小题满分6分)解:作CD AB ⊥于D ,由题意知:30CAB =∠60CBA =∠ 90ACB =∠ ································· 1分 30DCB ∴=∠ ··················································· 2分∴在Rt ABC △中,1302BC AB == ································································ 3分 在Rt DBC △中,cos30CD BC = ································································ 4分 3302=⨯··································································· 5分 15320=> ································································ 6分 答:这条公路不经过该区域. 23.(本小题满分9分) 证法一:(1)连结DF ,90ACB =∠,D 是AB 的中点 12BD DC AB ∴==············································· 2分 DC 是O 的直径 DF BC ∴⊥ ······················································· 4分 BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)D F ,分别是AB BC ,的中点A B C D A A B A C A DB AB BC BD C A C B C D C D A D B D D C AB C D D B C A D C A B D A B C 1 北北ADCB60 30 AB CDEFG ODF AC ∴∥ ································································································· 6分 A BDF ∴=∠∠ ···························································································· 7分 BDF GEF ∴=∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分证法二:(1)连结DF DE , DC 是O 直径90DEC DFC ∴==∠∠ ················································································ 1分 90ECF =∠ ∴四边形DECF 是矩形EF CD ∴=,DF EC = ······································· 2分 D 是AB 的中点,90ACB =∠12EF CD BD AB ∴=== ····································· 3分DBF EFC ∴△≌△ ············································· 4分BF FC ∴=,即F 是BC 的中点. ························· 5分 (2)DBF EFC △≌△BDF FEC ∴=∠∠,B EFC =∠∠ ································································· 6分90ACB =∠(也可证AB EF ∥,得A FEC =∠∠)A FEC ∴=∠∠····························································································· 7分 FEG BDF =∠∠ ······················································································· 8分 A GEF ∴=∠∠ ···························································································· 9分(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.) 24.(本小题满分10分) (1)20;0.2 ············································································ 4分(每空2分) (2)通话时间不超过100分钟选甲公司合算 ························································ 5分 解:设通话时间为t 分钟(100t >),甲公司用户通话费为1y 元,乙公司用户通话费为2y 元. 则:1200.2(100)0.2y t t =+-= ·························· 6分(条件100t >没有写出不扣分) 2250.15y t =+ ····························································································· 7分 当12y y = 即:0.2250.15t t =+时,500t = ···················································· 8分 当12y y > 即:0.2250.15t t >+时,500t >当12y y < 即:0.2250.15t t <+时,500t < ······················································ 9分 答:通话时间不超过500分钟选甲公司;500分钟选甲、乙公司均可;超过500分钟选乙公司. ··········································································································· 10分 25.(本小题满分9分)ABCD E F GO(1)正方形、长方形、直角梯形.(任选两个均可) ··············· 2分(填正确一个得1分)(2)答案如图所示.(34)M ,或(43)M ,.(没有写出不扣分)······· 2分(根据图形给分,一个图形正确得1分)(3)证明:连结ECABC DBE △≌△ ······················································································· 5分 AC DE ∴=,BC BE = ················································································· 6分 60CBE =∠ EC BC ∴=,60BCE =∠ ······················································ 7分 30DCB =∠ 90DCE ∴=∠ 222DC EC DE ∴+= ······································· 8分 222DC BC AC ∴+=,即四边形ABCD 是勾股四边形 ·········································· 9分26.(本小题满分12分) 解(1)抛物线过(00),点.290n ∴-= ·························································· 1分3n ∴=± ······································································································ 2分顶点在第一象限,02b n a ∴-=>且22244044ac b n n a --==>-(不写不扣分)3n ∴= ········································································································ 3分∴抛物线26y x x =-+ ···················································································· 4分 顶点坐标为(39), ···························································································· 5分 (2)①B 点的坐标为(48), ·············································································· 6分②如图所示,作AH x ⊥轴于H .设M 点的坐标为()x y ,OMQ OAH ∴△∽△ OQ MQOH AH∴= ······················· 7分 28x y∴= 4y x ∴= ·············································· 8分 由抛物线的对称性可知:62QP MN x ==- ············· 9分yB O MMA x ABC DE60 yA MO Q H(39),BNPC x。

相关文档
最新文档