数理方程(调和方程)
数学物理方程(谷超豪)-第三、四章 课后习题答案

第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
数理方程课件

数理方程课件数理方程是数学中的重要分支,它研究方程的解和性质。
随着计算机技术的不断发展,数理方程的研究变得越来越重要,其在科学、工程和金融等领域都有着广泛的应用。
本文将介绍数理方程的基本概念、解的求解方法和一些经典方程的应用案例。
一、数理方程的基本概念数理方程是指含有未知数和已知数之间关系的等式。
它通常由代数方程、微分方程和积分方程组成。
在数理方程的研究中,我们需要关注方程的次数、阶数和特殊形式,并通过分析方程的性质来解决相关问题。
在解数理方程时,我们常用的方法包括代数方法、几何方法和数值方法。
其中,代数方法主要通过变换和化简方程,将其转化为更简单的形式进行求解;几何方法通过图形和几何关系来推导方程的解;数值方法则借助计算机的力量,利用数值逼近的方法求解方程。
二、数理方程的解的求解方法1. 代数方程的解的求解方法代数方程是最常见的数理方程形式,其解的求解方法众多。
常见的方法包括因式分解、配方法、二次公式、根号法等。
例如,对于一元二次方程$a x^{2}+b x+c=0$,我们可以使用二次公式来求解:$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$2. 微分方程的解的求解方法微分方程描述了函数与其导数之间的关系,其解的求解方法也有多种。
常见的方法有分离变量法、常数变易法、齐次线性微分方程的解法等。
例如,对于一阶线性微分方程$\frac{d y}{d x}+P(x) y=Q(x)$,我们可以使用常数变易法进行求解。
3. 积分方程的解的求解方法积分方程是利用积分关系表达的方程,其解的求解方法也有多种。
常见的方法有分离变量法、常数变易法、特殊积分方程的解法等。
例如,对于柯西问题(Cauchy problem)中的积分方程$u(x)=f(x)+\int_{a}^{x} K(x, t) u(t) d t$,我们可以使用定积分的性质进行求解。
三、常见数理方程的应用案例1. 常微分方程的应用常微分方程在物理学、化学、生物学等领域有着重要的应用。
数理方程知识点总结

数理方程知识点总结数理方程是数学理论中的重要分支,其主要研究方向是解决各种类型的方程,包括一元多项式方程、二元一次方程以及各种变形形式的方程等。
数理方程的解决方法非常多元化,通常采用代数、几何、分析等多种方法进行解决,本文将对数理方程的相关知识点进行总结。
一、一元多项式方程1、一元n次多项式方程形如$f(x) = a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$,其中$a_0 \neq 0$, $n$为任意正整数,求出方程的根$x_1, x_2, ...,x_n$。
求解该方程的方法有以下几种:(1)牛顿迭代法牛顿迭代法的基本思想是:将一元n次多项式方程重新构造成$x = g(x)$的形式,并求该函数在曲线上的切线截距,不断通过切线截距逼近根的值。
具体算法如下:• 任选一个随机数$x_0$作为初值;• 计算$y = f(x)$在$x = x_0$处的导数$f'(x_0)$;• 根据切线公式$y = f(x_0) + f'(x_0)(x - x_0)$,计算出当$y = 0$时的$x$值$x_1$,即$x_1 = x_0 - f(x_0) / f'(x_0)$;• 重复上述过程,将$x_1$作为$x_0$,计算出$x_2$;• 重复以上步骤,直到$x_n$接近被求解的根。
(2)二分法二分法的基本思想是根据函数值的符号改变区间的端点,使函数在这个区间内单调递增或递减,从而迅速缩小待求解根所在的“搜索区间”,达到求解根的目的。
算法流程如下:• 选定区间$[a, b]$值满足$f(a)f(b) < 0$,即根在$[a, b]$区间内;• 取区间中点$c = (a + b) / 2$,计算$f(c)$;• 如果$f(c) = 0$,即找到根;• 如果$f(a)f(c) < 0$,即根在区间$[a, c]$内,则将$b$更新为$c$;• 如果$f(b)f(c) < 0$,即根在区间$[c, b]$内,则将$a$更新为$c$;• 重复以上过程,不断缩小区间,直到找到根或直到区间长度足够小时停止。
第三章___调和方程

问题的解:
u( x , t ) Ak (e
k 1
ka y
e
k a
y
k )sin x, a
其中 Ak
2 a(e
ka y
e
k a
y
)
a
0
k f ( x )sin x dx . a
第二节
格林公式及其应用
一、格林(Green)公式
P Q R d x y z [ P cos( n, x ) Q cos( n, y ) R cos( n, z )]dS . (2.1)
的解如果存在,则它必是唯一的,且连续依赖于所给 的边界条件 f 定理2.4 调和方程的 狄立克雷外问题
u 0, ( x, y, z ) , ( x, y, z ) u f ( x , y , z ), 2 2 2 limu( x , y , z ) 0, r x y z . r
性质 2、 G( M , M0 )
0.
1 性质 3、 0 G( M , M 0 ) . 4 rM0 M
性质 4、 G( M1 , M2 ) G( M2 , M1 ).
G( M 0 , M ) dS M 1. 性质 5、 n
2 1 J (u) ux uy 2 2 z
0}.
2
u
fu dxdydz .
J ( u) min J (v ),
vV0
(1.9)
定理 1.1:如果满足(1.9)的函数 u V0存在,则它 满足定解问题 (1.7);反之,若 u 是(1.7)的属于V0 的
数理方程(调和方程)

数理方程(调和方程)第四章调和方程§1.调和方程的定解问题 1.方程的几个例子例1. 稳定的温度分布温度分布满足),(2t x f u a u t =?-稳定热源:),,,)((321x x x x x f f ==与t 无关边界绝热(即边界条件也与t 无关)则长时间后,温度分布必然趋于稳定状态(与t 无关),即)(x u u =此时有)(1x f u =?, (21a ff -=)称为Poission 方程当01=f 时,0=?u ,称为Laplace 方程或调和方程.例2.弹性膜的平衡状态:u 为膜在垂直方向的位移,外力),(21x x f f =,则有f x ux u =??+222212例3.静电场的电势uMaxwell 方程组==??-=??+=ρdivD divB t B rotE t D J rotH 0E :电场强度, H :磁场强度, D :电感应强度, B :磁感应强度 J :传导电流的面密度, ρ:电荷的体密度物质方程??===E J H B E D σμε:μ导磁率, σ:导电率, ε: 介质的介电常数divE divD ερ==∵静电场是有势场:u grad E -=ερ-=?u grad div , 即ερ-=u ?若静电场是无源的,即0=ρ,则0=?u 例4.解析函数)(),,(),()(iy x z y x iv y x u z f +=+=则v u ,满足Cauchy-Riemann 条件:y x y x u v v u -==, 例5.布朗运动(见图) 设质点运动到边界上即终止,===?0,10`),,(),,(211C C u u u C z y x z y x u 概率,则上的为起点,终止在:以易知,0,0=?=?v u2.定解问题(1)内问题:nR ?Ω,有界,Γ=Ω?,u 在Ω内满足f u =? 边界条件:第一类(Dirichlet):g u =Γ|第二类(Neumann):g n u=??Γ| 第三类(Robin):)0(|)(>=+??Γσσg u nun 为Γ的单位外法线方向.(2) 外问题:u 在Ω外部满足f u =?同样有三类边界条件(此时n 为Ω的内法线方向).但解在无穷远处是否可以不加限制?要加何种限制? 先看两个例子:例1.2=n =>+=?=+0|)1(,012222y x u y x u221ln 1ln ,0yx r u u +===均为解, 例 2. 3=n =++=>==1),1(01222r u zy x r r u ?ru u 1,1==均为解.因此,解在无穷远点一定要加限制,以确定解的唯一性. 通常,:2=n 解在无穷远处有界:),(lim y x u r ∞→有界:3≥n 解在无穷远处趋于0:0),,(lim =∞→z y x u r(3) 无界区域的边值问题:与外问题类似 (4) 等值面边值问题:0=?u边界条件:??=??=?ΓΓ)()(|已知待定A dS n uC u 这个问题可约化为 Dirichlet 问题:设==?Γ1|0U U 的解为)(x U U =,选取常数C ,s.t.:A dS n UC=Γ 则CU u =§2.分离变量法1. 圆的Dirichlet 内问题与外问题内问题=<+=?=+)(|)(0222222θf u a y x u a y x引入极坐标θθsin ,cos r y r x ==222222221)(111θθ??+=??+??+??≡urr u r r r ur r u r ru u ? 则原问题化为:≤≤=≤≤<=++=)20()(|)20,(0112πθθπθθθf u a r u r u r u a r r rr 将)()(θΘr R 代入方程并分离变量得-='+''-=''λ21r R R r RΘΘ0,02=-'+''=+''R R r R r λλΘΘ求解特征值问题:?==+'')2()0(0πλΘΘΘΘθλθλθλθθλθλθλθλsin cos )(:0)(:0)(:0212121C C C C e C e C +=Θ>+=Θ=+=Θ<---∴0<λ时不是解. 1)(:0C =Θ=θλ.θθθλλk C k C k s i n c o s )(,:0212+==>Θ∴,....)2,1,0(2==k k k λ,...)2,1(sin cos )(,)(00=+==k k B k A A k k k θθθθΘΘ求解)(022方程Euler R k R r R r =-'+'':一般Euler 方程的求解:()()t B t A t t y i t B t A t y BtAt t y a a a t y a t y t a t y t a ln sin ln cos )(ln )()(0)1(0)()()(212121212102120121βββαμμμμμμμμμμμαμμμ+=±?+=?+=?=++-=+'+'':为一对共轭虚数,为相等的实数:,为不相等的实数:,,其解为特征值相应的特征方程为00)1(222=-?=-+-k k μμμμk ±=?μ,...)2,1()(=+=?-k r D r C r R k k k k kr D C r R ln )(000+=),2,1,0(0)0( ==?k D R k k 有界 ,...)2,1()(==?k r C r R k k k 00)(C r R = ∑∞=++=∴10)sin cos (2),(k kk k r k k r u θβθααθ∑∞=++==1)sin cos (2)(:k kk k a k k f a r θβθααθ====πππβπα2020,...2,1,sin )(1,...2,1,0,cos )(1k ktdt t f a k ktdt t f a k k k k代入级数表达式得,注:将k k βα, ()()()()∑∑?∑?∑++--=??-+-=+??? ??=-+=+??? ??+=--------∞=--∞=-∞=∞=πθθπθθθπθθπππππθπθθπθ202)()(220)()()(201)(0)(20120111)(21111)(21)(21)(cos 21)(21sin sin cos cos 21)(21),(dt a r e e a r a r t f dt e a r e a r e a r t f dt e a r e a r t f dt t k a r t f dt kt kt a r t f r u t i t i t i t i t i k t ik k k t ik k k k k k ()a r dt rt ar a r a t f r u <+---=??πθπθ202222)cos(2)(21),( (Poisson 公式)外问题??=>=∞→=有界u f u a r u r a r lim )()(0θ?∑∞=-++=1)sin cos (2),(k k k k r k k r u θβθααθ∑∞=-++==1)sin cos (2)(:k k k k a k k f a r θβθααθ====πππβπα2020,...2,1,sin )(,...2,1,0,cos )(k ktdt t f ak ktdt t f a kk kk同样有Poisson 公式)()cos(2)(21),(202222a r dt rt ar a a r t f r u >+---=θπθ 2.扇形域()??==<<<=++==θαθαθθθf u u a r u r u r u a r r rr 0 ),0(011,02 分离变量得:()()?===+''000αλΘΘΘΘ 与()+∞<=-'+''002R R R r R r λ 2=?απλk k(),.......2,1sin ==Θk k B k k θαπθ()απαπk k k k k rD rC r R -+=()00=?+∞<="" d="" p="" r="">==∴1,k k k k r a r u θαπθαπ()∑∞===1sin:k k k k a a f a r θαπθαπ()θθαπθαααπd k f aa k k sin2=∴3.环形域()()==<<===θθ212121,0f u f u rr r u r r r r ? ()......2,1,0,sin cos ......2,1,0,2=+=Θ==k k B k A k k k k k k θθθλ()≠+=+=-0,0,ln 00k r D r C k r D C R kk k k k θ ()()∑∞=-+++++=∴100sin cos sin cos ln ),(k kk k k k k r k d k c r k b k a r b a r u θθθθθ ()()()) 2,1(sin cos sin cos ln :100=+++++==∑∞=-i r k d k c r k b k a r b a f r r k ki k k k i k k i i i θθθθθ ()θθππd f r b a i i ?=+?200021ln ()θθθππd k f r c r a i k i k k i k ?=+-20cos 1()θθθππd k f r d r b i k i k k i k ?=+-20sin 1.....2,1,2,1==k i解联立方程即得().....2,1,0,,,,0,0=k d c b a b a k k k k 例如()()θθθθθ2cos 212122cos 1cos ,0221+=+===f f =≠=+=+=+--2,212,0,0,0ln 2211100k k r c r a r c r a r b a kk k k k k kk k r d r b r d r b r b a k k k k k k k k ?=+=+=+--,0,0,21 ln 2211200()()()())2(0),(02,2ln ln 21,ln ln 2ln 42412224241224121201210≠==?==--=-=-=--=?k c a k d b rr r c rr r r a r r b r r r a k k k k4.矩形域()()()()=====+====x u x u y u y u u u b y y a x x yy xx 100 100,,0ψψ??w v u +=分解()()=====+====x v x v v v v v y x v b y y a x x yy xx 100 0,0,00:),(ψψ()()=====+====0,0,0:),(0100b y y a x x yy xx w w y w y w w w y x w ??:),(y x v 求解分离变量得特征值问题()()??=X =X =X +X ''000a λ0=-''Y Y λ及(),......2,1,sin ,2==??=?k a x k B x a k k k k ππλX()ak D y a k C y k k k ππsinh cosh +=Y()x a k y a k b y a k a y x v k k k πππsin sinh cosh ,1∑∞=??? ?+=∴()x a k a x y k k πψsin :010∑∞===()xdx a k x a a a k πψsin 200?=∴()x a k b a k b b a k a x k k k πππψsin sinh cosh 11∑∞=??? ?+=()xd ak x a b a k b b a k a a k k πψππsin 2sinh cosh 01?=+?()()xdx a k a b k x x ab k a b a k ππψψπsin cosh sinh2001-=∴ 类似地,()y b k x b k d x b k c y x w k k k πππsin sinh cosh ,1∑∞=??? ?+=()ydy bk x b c b k π?sin 200?=()()ydy b k b a k y y ba kb d b k ππ??πsin cosh sinh2001-= 5.非齐次问题例()=<-+==cu R r y x b a u R r )(222?方法一:方程齐次化令21w w u v --=()()()212211111144,2)1(:1:r ar w a A a r A r A Ar r w aw rw w r w w =∴==?=+-==+"=?=-- 令设21212),(ρρy A x A y x w +=)()1()1(:)(222222*********y x b y A x A y x b w -=-+--=?--ρρρρρρ 12/,42121b A A =-===?ρρθ2cos 12)(12),(4442r by x b y x w =-=∴--=<=--=∴=θθ2cos 124)(02cos 12442242R b R a c v R r v r b r a u v Rr ?满足∑∞=++=1)sin cos (2),(n n n n r n n r v θβθααθ∑∞=++=--=142)sin cos (22cos 124:n nn n R n n R bR a c R r θβθααθ222012,42)(0),2,0(0R bR a c n n n n -=-=?=≠=?ααβα θθ2cos 124),(222R r b R a c r v --=∴θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴方法二.特征函数法:=<+=++=cuR r br a u r u r u R r r rr )(2cos 1122θθθ 令()∑∞=+=0sin )(cos )(),(n nnn r B n r A r v θθθ代入方程:θθθ2cos sin )()(1)(cos )()(1)(202222br a n r B r n r B r r B n r A r n r A r r A n n n n n n n +=?????????????????? ??-'+"+???? ??-'+''∑∞= )2,0(0)()(1)(22≠=-'+''?n r A r n r A r r A n n n, )(0)()(1)(22n r B r n r B r r B n n n ?=-'+" (**))(4)(1)((*),)(1)(2222200br r A rr A r r A a r A rr A =-'+''='+'')0(,)0(==?+∞<+∞<="" b="" d="" n="" p="">)()(),2,0(,)(n r c r B n r a r A nn n n n n ?=≠=∴边界条件()?+=∑∞=0sin )(cos )(n n n n R B n R A c θθ()0)(,)(;00)(,0)(00==≠==R B c R A n R B R A n n )(0)(),2,0(0)(n r B n r A n n ?=≠=∴易求得(*)的一个特解为24r a,(**)的一个特解为412r b20004ln )(r a r b a r A ++= , 42222212)(r br b r a r A ++=-)0(,)0(2020==?+∞<+∞)(4)(4)(220200R r ac r A R a c a c R A -+=?-=?=,)(12)(120)(2222222R r r br A R ba R A -=?-=?=θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴ §3调和函数的基本性质 3.1 Green 公式设nR ?Ω为有界区域, ΓΩ=?分块光滑, ΓΩΩ =.Green 第一公式设)()(),()(0112ΩΩ∈ΩΩ∈C C v C Cu ,则-??=ΩΓΩ?udx v dS n uv udx v 证明:∑=??=ΩΩni idx x uv udx v 122∑?∑==-=ΩΩni ii ni i i dx x ux v dx x u v x 11)(-??=ΩΓudx v dS n uv 同样地, 若)()(),()(0112ΩΩ∈ΩΩ∈C C u C Cv ,则 -??=ΩΓΩ?vdx u dS n vu vdx u 因此有,Green 第二公式设),()(,12ΩΩC Cv u ∈则 -??=-ΓΩ??dS n uv n v u dx u v v u )()(Green 公式特例=ΓΩdS n uudx 0,==?v vdx u dS n vuΩΓ 0,0)(===??-v u dS n u v n v u ??Γ3.2 调和函数的基本性质1. Neumann 问题解的自由度及可解性条件 (1)解的自由度考虑问题 (PN)=??=g nu f u Γ?若它有两个解21,u u , 则21u u u -=满足问题(N) =??=00Γ?nu u-??==ΩΓΩdxu dS n u u udxu 2-=Ωdx u 2),,2,1(0n i u i x ==?.const u ≡?结论: 问题(PN)在相差一个常数的意义下有唯一解. (2)可解性条件对问题(PN),=ΓΩ?dS n uudx ??=?ΓΩdS g dx f结论: 问题(PN)有解的必要条件为=ΓΩdS g dx f .2. 基本积分公式先考察3=n 的情形.设.,,),,(30000ΓΩΩΓΩΩ ==??∈R z y x M考虑函数,41),(00MM r M M v π=其中,),,(Ω∈z y x M202020)()()(0z z y y x x r MM -+-+-=.易知,),(0M M v 除0M M=外关于M 处处满足调和方程,称之为调和方程的基本解.取ε充分小,使得Ω?)(0M B ε. 记,\,εεεεB BΩΩΓ==?,,εεεεεΩΩΩΓΓΩ?==? (见图)则)()(12εεΩΩC C v ∈,且在εΩ内处处满足调和方程.设)()(12ΩΩC Cu ∈,对u 与v 应用Green 第二公式, Ω?-επdx M u r MM )(41-??=εππΓΓ dS n M u r r n M u MM MM )(41)41()(00-??=ΓdS n M u r r n M u MM MM )(1)1()(4100π-??-επΓdS n M u r r n M u MM MM )(1)1()(4100-??=ΓdS n M u r r n M u MM MM )(1)1()(4100π ++εεπεπεΓΓdS r M u dS M u )(41)(412-??=ΓdS n M u r r n M u MM MM )(1)1()(4100πε)()(21M ruM u ??++其中εΓ∈21,M M令,0→ε则,,,021ΩΩ→→εM M M 从而,-=Ω?dx r M u M u MM 0)(41)(0π-??-ΓdS n M u r r n M u MM MM )(1)1()(4100π成为基本积分公式.调和函数的基本积分公式为:-??-=ΓdS n M u r r n M u M u MM MM )(1)1()(41)(000π注1. 基本解:1ln21:2MM r n π= ,1:32-≥n MM n r n ω其中n ω为n 维空间中单位球面的面积. 2=n 时的基本积分公式为:-=Ω?dx M u r M u MM )(1ln 21)(00π-??-ΓdS n M u r r n M u MM MM )(1ln )1(ln )(2100π注2. 对调和函数u ,成立-??-ΓdS n M u r r n M u MM MM )(1)1()(4100π ??=.),(4,),(2,,000000内在上在外在ΩΓΩM M u M M u M ππ 3. 平均值定理记以0M 为球心、R 为半径的球为)(0M B R ,球面为).(0M S R ).()()(000M S M B M B R R R = 设))((00M B C u R ∈, 且在)(0M B R 内调和,则=)(20041)(M S R dS u R M u π证明: 先假设)),(())((0102M B C M B Cu R R ∈由中的基本积分公式,-??-=)(0000)(1)1()(41)(M S MM MM R dS n M u r r n M u M u π=)(20)(41M S R dS M u R π+)(0)(41M S R dS n M u R π=)(20)(41M S R dS M u R π若))((00M B Cu R ∈,则取R R <,在)(0M B R 上有=)(20041)(M S RdS u R M u π 取极限R R →即可.注1. 上调和(0≤u ?): ??≥)(20041)(M S R dS u R M u π下调和(0≥u ?): ??≤)(20041)(M S R dS u R M u π注2.平()θ?θ?θ?θθπ?θρππcos ,sin sin ,cos sin sin ),,(41),,(000200000R z z R y y R x x d d z y x u u +=+=+==注3.()()??++===πθθθππ200000)(0sin ,cos 21)(21)(20d R y R xu M M S uds RM u n R M S R 为圆心的圆周:以时的平均值公式:4. 极值原理,min min ,max max ,,,,u u u u u ΓΩΓΩ==ΩΩΓΩ=ΩΓ=Ω?Ω则上连续内调和且在在若为有界区域设.,,,,,)(1.v u v u v u v u ≡≤Ω≤ΩΩΓΓ且等号成立当且仅当内恒成立则在且上连续在内调和在设顺序原理注.,:.2与最低点温度在边界取到最高点时稳定温度场内部无热源物理意义注uu f u u u f u C C u ΓΓΩ=?≤=?=?≥=?ΩΩ∈min min 0max max 0),()(3.12则设注例题()()球上的最大值与最小值球心处的值和在试求为球坐标题设有单位球内的定解问u r u r u r .,,sin cos sin cos 1013?θ?θθ+++=<=?= ()4sin 41sin sin cos sin cos 41)0,0,0(2002200π?θθπ?θθ??θθπππππ==+++=d d d d u ()()21sin cos sin cos min min 22sin cos sin cos max max 11--=+++==+++=≤≤??θθ??θθu u r r5. Dirichlet 内问题解的唯一性与稳定性内问题??=∈=gu x f u ΓΩ?)(唯一性: 考虑相应的齐次问题=∈=0)(0ΓΩ?u x u .0min min ,0max max ====u u u u ΓΓΩ.0≡u稳定性: 连续依赖于边界条件.考虑=∈=g u x u ΓΩ?)(0,====g u u g u u ΓΓΓΓΩmin min min ,max max max .m a x m a x g u ΓΩ=§4 Green 函数及其应用4.1 Green 函数 1. G reen 函数的定义设3R ?Ω为有界区域,ΓΩ=?.设函数),()(,12ΩΩC Cg u ∈若g 在Ω中调和,则-??+=ΓΩ?dS n ug n g u udx g )(0设Ω∈0M ,已知基本积分公式ΓΩ-??-?-=dSn M u r r n M u dxr uM u MM MM MM ])(41)41()([4)(0000πππ相加得ΓΩ---??--?-=dS nM u g r g r n M u dxg r u M u MM MM MM ])()41()41() ([)41()(0000πππ因此选),(0M M g g =满足==ΓΓ?0410MM r g g π 称函数),(41),(000M M g r M M G MM -=π为Green 函数. 易知),(0M M G 除0M M=外关于变量M 处处满足调和方程,且0),(0=∈ΓM M M G .注1. 对Dirichlet 问题==?Γu fu ,ΓΩ--=dSn M M G M dxM f M M G M u ),()()(),()(000?注2. 对二维情形,Green 函数为),(1ln 21),(000M M g r M M G MM -=π 其中g 满足??==ΓΓ?01ln 210MM rg g π2. Green 函数的意义1) G reen 函数仅依赖于区域,而与边界条件无关. 2) 特殊区域上的Green 函数可用初等的方法求出. 3) 利用Green 函数求解的积分公式可以讨论解的性质. 4) 有明显的物理意义:在接地的导电闭曲面Γ内的点0M 处放一单位正电荷,则Γ内任一点M 处的电位为),(0M M G ,它由两部分组成:即0M 处电位正电荷产生的电位41MM r π与Γ内表面上感应负电荷产生的感应电位),(0M M g -.而且导体表面的电位恒为零. 3. Green 函数的性质 1))1(),(00MM r O M M G =事实上,),(411),(0000M M g r r M M G MM MM -=π而+∞<≤041max ),(0MM r M M g πΓ)(0),(000M M M M g r MM →→? 2) 1),(0-=ΓdS n M M G (只需取1≡u 即可.)3) 041),(00MM r M M G π<<.事实上, 由极值原理, 041min min ),(00>=>MM r g M M g πΓΓ, 即 041),(0MM r M M G π<.0,0),(,,00=>Γ?≠?ΓΓG G M M M 而使得充分小球面为半径的以为球心以εεεε.0min ),(G 0=>?G M M G εεΓΓΓΓ 所围的区域内调和与在由4) .),(),(),(211221中不重合的两点为ΩM M M M G M M G =事实上,.),(),(),(),(,,,,2121212121内调和在与则所围区域与、由使得充分小为半径的球面以为球心、分别作以εεεεεεεεΩΓΓΓΩ∈ΓΓ≠?M M G M M G M M M M M M -=εΩ??dx M M G M M G M M G M MG )),(),(),(),((01221-??=21)),(),(),(),((1221εεΓΓΓ dSn M M G M M G n M M G M M G -??=ΓdS n M M G M M G n M M G M M G )),(),(),(),((1221-??+1)),(),(),(),((1221εΓdSn M M G M M G n M M G M M G-??+2)),(),(),(),((1221εΓdS nM M G M M G n M M G M M GIII II I ++=).,(lim ),,(lim 0,120210M M G M M G -===→→III II I εε易知4.2 静电源像法当区域具有某种对称性时,感应负电荷产生的电位可以用在相应的对称点放置的假想负电荷产生的电位来取代------这种求Green 函数的方法称为静电源像法. 1. 上半空间的Green 函数{};41,0z z)y,(x,00MM r M M π点产生的电位为它对单位正电荷处放中的点在上半空间>),,,(0),,,(00011000000z y x M M z M z y x M M -===的对称点关于平面则设141,1MM r M M π-产生的电位为则它对放单位负电荷在104141),(0MM MM r r M M G ππ-=++-+---+-+-=202020202020)()()(1)()()(141z z y y x x z z y y x x π=>==),()0(0Dirichlet 0y x f u z u z ? 问题考虑, dxdy z G y x f z y x u z 0000),(),,(=∞+∞-∞+∞-= []∞+∞-∞+∞-+-+-=232020200)()(),(2z y y x x dxdy y x f z π. ),(),,(],1ln 1[ln 21),(Green .00110000010y x M M y x M M r r M M G MM MM -==-=其中函数为上半平面的注π∞+∞-=+-==>=?2200000)()(),()()0(0Dirichlet y x x dxx f y y x u x f u y y π的解为问题2. 球的Green 函数 ,),0( ,),0(10M R B R B M 反演点为的它关于球面内的一点为球设?=Γ 210R r r O M O M =?.441,,1010MM MM r qr M q M M ππ与产生的电位分别为它们对单位负电荷放在放单位正电荷在.,441100Γ∈=?P r qr PM PM 其中消这两个电位在球面上抵ππ 00100,OM PM PM r R r r q ===?ρρ其中)1(41),(1000MM MM r Rr M M G ρπ-=?=<==fu R r u R r )(0Dirichlet ?问题考虑2101221022001cos 2,cos 2,cos ),cos(,,101R G nGr r OM OM r r RMM MM OM OM =??=-+=-+=====Γρρργρρρργρρρργρρρ及并注意到则记-+-=?ΓdS f R R R R M u 2302022020)cos 2(41)(γρρρπ≤<≤≤≤≤??===R z y x ρπ?πθθρ?θρ?θρ0200cos sin sin cos sin 利用球坐标变换 ) Poisson (sin ),,()cos 2(4),,(2023020222000公式??-+-=ππθθ?θγρρρπθρd d R f R R R R u)cos ,sin sin ,cos (sin )cos ,sin sin ,cos (sin 1.000000??θ?θθ?θ?θ的方向余弦为的方向余弦为注OM OM)cos(sin sin cos cos cos 000??θθθθγ-+=? ]ln 1[ln 21),( Green 2.1000MM MM r Rr M M G ρπ-=函数为园的注 )P o i s s o n ()()c o s (221),(D i r i c h l e t 20002022200公式问题的解为相应的?--+-=πθθθθρρρπθρd f R R R u。
场论与数理方程lesson8

在整个 域内 g 0,所以在 内
1 1 G g 4 rM 0 M 4 rM 0 M
即
1 0 G( M , M 0 ) 4 rM 0 M
性质4
格林函数 G( M , M 0 )在自变量 M 及参变量 M 0 之间
G(M1 , M 2 ) G(M 2 , M1 )
具有对称性,即设 M1, M 2为区域中的两点,则
三、调和函数的积分表达式:
1 u(M 0 ) 4 1 u(M ) n rM M 0 1 u( M ) dSM rM M n 0
其中点 M0 ( x0 , y0 , z0 )
四、格林函数
g (M , M 0 ) ,它在区域 内关于变量 M 是到处调和的, 1 并且在区域 的边界 上与函数 在边界 上的 4 rM 0 M
格林第二公式
u v (uv vu )d u v dS n n
g (M , M 0 ) |
1 | 4 rM 0 M
由格林第二公式得
g u g 式相减,就得到
1 ,故以 M 0为中心,适当小的 为半径作球 , 4 rM 0 M
总可以使 G在 上为正。又G 在 及 围成的域内是调和
的,且
G | 0, G | 0
由极值原理知,在该域内 G 0 ,令 0 ,则知在整
个域 内 G 0 。
1 又 g 在 内处处调和且 g | 4 r 0 ,由极值原理知, M0M
值相同,即
若 u , v 均调和,则它们满足格林第一公式
u v u v u v v uvd u n dS x x y y z z d
拉普拉斯方程

拉普拉斯方程拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。
[1]拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。
中文名拉普拉斯方程外文名Laplace's equation别称调和方程、位势方程提出者拉普拉斯关键词微分方程、拉普拉斯定理涉及领域电磁学、天体物理学、力学、数学目录.1基本概述.▪在数理方程中.▪方程的解.2二维方程.3人物介绍基本概述一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。
在数理方程中拉普拉斯方程为:,其中∇²为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ :其中∇²称为拉普拉斯算子。
拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数f(x,y,z),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。
方程的解称为调和函数,此函数在方程成立的区域内是解析的。
任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。
第三章 调和方程

f f * 设u和u*,分别是调和方程在区域Ω上的以f和f*为边界条件的
数学物理方程
§1-2 定解条件和定解问题
第三章 调和方程
因此,对于狄利克雷或诺依曼外问题而言,还需要在无穷远 处对解添加一定的限制条件。在三维情况下,一般要求解在 无穷远处的极限为零(或者说极限为某个特定的值),即
lim u(x, y, z) 0 r x2 y2 z2
r
泊松方程的求解可以运用叠加原理转化为调和方程的求解: 首先寻找一个泊松方程的特解u1,作代换u=v+u1把原方程转 化为关于v的调和方程。
§2.1 格林(Green)公式 §2.2 平均值定理 §2.3 极值原理 §2.4 第一边值问题解的
唯一性和稳定性
数学物理方程
§2-1 格林(Green)公式
第三章 调和方程
高等数学中的高斯公式如下
(
P x
Q y
R )d
z
(P cos(n,
x)
Q cos(n,
y)
R cos(n,
z))ds
调和方程,又称拉普拉斯(Laplace)方程,其三维形式为
u 2u 2u 2u 0 3.1 x2 y2 z 2
这个方程相应的非齐次方程,称为泊松(Poisson)方程,即
u
2u x 2
2u y 2
2u z 2
f (x, y, z)
3.2
这类方程在力学、物理学问题中经常遇到。前面两章推导的波动方程和热 传导方程如果去掉了时间导数项,那么方程就可以转化为泊松方程或调和 方程。流体力学中的速度势和流函数都满足调和方程;静电场中的电位势 满足泊松方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 调和方程§1.调和方程的定解问题 1.方程的几个例子例1. 稳定的温度分布温度分布满足),(2t x f u a u t =∆-稳定热源:),,,)((321x x x x x f f ==与t 无关 边界绝热(即边界条件也与t 无关)则长时间后,温度分布必然趋于稳定状态(与t 无关),即)(x u u =此时有)(1x f u =∆, (21a ff -=)称为Poission 方程 当01=f 时,0=∆u ,称为Laplace 方程或调和方程.例2.弹性膜的平衡状态:u 为膜在垂直方向的位移,外力),(21x x f f =,则有f x ux u =∂∂+∂∂222212例3.静电场的电势uMaxwell 方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂-=∂∂+=ρdivD divB t B rotE t D J rotH 0E :电场强度, H :磁场强度, D :电感应强度, B :磁感应强度 J :传导电流的面密度, ρ:电荷的体密度物质方程⎪⎩⎪⎨⎧===E J H B E D σμε:μ导磁率, σ:导电率, ε: 介质的介电常数 divE divD ερ==∵静电场是有势场:u grad E -=ερ-=⇒u grad div , 即ερ-=u ∆若静电场是无源的,即0=ρ,则0=∆u 例4.解析函数)(),,(),()(iy x z y x iv y x u z f +=+=则v u ,满足Cauchy-Riemann 条件:y x y x u v v u -==, 例5.布朗运动(见图) 设质点运动到边界上即终止,⎪⎩⎪⎨⎧===∆0,10`),,(),,(211C C u u u C z y x z y x u 概率,则上的为起点,终止在:以易知,0,0=∆=∆v u2.定解问题(1)内问题:nR ⊂Ω,有界,Γ=Ω∂,u 在Ω内满足f u =∆ 边界条件:第一类(Dirichlet):g u =Γ|第二类(Neumann):g n u=∂∂Γ| 第三类(Robin):)0(|)(>=+∂∂Γσσg u nun 为Γ的单位外法线方向.(2) 外问题:u 在Ω外部满足f u =∆同样有三类边界条件(此时n 为Ω的内法线方向).但解在无穷远处是否可以不加限制?要加何种限制? 先看两个例子:例1.2=n ⎪⎩⎪⎨⎧=>+=∆=+0|)1(,012222y x u y x u221ln 1ln ,0yx r u u +===均为解, 例 2. 3=n ⎪⎩⎪⎨⎧=++=>==1),1(01222r u zy x r r u ∆ru u 1,1==均为解.因此,解在无穷远点一定要加限制,以确定解的唯一性. 通常,:2=n 解在无穷远处有界:),(lim y x u r ∞→有界:3≥n 解在无穷远处趋于0:0),,(lim =∞→z y x u r(3) 无界区域的边值问题:与外问题类似 (4) 等值面边值问题:0=∆u边界条件:⎪⎩⎪⎨⎧=∂∂=⎰ΓΓ)()(|已知待定A dS n uC u 这个问题可约化为 Dirichlet 问题:设⎩⎨⎧==∆Γ1|0U U 的解为)(x U U =,选取常数C ,s.t.:A dS n UC=∂∂⎰Γ 则CU u =§2.分离变量法1. 圆的Dirichlet 内问题与外问题内问题⎪⎩⎪⎨⎧=<+=∆=+)(|)(0222222θf u a y x u a y x引入极坐标θθsin ,cos r y r x ==222222221)(111θθ∂∂+∂∂∂∂=∂∂+∂∂+∂∂≡urr u r r r ur r u r ru u ∆ 则原问题化为:⎪⎩⎪⎨⎧≤≤=≤≤<=++=)20()(|)20,(0112πθθπθθθf u a r u r u r u a r r rr 将)()(θΘr R 代入方程并分离变量得⇒-='+''-=''λ21r R R r RΘΘ0,02=-'+''=+''R R r R r λλΘΘ求解特征值问题:⎩⎨⎧==+'')2()0(0πλΘΘΘΘθλθλθλθθλθλθλθλsin cos )(:0)(:0)(:0212121C C C C e C e C +=Θ>+=Θ=+=Θ<---∴0<λ时不是解. 1)(:0C =Θ=θλ.θθθλλk C k C k s i n c o s )(,:0212+==>Θ∴,....)2,1,0(2==k k k λ,...)2,1(sin cos )(,)(00=+==k k B k A A k k k θθθθΘΘ求解)(022方程Euler R k R r R r =-'+'':一般Euler 方程的求解:()()t B t A t t y i t B t A t y BtAt t y a a a t y a t y t a t y t a ln sin ln cos )(ln )()(0)1(0)()()(212121212102120121βββαμμμμμμμμμμμαμμμ+=±∙+=∙+=∙=++-=+'+'':为一对共轭虚数,为相等的实数:,为不相等的实数:,,其解为特征值相应的特征方程为00)1(222=-⇒=-+-k k μμμμk ±=⇒μ,...)2,1()(=+=⇒-k r D r C r R k k k k kr D C r R ln )(000+=),2,1,0(0)0( ==⇒k D R k k 有界 ,...)2,1()(==⇒k r C r R k k k 00)(C r R = ∑∞=++=∴10)sin cos (2),(k kk k r k k r u θβθααθ∑∞=++==1)sin cos (2)(:k kk k a k k f a r θβθααθ⇒⎰⎰====πππβπα2020,...2,1,sin )(1,...2,1,0,cos )(1k ktdt t f a k ktdt t f a k k k k代入级数表达式得,注:将k k βα, ()()()()⎰⎰⎰∑∑⎰∑⎰∑⎥⎦⎤⎢⎣⎡++--=⎥⎦⎤⎢⎣⎡-+-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=--------∞=--∞=-∞=∞=πθθπθθθπθθπππππθπθθπθ202)()(220)()()(201)(0)(20120111)(21111)(21)(21)(cos 21)(21sin sin cos cos 21)(21),(dt a r e e a r a r t f dt e a r e a r e a r t f dt e a r e a r t f dtt k a r t f dt kt kt a r t f r u t i t i t i t i t i k t ik k k t ik k k k k k()a r dt rt ar a r a t f r u <+---=⇒⎰πθπθ202222)cos(2)(21),( (Poisson 公式)外问题⎪⎪⎩⎪⎪⎨⎧=>=∞→=有界u f u a r u r a r lim )()(0θ∆∑∞=-++=1)sin cos (2),(k k k k r k k r u θβθααθ∑∞=-++==1)sin cos (2)(:k k k k a k k f a r θβθααθ⇒⎰⎰====πππβπα2020,...2,1,sin )(,...2,1,0,cos )(k ktdt t f ak ktdt t f a kk kk同样有Poisson 公式)()cos(2)(21),(202222a r dt rt ar a a r t f r u >+---=⎰πθπθ 2.扇形域()⎪⎪⎩⎪⎪⎨⎧==<<<=++==θαθαθθθf u u a r u r u r u a r r rr 0),0(011,02 分离变量得:()()⎩⎨⎧===+''000αλΘΘΘΘ 与()⎪⎩⎪⎨⎧+∞<=-'+''002R R R r R r λ 2⎪⎭⎫⎝⎛=⇒απλk k(),.......2,1sin ==Θk k B k k θαπθ()απαπk k k k k rD rC r R -+=()00=⇒+∞<k D R ()∑∞==∴1sin,k k k k r a r u θαπθαπ()∑∞===1sin:k k k k a a f a r θαπθαπ()θθαπθαααπd k f aa k k sin2⎰=∴3.环形域()()⎪⎪⎩⎪⎪⎨⎧==<<===θθ212121,0f u f u rr r u r r r r ∆ ()......2,1,0,sin cos ......2,1,0,2=+=Θ==k k B k A k k k k k k θθθλ()⎩⎨⎧≠+=+=-0,0,ln 00k r D r C k r D C R kk k k k θ ()()∑∞=-⎥⎥⎦⎤⎢⎢⎣⎡+++++=∴100sin cos sin cos ln ),(k kk k k k k r k d k c r k b k a r b a r u θθθθθ ()()())2,1(sin cos sin cos ln :100=⎥⎥⎦⎤⎢⎢⎣⎡+++++==∑∞=-i r k d k c r k b k a r b a f r r k ki k k k i k k i i i θθθθθ ()θθππd f r b a i i ⎰=+⇒200021ln ()θθθππd k f r c r a i ki k k i k ⎰=+-20cos 1()θθθππd k f r d r b i k i k k i k ⎰=+-20sin 1.....2,1,2,1==k i解联立方程即得().....2,1,0,,,,0,0=k d c b a b a k k k k例如()()θθθθθ2cos 212122cos 1cos ,0221+=+===f f ⎪⎩⎪⎨⎧=≠=+=+=+--2,212,0,0,0ln 2211100k k r c r a r c r a r b a kk k k k k kk k r d r b r d r b r b a k k k k k k k k ∀=+=+=+--,0,0,21ln 2211200()()()())2(0),(02,2ln ln 21,ln ln 2ln 42412224241224121201210≠==∀==--=-=-=--=⇒k c a k d b rr r c rr r r a r r b r r r a k k k k4.矩形域()()()()⎪⎪⎩⎪⎪⎨⎧=====+====x u x u y u y u u u b y y a x x yy xx 100100,,0ψψϕϕw v u +=分解()()⎪⎪⎩⎪⎪⎨⎧=====+====x v x v v v v v y x v b y y a x x yy xx 1000,0,00:),(ψψ()()⎪⎪⎩⎪⎪⎨⎧=====+====0,0,0:),(0100b y y a x x yy xx w w y w y w w w y x w ϕϕ:),(y x v 求解分离变量得特征值问题()()⎩⎨⎧=X =X =X +X ''000a λ0=-''Y Y λ及(),......2,1,sin ,2==⎪⎭⎫⎝⎛=⇒k a x k B x a k k k k ππλX()ak D y a k C y k k k ππsinh cosh +=Y()x a k y a k b y a k a y x v k k k πππsin sinh cosh ,1∑∞=⎪⎭⎫ ⎝⎛+=∴()x a k a x y k k πψsin :010∑∞===()xdx a k x a a a k πψsin 200⎰=∴()x a k b a k b b a k a x k k k πππψsin sinh cosh 11∑∞=⎪⎭⎫ ⎝⎛+=()xd ak x a b a k b b a k a a k k πψππsin 2sinh cosh 01⎰=+⇒()()xdx a k a b k x x ab k a b a k ππψψπsin cosh sinh2001⎰⎥⎦⎤⎢⎣⎡-=∴ 类似地,()y b k x b k d x b k c y x w k k k πππsin sinh cosh ,1∑∞=⎪⎭⎫ ⎝⎛+=()ydy bk x b c b k πϕsin 200⎰=()()ydy b k b a k y y ba kb d b k ππϕϕπsin cosh sinh2001⎰⎥⎦⎤⎢⎣⎡-= 5.非齐次问题 例()⎪⎩⎪⎨⎧=<-+==cu R r y x b a u R r )(222∆方法一:方程齐次化 令21w w u v --=()()()212211111144,2)1(:1:r ar w a A a r A r A Ar r w aw rw w r w w =∴==⇒=+-==+"=∆=-- 令 设21212),(ρρy A x A y x w +=)()1()1(:)(222222*********y x b y A x A y x b w -=-+--=∆--ρρρρρρ 12/,42121b A A =-===⇒ρρθ2cos 12)(12),(4442r by x b y x w =-=∴⎪⎩⎪⎨⎧--=<=--=∴=θθ2cos 124)(02cos 12442242R b R a c v R r v r b r a u v Rr ∆满足 ∑∞=++=1)sin cos (2),(n n n n r n n r v θβθααθ∑∞=++=--=142)sin cos (22cos 124:n nn n R n n R bR a c R r θβθααθ222012,42)(0),2,0(0R bR a c n n n n -=-=∀=≠=⇒ααβα θθ2cos 124),(222R r bR a c r v --=∴θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴方法二.特征函数法:⎪⎩⎪⎨⎧=<+=++=cuR r br a u r u r u R r r rr )(2cos 1122θθθ 令()∑∞=+=0sin )(cos )(),(n nnn r B n r A r v θθθ代入方程:θθθ2cos sin )()(1)(cos )()(1)(202222br a n r B r n r B r r B n r A r n r A r r A n n n n n n n +=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-'+"+⎪⎪⎭⎫ ⎝⎛-'+''∑∞= )2,0(0)()(1)(22≠=-'+''⇒n r A r n r A r r A n n n, )(0)()(1)(22n r B r n r B r r B n n n ∀=-'+" (**))(4)(1)((*),)(1)(2222200br r A rr A r r A a r A rr A =-'+''='+'')0(,)0(==⇒+∞<+∞<n n n n d b B A)()(),2,0(,)(n r c r B n r a r A nn n n n n ∀=≠=∴边界条件()⇒+=∑∞=0sin )(cos )(n n n n R B n R A c θθ()0)(,)(;00)(,0)(00==≠==R B c R A n R B R A n n)(0)(),2,0(0)(n r B n r A n n ∀=≠=∴易求得(*)的一个特解为24r a,(**)的一个特解为412r b20004ln )(r a r b a r A ++= , 42222212)(r br b r a r A ++=-)0(,)0(2020==⇒+∞<+∞<b b A A)(4)(4)(220200R r ac r A R a c a c R A -+=⇒-=⇒=,)(12)(120)(2222222R r r br A R ba R A -=⇒-=⇒=θθ2cos )(12)(4),(22222R r r bR r a c r u -+-+=∴ §3调和函数的基本性质 3.1 Green 公式设nR ⊂Ω为有界区域, ΓΩ=∂分块光滑, ΓΩΩ =.Green 第一公式 设)()(),()(0112ΩΩ∈ΩΩ∈C C v C Cu ,则⎰⎰⎰∇⋅∇-∂∂=ΩΓΩ∆udx v dS n uv udx v 证明:⎰∑⎰=∂∂=ΩΩ∆ni idx x uv udx v 122⎰∑⎰∑==∂∂∂∂-∂∂∂∂=ΩΩni ii ni i i dx x ux v dx x u v x 11)(⎰⎰∇⋅∇-∂∂=ΩΓudx v dS n uv 同样地, 若)()(),()(0112ΩΩ∈ΩΩ∈C C u C Cv ,则 ⎰⎰⎰∇⋅∇-∂∂=ΩΓΩ∆vdx u dS n vu vdx u 因此有,Green 第二公式 设),()(,12ΩΩC Cv u ∈则 ⎰⎰∂∂-∂∂=-ΓΩ∆∆dS n uv n v u dx u v v u )()(Green 公式特例⎰⎰∂∂=ΓΩ∆dS n uudx 0,=∇⋅∇=∂∂⎰⎰v vdx u dS n vu∆ΩΓ 0,0)(===∂∂-∂∂⎰v u dS n u v n v u ∆∆Γ3.2 调和函数的基本性质1. Neumann 问题解的自由度及可解性条件 (1)解的自由度考虑问题 (PN) ⎪⎩⎪⎨⎧=∂∂=g nu f u Γ∆若它有两个解21,u u , 则21u u u -=满足问题(N) ⎪⎩⎪⎨⎧=∂∂=00Γ∆nu u⎰⎰⎰∇-∂∂==ΩΓΩ∆dxu dS n u u udxu 2⎰∇-=Ωdx u 2),,2,1(0n i u i x ==⇒.const u ≡⇒结论: 问题(PN)在相差一个常数的意义下有唯一解. (2)可解性条件 对问题(PN),⎰⎰∂∂=ΓΩ∆dS n uudx ⎰⎰=⇒ΓΩdS g dx f结论: 问题(PN)有解的必要条件为⎰⎰=ΓΩdS g dx f .2. 基本积分公式先考察3=n 的情形.设.,,),,(30000ΓΩΩΓΩΩ ==∂⊂∈R z y x M考虑函数,41),(00MM r M M v π=其中,),,(Ω∈z y x M202020)()()(0z z y y x x r MM -+-+-=.易知,),(0M M v 除0M M=外关于M 处处满足调和方程,称之为调和方程的基本解.取ε充分小,使得Ω⊂)(0M B ε. 记,\,εεεεB B ΩΩΓ==∂,,εεεεεΩΩΩΓΓΩ∂==∂ (见图)则)()(12εεΩΩC C v ∈,且在εΩ内处处满足调和方程.设)()(12ΩΩC Cu ∈,对u 与v 应用Green 第二公式, ⎰⎰⎰Ω∆-επdx M u r MM )(41⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=εππΓΓ dS n M u r r n M u MM MM )(41)41()(00⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=ΓdS n M u r r n M u MM MM )(1)1()(4100π⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-επΓdS n M u r r n M u MM MM )(1)1()(4100 ⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=ΓdS n M u r r n M u MM MM )(1)1()(4100π ⎰⎰⎰⎰∂∂++εεπεπεΓΓdS r M u dS M u )(41)(412 ⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂=ΓdS n M u r r n M u MM MM )(1)1()(4100πε)()(21M ruM u ∂∂++其中εΓ∈21,M M令,0→ε则,,,021ΩΩ→→εM M M 从而,⎰⎰⎰-=Ω∆dx r M u M u MM 0)(41)(0π ⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-ΓdS n M u r r n M u MM MM )(1)1()(4100π成为基本积分公式.调和函数的基本积分公式为:⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-=ΓdS n M u r r n M u M u MM MM )(1)1()(41)(000π注1. 基本解:1ln21:2MM r n π= ,1:32-≥n MM n r n ω其中n ω为n 维空间中单位球面的面积. 2=n 时的基本积分公式为:⎰⎰-=Ω∆dx M u r M u MM )(1ln 21)(00π⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-ΓdS n M u r r n M u MM MM )(1ln )1(ln )(2100π注2. 对调和函数u ,成立⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-ΓdS n M u r r n M u MM MM )(1)1()(4100π ⎪⎩⎪⎨⎧=.),(4,),(2,,000000内在上在外在ΩΓΩM M u M M u M ππ 3. 平均值定理记以0M 为球心、R 为半径的球为)(0M B R ,球面为).(0M S R).()()(000M S M B M B R R R = 设))((00M B C u R ∈, 且在)(0M B R 内调和,则⎰⎰=)(20041)(M S R dS u R M u π证明: 先假设)),(())((0102M B C M B Cu R R ∈由中的基本积分公式,⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡∂∂-∂∂-=)(0000)(1)1()(41)(M S MM MM R dS n M u r r n M u M u π⎰⎰=)(20)(41M S R dS M u R π⎰⎰∂∂+)(0)(41M S R dS n M u R π⎰⎰=)(20)(41M S R dS M u R π若))((00M B Cu R ∈,则取R R <,在)(0M B R 上有⎰⎰=)(20041)(M S RdS u R M u π 取极限R R →即可.注1. 上调和(0≤u ∆): ⎰⎰≥)(20041)(M S R dS u R M u π下调和(0≥u ∆): ⎰⎰≤)(20041)(M S R dS u R M u π注2.平()θϕθϕθϕθθπϕθρππcos ,sin sin ,cos sin sin ),,(41),,(000200000R z z R y y R x x d d z y x u u +=+=+==⎰⎰注3.()()⎰⎰++===πθθθππ200000)(0sin ,cos 21)(21)(20d R y R xu M M S uds RM u n R M S R 为圆心的圆周:以时的平均值公式:4. 极值原理,min min ,max max ,,,,u u u u u ΓΩΓΩ==ΩΩΓΩ=ΩΓ=Ω∂Ω则上连续内调和且在在若为有界区域设.,,,,,)(1.v u v u v u v u ≡≤Ω≤ΩΩΓΓ且等号成立当且仅当内恒成立则在且上连续在内调和在设顺序原理注.,:.2与最低点温度在边界取到最高点时稳定温度场内部无热源物理意义注uu f u u u f u C C u ΓΓΩ=⇒≤=∆=⇒≥=∆ΩΩ∈min min 0max max 0),()(3.12则设注例题()()球上的最大值与最小值球心处的值和在试求为球坐标题设有单位球内的定解问u r u r u r .,,sin cos sin cos 1013ϕθϕϕθθ⎪⎩⎪⎨⎧+++=<=∆= ()4sin 41sin sin cos sin cos 41)0,0,0(2002200πϕθθπϕθθϕϕθθπππππ==+++=⎰⎰⎰⎰d d d d u ()()21sin cos sin cos min min 22sin cos sin cos max max 11--=+++==+++=≤≤ϕϕθθϕϕθθu u r r5. Dirichlet 内问题解的唯一性与稳定性内问题⎩⎨⎧=∈=gu x f u ΓΩ∆)(唯一性: 考虑相应的齐次问题⎩⎨⎧=∈=0)(0ΓΩ∆u x u .0min min ,0max max ====u u u u ΓΓΩ⎭⎬⎫⇒ .0≡u稳定性: 连续依赖于边界条件.考虑⎩⎨⎧=∈=g u x u ΓΩ∆)(0,⇒⎪⎭⎪⎬⎫====g u u g u u ΓΓΓΓΩmin min min ,max max max .m a x m a x g u ΓΩ=§4 Green 函数及其应用4.1 Green 函数 1. G reen 函数的定义设3R ⊂Ω为有界区域,ΓΩ=∂.设函数),()(,12ΩΩC Cg u ∈若g 在Ω中调和,则⎰⎰⎰⎰⎰∂∂-∂∂+=ΓΩ∆dS n ug n g u udx g )(0设Ω∈0M ,已知基本积分公式⎰⎰⎰⎰⎰ΓΩ∂∂-∂∂-∆-=dSn M u r r n M u dxr uM u MM MM MM ])(41)41()([4)(0000πππ相加得⎰⎰⎰⎰⎰ΓΩ∂∂---∂∂--∆-=dS nM u g r g r n M u dxg r u M u MM MM MM ])()41()41()([)41()(0000πππ因此选),(0M M g g =满足⎪⎩⎪⎨⎧==ΓΓ∆0410MM r g g π 称函数),(41),(000M M g r M M G MM -=π为Green 函数.易知),(0M M G 除0M M=外关于变量M 处处满足调和方程,且0),(0=∈ΓM M M G .注1. 对Dirichlet 问题⎩⎨⎧==ϕΓ∆u fu ,⎰⎰⎰⎰⎰ΓΩ∂∂--=dSn M M G M dxM f M M G M u ),()()(),()(000ϕ注2. 对二维情形,Green 函数为),(1ln 21),(000M M g r M M G MM -=π 其中g 满足⎪⎩⎪⎨⎧==ΓΓ∆01ln 210MM rg g π2. Green 函数的意义1) G reen 函数仅依赖于区域,而与边界条件无关. 2) 特殊区域上的Green 函数可用初等的方法求出. 3) 利用Green 函数求解的积分公式可以讨论解的性质. 4) 有明显的物理意义:在接地的导电闭曲面Γ内的点0M 处放一 单位正电荷,则Γ内任一点M 处的电位为),(0M M G ,它由两部分组成:即0M 处电位正电荷产生的电位41MM r π与Γ内表面上感 应负电荷产生的感应电位),(0M M g -.而且导体表面的电位恒为零. 3. Green 函数的性质 1))1(),(00MM r O M M G =事实上,),(411),(0000M M g r r M M G MM MM -=π而+∞<≤041max ),(0MM r M M g πΓ)(0),(000M M M M g r MM →→⇒ 2) 1),(0-=∂∂⎰⎰ΓdS n M M G (只需取1≡u 即可.)3) 041),(00MM r M M G π<<.事实上, 由极值原理, 041min min ),(00>=>MM r g M M g πΓΓ, 即 041),(0MM r M M G π<.0,0),(,,00=>Γ∃≠∀ΓΓG G M M M 而使得充分小球面为半径的以为球心以εεεε.0min ),(G 0=>⇒G M M G εεΓΓΓΓ 所围的区域内调和与在由4) .),(),(),(211221中不重合的两点为ΩM M M M G M M G =事实上,.),(),(),(),(,,,,2121212121内调和在与则所围区域与、由使得充分小为半径的球面以为球心、分别作以εεεεεεεεΩΓΓΓΩ∈ΓΓ≠∀M M G M M G M M M M M M ⎰⎰⎰-=εΩ∆∆dx M M G M M G M M G M M G )),(),(),(),((01221⎰⎰∂∂-∂∂=21)),(),(),(),((1221εεΓΓΓ dSn M M G M M G n M M G M M G ⎰⎰∂∂-∂∂=ΓdS n M M G M M G n M M G M M G )),(),(),(),((1221⎰⎰∂∂-∂∂+1)),(),(),(),((1221εΓdSn M M G M M G n M M G M M G⎰⎰∂∂-∂∂+2)),(),(),(),((1221εΓdS nM M G M M G n M M G M M GIII II I ++=).,(lim ),,(lim 0,120210M M G M M G -===→→III II I εε易知4.2 静电源像法当区域具有某种对称性时,感应负电荷产生的电位 可以用在相应的对称点放置的假想负电荷产生的电位 来取代------这种求Green 函数的方法称为静电源像法. 1. 上半空间的Green 函数{};41,0z z)y,(x,00MM r M M π点产生的电位为它对单位正电荷处放中的点在上半空间>),,,(0),,,(00011000000z y x M M z M z y x M M -===的对称点关于平面则设141,1MM r M M π-产生的电位为则它对放单位负电荷在104141),(0MM MM r r M M G ππ-=⇒ ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++-+---+-+-=202020202020)()()(1)()()(141z z y y x x z z y y x x π⎩⎨⎧=>==),()0(0Dirichlet 0y x f u z u z ∆ 问题考虑, dxdy z G y x f z y x u z 0000),(),,(=∞+∞-∞+∞-⎰⎰∂∂= []⎰⎰∞+∞-∞+∞-+-+-=232020200)()(),(2z y y x x dxdy y x f z π. ),(),,(],1ln 1[ln 21),(Green .00110000010y x M M y x M M r r M M G MM MM -==-=其中函数为上半平面的注π⎰∞+∞-=+-=⎪⎩⎪⎨⎧=>=∆2200000)()(),()()0(0Dirichlet y x x dxx f y y x u x f u y y π的解为问题2. 球的Green 函数 ,),0( ,),0(10M R B R B M 反演点为的它关于球面内的一点为球设∂=Γ 210R r r O M O M =⋅.441,,1010MM MM r qr M q M M ππ与产生的电位分别为它们对单位负电荷放在放单位正电荷在.,441100Γ∈=⇒P r qr PM PM 其中消这两个电位在球面上抵ππ 00100,OM PM PM r R r r q ===⇒ρρ其中)1(41),(1000MM MM r Rr M M G ρπ-=⇒⎩⎨⎧=<==fu R r u R r )(0Dirichlet ∆问题考虑2101221022001cos 2,cos 2,cos ),cos(,,101R G nGr r OM OM r r RMM MM OM OM =∂∂=∂∂-+=-+=====Γρρργρρρργρρρργρρρ及并注意到则记⎰⎰-+-=⇒ΓdS f R R R R M u 2302022020)cos 2(41)(γρρρπ ⎪⎪⎪⎭⎫ ⎝⎛≤<≤≤≤≤⎪⎩⎪⎨⎧===R z y x ρπϕπθθρϕθρϕθρ0200cos sin sin cos sin 利用球坐标变换 )Poisson (sin ),,()cos 2(4),,(2023020222000公式⎰⎰-+-=ππϕθθϕθγρρρπϕθρd d R f R R R R u)cos ,sin sin ,cos (sin )cos ,sin sin ,cos (sin 1.000000ϕϕθϕθθϕθϕθ的方向余弦为的方向余弦为注OM OM)cos(sin sin cos cos cos 000ϕϕθθθθγ-+=⇒ ]ln 1[ln 21),( Green 2.1000MM MM r Rr M M G ρπ-=函数为园的注 )P o i s s o n ()()c o s (221),(D i r i c h l e t 20002022200公式问题的解为相应的⎰--+-=πθθθθρρρπθρd f R R R u。