勾股定理-探索勾股定理
北师版八年级数学上册第一章 勾股定理1 探索勾股定理

式中,涉及三个量,可“知二求一”.如果在直角
三角形中,已知两边的比值和另一边时,通常引入
一个辅助量,建立方程来求未知的边 .
2.运用勾股定理时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能情况,以免漏解或错解 .
知1-练
例1 [母题 教材P4习题T1]在Rt△ABC中, ∠A,∠B,∠C 的对边分别为a,b,c,∠C=90° . (1)已知a=3,b=4,求c; (2)已知c=13,a=5,求b.
a2=c2-b2; b2=c2-a2
知1-讲
图示
感悟新知
知1-讲
勾股定理把“形”与 “数”有机地结合
基本思想
起来,即把直角三角形这个“形”与三 边关系这一“数”结合起来,它是数形
结合思想的典范
感悟新知
特别提醒
知1-讲
1. 在 Rt △ ABC 中,∠ C=90°,∠ A,∠ B,∠C的
对边分别为a,b,c,则有关系式a2+b2=c2. 在此关系
特别提醒
知2-讲
通过拼图验证定理的思路:
1. 图形经过割补拼接后,只要没有重叠、没有空隙,面积就不
会改变;
2. 根据同一种图形的面积的不同表示方法列出等式;
3. 利用等式性质变换验证结论成立.
即拼出图形→写出图形面积的表达式→找出等量关系→恒等变
形→推导结论.
续表 方法
伽菲尔德 总统拼图
图形
知2-讲
知1-练
感悟新知
1-1.在 Rt △ ABC 中,∠ C=90 °,∠ A,∠ B,∠ C知1-练 的对边分别为 a,b, c. 若 a ∶ b=3 ∶ 4,c=75, 求 a, b. 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15(负值已舍去). 所以a=3×15=45,b=4×15=60.
北师大版八年级数学上册第一章勾股定理第1课探索勾股定理课件

2. 如图,正方形ABCD的面积为25 cm2,△ABP为直角三角形, ∠APB=90°,且PB=3 cm,那么AP的长为( C )
A. 5 cm
B. 3 cm
C. 4 cm
D. 不能确定
3. 在Rt△ABC中,斜边BC=4,则BC2+AB2+AC2= 32 . 4. 如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和 为 49 cm2.
第一章 勾股定理
1 探索勾股定理 第1课时
1. 直角三角形三边存在的关系:在直角三角形中,任意两条边确定了,另 外一条边也就随之 确定 ,三边之间存在着一种特定的 数量 关系.
2. 我国古代把直角三角形中较短的直角边称为 勾 ,较长的直角边称为 股 , 斜边称为 弦 .
3. 勾股定理:直角三角形两直角边的 平方和 等于斜边的 平方 .如果用a, b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 .
4. 如图,在△ABC中,∠C=90°. (1)若已知a,b,则c2= a2+b2 ; (2)若已知a,c,则b2= c2-a2 ; (3)若已知b,c,则a2=长分别为3和4,下列说法中正确的是( C )
A. 斜边长为25
B. 三角形的周长为25
C. 斜边长为5
D. 三角形的面积为20
2. 三个正方形的面积如图所示,则S的值为( C )
A. 3
B. 4
C. 9
D. 12
3. 在Rt△ABC中,∠C=90°,AB=25,AC=7,则△ABC的面积为84 . 4. 如图,为了测得湖两岸点A和点B之间的距离,一个观测者在点C设桩, 使∠ABC=90°,并测得AC=20m,BC=16m,则点A和点B之间的距离是 12 m.
《探索勾股定理》教案设计有趣的勾股定理数学游戏

【前言】勾股定理是我们学习数学时最基础的知识之一。
作为一名优秀的数学老师,如何让学生在轻松愉快的氛围中掌握勾股定理呢?经过反复研究,我给大家带来了一个有趣的勾股定理数学游戏——《探索勾股定理》教案设计。
【教案设计】一、活动目的1.掌握勾股定理的基本概念和运用方法。
2.培养学生的逻辑思维和数学分析能力。
3.通过实践提高学生的空间想象能力。
二、活动准备1.游戏道具:带刻度的正方形模型和带刻度的平行四边形模型;固定长度的木棒。
2.活动环境:宽敞明亮的活动场地,大屏幕电视。
三、活动过程1.引导学生分工合作,每个小组从模型材料中制作出三角形。
2.学生在制作三角形之后,按照勾股定理的要求,测量并填写三角形每个角度及边长,同时对三角形面积进行计算。
3.根据已知数据(两个边长和一角度),学生利用勾股定理计算三角形第三边的长度。
4.通过比较计算结果和测量结果,验证勾股定理的正确性。
5.游戏深入:每个小组在制作好的三角形上,用木棒连成等腰直角三角形,并在最长的一边上刻度,计算出每个直角边的长度。
6.游戏拓展:将学生为每个直角边涂上颜色,并在屏幕上显示每个小组制作的三角形成品,让学生自己观察,看看是不是每组画出的直角三角形边长总和相等。
四、活动收获1.游戏过程中,学生通过制作三角形、计算量角器的角度、测量三角形的边长和面积,以及应用勾股定理和弦正切公式,增进了对勾股定理的理解。
2.在游戏深入环节中,学生动手制作、参与计算,强化了对勾股定理的记忆和运用能力。
3.在游戏拓展环节中,学生通过观察屏幕上的成品图形,巩固了对勾股定理的理解,并加强了对图形的空间想象力。
【总结】通过这个游戏,学生不仅能够更深刻地理解勾股定理,而且在游戏的实践中提高了自己的数学能力。
教师也可以通过观察学生的实践表现,及时发现和纠正学生的错误思考方式,减少学生的盲点和误区。
让我们一起来探索勾股定理,让数学就在有趣的游戏中学起来!。
探索勾股定理ppt课件

左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾
股
我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?
?
10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进
1 探索勾股定理第2课时

a
b
用“外镶法”拼图
拓展阅读
2002年的数学家大会(ICM-2002)在北京召开,这届大 会会标的中央图案正是经过艺术处理的弦图,这既标志着中 国古代的数学成就,又像一只转动的风车,欢迎来自世界各 地的数学家们!
这种验证勾股定理的方法,据载最早是三国时期数学 家赵爽在为《周髀算经》作注时给出的,我国历史上将此 图称为弦图。
“总统证明法”
新知归纳
“勾股定理”的验证方法: 1.数形结合法: (1)拼正方形图: 运用正方形面积表达式进行证明; (2)拼梯形图: 运用梯形面积表达式进行证明。
例、我方侦察员小王在距离东西向公路400米处侦察,发 现一辆敌方汽车在公路上疾驶。他赶紧拿出红外测距仪, 测得汽车与他相距400米,10秒后,汽车与他相距500米, 你能帮助小王计算敌方汽车的速度吗?
为了寻求上图中的三个正方形的面积之间的关 系,小明对大正方形适当画线后,得到下图。
用“数格子法”发现: “两直角边的平方和 等于斜边的平方”。
(1)将图中所有三角形和 正方形的面积用a,b,c的 关系式表示出来;
(2)图中正方形ABCD 的面积是多少?你有哪 些表示方法?与同伴进 行交流。
用“内嵌法”拼图
3.如图,受台风“圆规”影响,一棵高18米的大树断 裂,树的顶部落在离树根底部6米处,这棵树折断后 有多高?
18-x x
6米
4.如图,折叠长方形ABCD的一边AD,使点D落在BC 边的F点处,若AB=8cm,BC=10cm,求EC的长。
A
10
D
8
10
E
B
F
C
“勾股定理”的验证方法: 1.数形结合法: (1)拼正方形图: 运用正方形面积表达式进行证明; (2)拼梯形图: 运用梯形面积表达式进行证明。
八年级数学探索勾股定理

100%
解决物理问题
勾股定理在解决物理问题中也有 着广泛的应用,如求物体的速度 、加速度等。
80%
建立物理模型
勾股定理可以用来建立物理模型 ,如建立质点运动模型、弹性碰 撞模型等。
在日常生活中的应用
建筑测量
在建筑测量中,勾股定理可以 用来确定建筑物的角度和长度 ,以确保建筑物的稳定性和安 全性。
航海定位
八年级数学探索勾股定理
目
CONTENCT
录
• 引言 • 勾股定理的证明 • 勾股定理的应用 • 勾股定理的扩展 • 勾股定理的探索与发现
01
引言
勾股定理的背景
勾股定理是数学中一个基本而重要的定理,它揭示 了直角三角形三边之间的数量关系。这个定理在古 代文明中就已经被发现和应用,如古希腊、古中国 和古巴比伦等。
勾股定理的推广在几何学中有着广泛的应用,它可以用来判 断一个三角形是否为直角三角形,也可以用来证明一些与三 角形相关的定理和性质。
勾股定理在复数域中的应用
勾股定理在复数域中的应用是指将勾股定理应用到复数领域 中。在复数域中,勾股定理仍然成立,即对于任意两个复数a 和b,有a^2 + b^2 = c^2,其中c是a和b的模长。
在西方,勾股定理最早可以追溯到公元前6世纪,古 希腊数学家毕达哥拉斯学派发现了直角三角形三边 之间的数量关系,并给出了证明。
在中国,勾股定理也被称为商高定理,最早的记载 可以追溯到周朝时期的《周髀算经》。
勾股定理的重要性
勾股定理是几何学中的基石之 一,它不仅在数学领域有着广 泛的应用,而且在物理学、工 程学、天文学等领域也有着重 要的应用。
勾股定理在三角函数、解析几 何、微积分等数学分支中也有 着广泛的应用,是数学学习中 不可或缺的一部分。
《探索勾股定理》勾股定理PPT课件(第1课时)

巩固新知
1.求下列直角三角形中未知边的长:
常见整数的平方 (大于10)
12
112 = 121 242 = 576
8
17
5
122 = 144 252 = 625 132 = 169 302 = 900
x
142 = 196 402 =
历史课件: . /kejian/lishi/
c
数是根据圆形和方形的数学道理计算得来的。 圆来自方,而方来自直角三角形,直角三角形是根 据乘法九九表算出来的。如果将一线段折成三段围 成直角三角形,一直角边(勾)为三,另外一直角
边(股)为四,则斜边(弦)就是五。
勾股定理是关于什么图形的定理?
答:关于直角三角形三边的关系
解:∵在Rt△ADC中,AD=12,AC=13(已知), ∴由勾股定理,得CD2=AC2-AD2=132-122=52, ∵CD=5.BC=14(已知), ∴BD=14-5=Hale Waihona Puke . 在Rt△ABD中,由勾股定理,得
AB2=AD2+BD2=122+92=152, ∴AB=15.
课堂小结
如果直角三角形两直角边长分别为a,b,
《周髀算经》曾记载记录着商高和周公的一段对话。
我早就听说您是擅长数 学的人,请问古代伏羲测量天文 制定历法,可没有登天的台阶,又 不能测量大地的尺寸,这数据是
怎么来的呢?
ppt模板: . /moban/
ppt素材: . /sucai/
ppt背景: . /beijing/
ppt图表: . /tubiao/
(2)△ABC的a=6,b=8,则c=10.
《探索勾股定理》 说课稿

《探索勾股定理》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《探索勾股定理》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“勾股定理”是初中数学中的重要定理之一,它揭示了直角三角形三边之间的数量关系。
本节课是在学生已经学习了直角三角形的相关知识的基础上进行的,通过对勾股定理的探索和证明,不仅可以加深学生对直角三角形的认识,还能为后续学习解直角三角形等内容奠定基础。
本节课的教材内容注重引导学生通过观察、猜想、验证等活动,自主探究勾股定理的形成过程,培养学生的数学思维能力和创新意识。
二、学情分析在知识方面,学生已经掌握了直角三角形的基本性质,如直角三角形的两个锐角互余等,但对于直角三角形三边之间的数量关系还没有深入的了解。
在能力方面,学生具备一定的观察、分析和归纳能力,但在逻辑推理和证明方面还需要进一步的培养和提高。
在心理特点方面,初中生具有较强的好奇心和求知欲,喜欢动手操作和探索新知识,但在学习过程中可能会出现注意力不集中、缺乏耐心等问题。
三、教学目标1、知识与技能目标(1)理解勾股定理的内容,会用勾股定理进行简单的计算。
(2)经历勾股定理的探索过程,培养学生的观察、猜想、归纳和验证能力。
2、过程与方法目标(1)通过观察、猜想、验证等活动,让学生体会从特殊到一般的数学思想方法。
(2)在探索勾股定理的过程中,培养学生的合作交流意识和创新精神。
3、情感态度与价值观目标(1)通过对勾股定理历史的了解,激发学生的学习兴趣和民族自豪感。
(2)在探究活动中,让学生体验成功的喜悦,增强学习数学的信心。
四、教学重难点勾股定理的内容及其应用。
2、教学难点勾股定理的证明。
五、教法与学法1、教法为了实现教学目标,突破教学重难点,我将采用以下教学方法:(1)情境教学法:通过创设生动有趣的问题情境,激发学生的学习兴趣和探究欲望。
(2)启发式教学法:在教学过程中,通过设置问题,引导学生思考、分析和解决问题,培养学生的思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理-探索勾股定理
要点一、勾股定理
直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222
a b c +=.
要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.
(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长
可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.
(3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2
22c a b ab =+-.
补充:平方数
例1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .
(1)若a =5,b =12,求c ;
(2)若c =26,b =24,求a .
例2.若直角三角形的三边长分别为2,4,x ,则x 的值可能有( )
A .1个
B .2个
C .3个
D .4个
举一反三:
1.在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .
(1)已知b =6,c =10,求a ;
(2)已知:3:5a c =,b =32,求a 、c .
2.Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( )
A .8
B .4
C .6
D .无法计算 3.在Rt △ABC 中,∠A ,∠B ,∠C 的对边分别是c b a ,,,若3=a ,4=b ,则 2c =
要点二、勾股数
满足222c b a =+的三个正整数,称为一组勾股数
常见的勾股数有:3,4,5;5,12,13;6,8,10;7,24,25;8,15,17等
注:勾股数的任意正数倍仍然满足勾股定理
例1: 在下列数组①3,4,5;②4,5,6;③5,12,13;④6,8,10;⑤7,40,41;⑥8,
15,17;⑦10,24,26 中,勾股数组有:______________
要点三、勾股定理的证明
方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.
图(1)中,所以.
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.
图(2)中,所以.
方法三:如图(3)所示,将两个直角三角形拼成直角梯形.
,所以.
例1、阅读下面的材料
勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.
由图1可以得到(a+b)2=4×,
整理,得a2+2ab+b2=2ab+c2.
所以a2+b2=c2.
如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:
由图2可以得到,
整理,得,
所以.
要点四、勾股定理的作用
1.已知直角三角形的任意两条边长,求第三边
例1.如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.求AB与BC的长.
例2.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6C.8D.10
举一反三:
1.如图,已知在△ABC中,CD⊥AB于D,AC=8,BC=5,DB=3.
(1)求DC的长;
(2)求AB的长.
2.如图,∠B=∠ACD=90°,BC=3,AD=13,CD=12,求AB的长
2.与勾股定理有关的面积计算
例1.我们已经知道,以直角三角形a,b,c为边,向外分别作正方形,那么S1+S2=S3.如图,如果以直角三角形三条边为直径向外作半圆,是否也存在S1+S2=S3?如果以三条边向外作等边三角形呢?
例2.求出下列各图中阴影部分的面积(单位:cm2).
例
3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,求正方形A,B,C,D的面积的和.
变式练习:
1.如图,分别以直角三角形的三边作三个半圆,且S1=30,S2=40,则S3等于()
2.如图中字母A所代表的正方形的面积为()
A.4 B.8 C.16 D.64
3.如图,带阴影的长方形面积是()
A.9cm2B.24cm2 C.45cm2 D.51cm2
4.如图所示,三个正方形中两个的面积分别为S1=100,S
=64,则中间的正方形的面积S3为()
2
A.36
B.60
C.24
D.48
5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S =8,S4=10,则S=()
3
A.25
B.31
C.32
D.40
3.勾股定理在实际生活中的应用.
例
1.如图所示,一棵大树在一次强烈台风中于离地面9米处折断倒下,树顶落在离树根1 2米处.大树在折断之前高多少?
例
2.台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,求旗杆在什么位置断裂的?
例3.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.
举一反三:
1.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).
2.如图,两根直立的竹竿相距6m,高分别为4m和7m.求两竹竿顶端间的距离AD.
3.一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处,木杆折断以前有多少米?。