随机数的产生
随机数的生成方法

常 用 方 法 乘同余法 混合同余法 M xn+1 (modulus), ), λxn 余
1.乘同余法 .
x n + 1 ≡ λx n (mod M ) rn = x n M
λ M 乘 ,M 同余 x0 (
r1,r2,…, , 即在(0, 1)上均匀分布的随机数序列 即在 上均匀分布的随机数序列. 上均匀分布的随机数序列 例2 取x0=1,λ=7,M=103,有 , , λx0=7×1=7 , x1=7 , r1=7/1000=0.007 × λx1=7×7=49 , x2=49 , r2=49/1000=0.049 × λx2=7×49=343 , x3=343 ,r3=343/1000=0.343 × λx3=7×343=2401 , x4=401 , × 其余类推. 其余类推 r4=401/1000=0.401 λx4=7×401=2807, x5=807 , r5=807/1000=0.807 ×
- (2) 若 P(n-1)<r≤P(n) ,则令 取值为 n. 则令X 取值为x 离散型随机变量X的分布律如下 例3 离散型随机变量 的分布律如下
X=x 0 P(x) 0.3
1 0.3
2 0.4
随机数, 设r1,r2,…,rN是RND随机数,令 , 随机数
0, xi = 1, 2,
取定种子x 取定种子 0=71,得 , 97x0+3=6890, x1=890, r1=0.890 , , 97x1+3=86333, x2=333, r2=0.333 , ,
97x2+3=32304, x3=304, r3=0.304 , , 97x3+3=29491, x4=491, r4=0.491 , , 97x4+3=47830, x5=630, r5=0.630 , , 余类推,接下来的随机数是: 余类推,接下来的随机数是: 0.113,0.964,0.511,0.570,0.293,0.424, , , , , , , 0.131,0.710,0.873,0.684,0.351,0.050, , , , , , , 0.853… 有下述问题: 有下述问题: 是有周期的, 1.数列 n}是有周期的,周期 数列{r 是有周期的 周期L≤M(模数); 数列 (模数) 个相异值, 因0≤xn≤M,数列 n}最多有 M个相异值, ,数列{x 最多有 个相异值 从而{r 也同样如此 也同样如此. 从而 n}也同样如此
随机数的产生课件

均匀性
总结词
均匀性是指随机数生成器生成的数字在 预期范围内分布的均匀程度。
VS
详细描述
随机数序列的分布应该尽可能均匀,以确 保每个数字出现的概率接近预期的概率。 如果生成的随机数在某个范围内过于集中 ,或者某些数字出现的频率明显高于其他 数字,那么这种随机数生成器就不具备好 的均匀性。
独立性
总结词
独立性是指随机数生成器生成的数字之间相 互独立的程度。
详细描述
独立性意味着生成的每个随机数不应该依赖 于之前生成的数字。如果生成的随机数之间 存在依赖关系,那么这种随机数生成器就不 具备好的独立性。独立性是评估随机数生成 器性能的重要指标之一,因为在实际应用中 ,我们通常需要独立的随机数来进行各种计 算和模拟。
决策支持
在模拟和预测模型中,随 机数用于生成各种可能的 场景和结果,为决策提供 支持。
04
随机数生成器的性 能评估
周期性
总结词
周期性是指随机数生成器在经过一定数量的迭代后重复生成数字的特性。
详细描述
周期性是评估随机数生成器性能的重要指标之一。一个好的随机数生成器应该 有较长的周期,即能够持续生成新的随机数序列,而不是快速地重复之前的数 字。周期性越长,随机数生成器的可靠性越高。
素。
05
随机数生成器的选 择与使用
根据应用需求选择合适的随机数生成器
伪随机数生成器
适用于需要大量随机数但不需要高度随机性的场景,如模拟、游戏 、测试等。
真随机数生成器
适用于需要高度随机性和安全性的场景,如密码学、统计学、科学 计算等。
混合随机数生成器
结合伪随机数生成器和真随机数生成器的优点,适用于对随机性和安 全性都有一定要求但不需要达到最高标准的场景。
随机数的生成方法

随机数的生成方法
一、随机数的定义
随机数是指一组无规律的数字组合,每一次随机出来的结果都完全不同。
随机数是在一定范围内取出一个完全随机的数,用于计算机系统中一
些需要给定一组随机数、模拟实际环境的应用场合。
随机数可以实现一定
的不可预测性,是计算机安全性的重要保障,在数据传输安全、加密技术
中有着重要的作用。
1、基于数学模型的方法
a)均匀分布的随机数生成
均匀分布的随机数是在给定的[A,B](A<B)之间取出一个完全随机的数,即数学上的均匀分布。
一种常用的均匀随机数生成方法是线性同余法,它
的实现步骤如下:
①确定一个循环移位寄存器R,其状态位数为n,状态序列的周期为
2^n,即从0到2^n-1;
②确定一个模数运算法则,用于对R进行变换;
③设置初值R0,在此基础上,依次计算R1,R2,R3,…,Rn;
④通过将状态序列Ri映射为[A,B]区间内的均匀分布随机数。
b)指数分布的随机数生成
指数分布的随机数生成可以利用指数函数的特性,其核心思想是:以
一些概率将一个离散型随机变量转换为连续性随机变量,再根据指数函数
求出该随机变量的概率分布,从而产生均匀分布的概率分布。
指数分布随机数生成的实现步骤如下:。
随机数产生的方法

随机数产⽣的⽅法1. 随机数产⽣的⽅法:最⼩值+Math.random()*最⼤值;范围 [最⼩值,最⼤值] 。
public class suijishu {public static void main(String[] args){int n;for(int i=0;i<20;i++){n=(int)(Math.random()*6);System.out.print(n+" ");if((i+1)%5==0)System.out.println(" ");}}}产⽣范围在 [0,6]之间。
2.⽤new.random.nextInt(26)输出⼀个处于0到26的整数public class suijishu {public static void main(String[] args){Random rand=new Random();System.out.println("rand.nextBoolean():"+rand.nextBoolean());System.out.println("rand.nextFloat():"+rand.nextFloat());//⽣成⼀个0.0到1.0之间的伪随机float数。
System.out.println("rand.nextDouble():"+rand.nextDouble());//⽣成⼀个0.0到1.0 之间的伪随机double数。
System.out.println("rand.nextInt(10):"+rand.nextInt(10));//⽣成⼀个0到10的伪随机整数。
System.out.println("rand.nextLong():"+rand.nextLong());//⽣成⼀个处于long整数取值范围的整数。
3.2.2(整数值)随机数的产生

1.随机数可以由抽签法产生,也可以 由计算机或计算器随机产生. 2.利用随机模拟法获得的事件发生的 可能性的大小数据也是一种频率,只能是随 机事件发生的概率的一种近似估计,但是, 由于随机数产生的等可能性,这种频率比较 接近概率.并且,有些试验没法直接进行 (如下雨),故这种模拟试验法在科学研究中 具有十分重要的作用.
下面是用Excel软件模拟的结果:
其中A,B,C三列是模拟三天的试验结果,例如
第一行前三列为888,表示三天均不下雨. 统计试验的结果.D,E,F列为统计结果.其中D 列表示如果三天中恰有两天下雨,则D为1,否则D为0, 其公式为“=IF(OR(AND(A1<4,B1<4,C1>3),
AND(A1<4,B1>3,C1<4),AND(A1>3,B1<4,C1<
的结果.设共产生了这样的N组数;
⑶统计这N组数中恰有k个表示事件A发生的数组的组数m, m 则n次重复试验中事件A恰好发生k次的概率近似为 N
用随机数模拟复杂事件的概率
盒中有除颜色外其他均相同的5只白球2只黑 球,用随机模拟法求下列事件的概率: (1)任取一球,得到白球; (2)任取三球,都是白球.
变例:
天气预报说,在今后的三天里,每
一天下雨的概率均为40%,这三天中恰有两天下雨 的概率是多少? 解析:解决这类问题的关键环节是概率模型的 设计,这里试验出现的可能结果是有限个,但是每 个结果的出现不是等可能的,不能用古典概型来求
概率,我们考虑用计算器或计算机来模拟下雨出现
的概率为40%,方法很多.
这次相当于做了20次试验,在这组数中,如果3个数均 在1,2,3,4,5,6中,则表示三次都投中,它们分别是 113,432,256,556,即共有4个数,我们得到了三次投篮都投中 4 的概率近似为 =20%. 20
随机数生成公式

随机数生成公式随机数生成公式是一种计算机程序中常用的技术,可以生成随机的数字,用于模拟和实验等场景中。
本文将介绍几种常见的随机数生成公式及其应用场景。
一、线性同余法(Linear Congruential Method)线性同余法是一种简单而又高效的随机数生成方法,其公式为:Xn+1 = (aXn + c) mod m其中Xn为当前随机数,a、c、m为常数,mod为模运算符。
该公式的原理是通过不断迭代计算,每次得到一个新的随机数。
该方法的优点是计算速度快,缺点是会产生周期性重复的随机数序列。
该方法常用于模拟和实验场景中。
二、梅森旋转算法(Mersenne Twister)梅森旋转算法是一种广泛应用的随机数生成方法,其公式为:Xn+1 = Xn⊕(Xn >> u)其中Xn为当前随机数,⊕为异或运算符,>>为右移运算符,u为常数。
该公式的原理是通过对当前随机数进行位运算,得到一个新的随机数。
该方法的优点是生成的随机数序列较为均匀,缺点是计算速度较慢。
该方法常用于加密和安全场景中。
三、高斯分布随机数生成公式(Gaussian Distribution)高斯分布随机数生成公式是一种生成符合正态分布(高斯分布)的随机数的方法,其公式为:X = μ + σ * Z其中μ为均值,σ为标准差,Z为符合标准正态分布的随机数。
该公式的原理是通过对标准正态分布进行线性变换,得到符合正态分布的随机数。
该方法的优点是生成的随机数符合实际分布规律,缺点是计算量较大。
该方法常用于金融和统计场景中。
四、指数分布随机数生成公式(Exponential Distribution)指数分布随机数生成公式是一种生成符合指数分布的随机数的方法,其公式为:X = -ln(U) / λ其中U为符合均匀分布的随机数,ln为自然对数函数,λ为指数分布的参数。
该公式的原理是通过对均匀分布进行变换,得到符合指数分布的随机数。
高中数学课件- (整数值)随机数的产生
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
1.了解随机数的意义. 2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率. 3.理解用模拟方法估计概率的实质.
3.2.2
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
3.2.2
1.随机数
要产生 1~n(n∈N*)之间的随机整数,把 n 个 大小形状
(1)选定 A1 格,键入“=RANDBETWEEN(0,9)”,按 Enter 键,则在此格中的
数是随机产生的;
(2)选定 A1 格,点击复制,然后选定要产生随机数的格,比如 A2 至 A100,点
击粘贴,则在 A2 至 A100 的数均为随机产生的 0~9 之间的数,这样我们就很
快就得到了 100 个 0~9 之间的随机数,相当于做了 100 次随机试验.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
探究点一:随机数的产生
3.2.2
分析 2 能不能用古典概型求概率的公式求三天中恰有两天下雨的概率?为什么? 答 不能,因为试验结果出现不是等可能的,不能用古典概型公式,只好采取
随机模拟的方法求频率,近似看作概率.
分析 3 如果采用随机模拟的方法,如何操作?
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
探究点二:随机模拟方法
3.2.2
反思与感悟 整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪
些数代表不同的试验结果.我们可以从以下三方面考虑:
随机数产生原理
随机数产生原理
随机数在计算机领域中有着广泛的应用,它们可以用于密码学、模拟实验、随机算法等多个领域。
那么,随机数是如何产生的呢?
本文将从硬件和软件两个方面来介绍随机数的产生原理。
首先,我们来看硬件随机数的产生原理。
硬件随机数是通过物
理过程来产生的,这些物理过程具有不可预测性和不确定性。
常见
的硬件随机数产生器包括基于热噪声的随机数发生器、基于量子效
应的随机数发生器等。
其中,基于热噪声的随机数发生器利用了电
子元件的热噪声来产生随机数,而基于量子效应的随机数发生器则
利用了量子力学中的不确定性原理来产生随机数。
这些硬件随机数
产生器能够产生高质量的随机数,具有很好的随机性和不可预测性。
其次,我们来看软件随机数的产生原理。
软件随机数是通过算
法来产生的,这些算法被称为伪随机数生成器。
伪随机数生成器使
用一个起始值,通过一系列的计算得到随机数序列。
常见的伪随机
数生成算法包括线性同余发生器、梅森旋转算法、随机数表法等。
这些算法能够产生看似随机的数列,但实际上是确定性的。
因此,
在使用软件随机数时,需要注意选择合适的种子和算法,以避免出
现可预测的随机数序列。
总结来说,随机数的产生原理可以分为硬件随机数和软件随机数两种。
硬件随机数利用物理过程的不可预测性来产生随机数,具有很好的随机性和不可预测性;而软件随机数则是通过算法来产生的,是确定性的。
在实际应用中,我们需要根据具体的需求选择合适的随机数生成方法,以确保随机数的质量和安全性。
(整数值)随机数(random numbers)的产生 课件
(2)任取三球,恰有两个白球; 解 三个数一组(每组内不重复),统计总组数 M 及恰好有两个数小于 6 的 组数 M1,则MM1即为任取三个球,恰有两个白球的概率的近似值. (3)任取三球(分三次,每次放回再取),恰有3个白球. 解 三个数一组(每组内可重复),统计总组数 K 及三个数都小于 6 的组数 K1,则KK1即为任取三球(分三次,每次放回再取),恰有 3 个白球的概率的 近似值.
(整数值)随机数(random numbers)的产生
知识点一 基本事件
思考 掷一枚质地均匀的硬币两次,观察哪一面向上,结果有哪些? 答案 结果有4个,即正正、正反、反正、反反.
梳理 基本事件 (1)定义:在一次试验中,所有可能出现的基本结果中不能再分的最简 单的 随机 事件称为该次试验的基本事件. (2)特点:①任何两个基本事件是 互斥 的;②任何事件(除不可能事件) 都可以表示成基本事件的 和 .
2.伪随机数的产生 (1)规则:依照确定算法. (2)特点:具有周期性(周期很长). (3)性质:它们具有类似 随机数 的性质. 计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数 . 3.产生随机数的常用方法 (1) 用计算器产生 .(2) 用计算机产生 .(3) 抽签法 .
4. 随机模拟方法(蒙特卡罗方法) 利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到 的 频率 来估计 概率 ,这种用计算机或计算器模拟试验的方法称为随 机模拟方法或蒙特卡罗方法.
反思与感悟 (1)做整数随机模拟试验时应注意的相关事项 做整数随机模拟试验时,首先要确定随机数的范围,明确哪个数字代表哪个试 验结果. ①当试验的基本结果的可能性相等时,基本事件总数即为产生随机数的范围, 每个随机数代表一个基本事件; ②当研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字 个数及范围. (2)抽签法、利用计算器或计算机产生随机数方法的比较:抽签法、利用计算器 或计算机均可产生随机数、但抽签法能保证机会均等,而计算器或计算机产生 的随机数为伪随机数,不能保证等可能性,当总体容量非常大时,常用这种方 式近似代替随机数,但结果有一定误差.
人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生
3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机数的产生摘要本文研究了连续型随机数列的产生,先给出了均匀分布的随机数的产生算法,在通过均匀分布的随机数变换得到其他连续型随机数的产生算法.在v c 环境下,我们给出了产生均匀分布随机数的算法,然后探讨了同余法的理论原理.通过均匀随机数产生其他分布的随机数,我们列举了几种通用算法,并讨论各个算法的优缺点,最后以正态分布为例验证高效舍选法的优势. 正文一、 随机数与伪随机数随机变量η的抽样序列12,,n ηηη ,…称为随机数列.如果随机变量η是均匀分布的,则η的抽样序列12,,n ηηη ,…称为均匀随机数列;如果随机变量η是正态分布的随机变量则称其抽样序列为正态随机数列.比如在掷一枚骰子的随机试验中出现的点数x 是一个随机变量,该随机变量就服从离散型均匀分布,x 取值为1,2,3,4,5,6,取每个数的概率相等均为1/6.如何得到x 的随机数?通过重复进行掷骰子的试验得到的一组观测结果12,,,n x x x 就是x 的随机数.要产生取值为0,1,2,…,9的离散型均匀分布的随机数,通常的操作方法是把10个完全相同的乒乓球分别标上0,1,2,…,9,然后放在一个不透明的袋中,搅拦均匀后从中摸出一球记号码1x 后放回袋中,接着仍将袋中的球搅拌均匀后从袋中再摸出一球记下号码2x 后再放回袋中,依次下去,就得到随机序列12,,,n x x x .通常称类似这种摸球的方法产生的随机数为真正的随机数.但是,当我们需要大量的随机数时,这种实际操作方法需要花费大量的时间,通常不能满足模拟试验的需要,比如教师不可能在课堂上做10000次掷硬币的试验,来观察出现正面的频率.计算机可以帮助人们在很短时间产生大量的随机数以满足模拟的需要,那么计算机产生的随机数是用类似摸球方法产生的吗?不是.计算机是用某种数学方法产生的随机数,实际上是按照一定的计算方法得到的一串数,它们具有类似随机数的性质,但是它们是依照确定算法产生的,便不可能是真正的随机数,所以称计算机产生的随机数为伪随机数.在模拟计算中通常使用伪随机数.对这些伪随机数,只要通过统计检验符合一些统计要求,如均匀性、随机性等,就可以作为真正的随机数来使用,我们将称这样产生的伪随机数为随机数.在计算机上用数学方法产生随机数的一般要求如下:1)产生的随机数列要有均匀性、抽样的随机性、试验的独立性和前后的一致性.2)产生的随机数列要有足够长的周期,以满足模拟实际问题的要求.3)产生随机数的速度要快,占用的内存少.计算机产生随机数的方法内容是丰富的,在这里我们介绍几种方法,计算机通常是先产生[0,1]区间上均匀分布的随机数,然后再产生其他分布的随机数.二、均匀分布随机数的产生2.1 算法1在v c的环境下,为我们提供了库函数rand()来产生一个随机的整数.该随机数是平均在0~RAND_MAX之间平均分布的,RAND_MAX是一个常量,在VC6.0环境下是这样定义的:#define RAND_MAX 0x7fff它是一个short 型数据的最大值,如果要产生一个浮点型的随机数,可以将rand()/1000.0这样就得到一个0~32.767之间平均分布的随机浮点数.如果要使得范围大一点,那么可以通过产生几个随机数的线性组合来实现任意范围内的平均分布的随机数.例如要产生-1000~1000之间的精度为四位小数的平均分布的随机数可以这样来实现.先产生一个0到10000之间的随机整数.方法如下:int a = rand()%10000;然后保留四位小数产生0~1之间的随机小数:double b = (double)a/10000.0;然后通过线性组合就可以实现任意范围内的随机数的产生,要实现-1000~1000内的平均分布的随机数可以这样做:double dValue =(rand()%10000)/10000.0*1000-(rand()%10000)/10000.0*1000;则dValue就是所要的值.但是,上面的式子化简后就变为:double dValue = (rand()%10000)/10.0-(rand()%10000)/10.0;这样一来,产生的随机数范围是正确的,但是精度不正确了,变成了只有一位正确的小数的随机数了,后面三位的小数都是零,显然不是我们要求的,什么原因呢,又怎么办呢.先找原因,rand()产生的随机数分辨率为32767,两个就是65534,而经过求余后分辨度还要减小为10000,两个就是20000而要求的分辨率为1000*10000*2=20000000,显然远远不够.下面提供的方法可以实现正确的结果:double a = (rand()%10000) * (rand()%1000)/10000.0;double b = (rand()%10000) * (rand()%1000)/10000.0;double dValue = a-b;则dValue就是所要求的结果.在下面的函数中可以实现产生一个在一个区间之内的平均分布的随机数,精度是4位小数.double AverageRandom(double min,double max){int minInteger = (int)(min*10000);int maxInteger = (int)(max*10000);int randInteger = rand()*rand();int diffInteger = maxInteger - minInteger;int resultInteger = randInteger % diffInteger + minInteger;return resultInteger/10000.0;}但是有一个值得注意的问题,随机数的产生需要有一个随机的种子,因为用计算机产生的随机数是通过递推的方法得来的,必须有一个初始值,也就是通常所说的随机种子,如果不对随机种子进行初始化,那么计算机有一个缺省的随机种子,这样每次递推的结果就完全相同了,因此需要在每次程序运行时对随机种子进行初始化,在v c中的方法是调用srand(int)这个函数,其参数就是随机种子,但是如果给一个常量,则得到的随机序列就完全相同了,因此可以使用系统的时间来作为随机种子,因为系统时间可以保证它的随机性.调用方法是srand(GetT ickCount()),但是又不能在每次调用rand()的时候都用srand(GetT ickCount())来初始化,因为现在计算机运行时间比较快,当连续调用rand()时,系统的时间还没有更新,所以得到的随机种子在一段时间内是完全相同的,因此一般只在进行一次大批随机数产生之前进行一次随机种子的初始化.下面的代码产生了400个在-1~1之间的平均分布的随机数. double dValue[400];srand(GetTickCount());for(int i= 0;i < 400; i++){double dValue[i] = AverageRandom(-1,1);}用该方法产生的随机数运行结果如图1所示:图1 400个-1~1之间平均分布的随机数2.2 算法2:用同余法产生随机数同余法简称为LCG(Linear Congruence Gener-ator),它是Lehmer 于1951年提出来的.同余法利用数论中的同余运算原理产生随机数.同余法是目前发展迅速且使用普遍的方法之一.同余法(LCG)递推公式为1()(mod )n n x ax c m -=+ (n=1,2,…), (1)其中n x ,a ,c 均为正整数.只需给定初值x.,就可以由式(1)得到整数序列{n x },对每一n x ,作变换n u =n x /m ,则{n u }(n=1,2,…)就是[0,1)上的一个序列.如果{n u }通过了统计检验,那么就可以将n u 作为[0,1)上的均匀分布随机数.在式(1)中,若c=0,则称相应的算法为乘同余法,并称口为乘子;若c ≠0,则称相应的算法为混合同余法.同余法也称为同余发生器,其中0x 称为种子.由式(1)可以看出,对于十进制数,当取模m=10k(k 为正整数)时,求其同余式运算较简便.例如36=31236(mod102),只要对21236从右截取k=2位数,即得余数36.同理,对于二进制数,取模m=2k 时,求其同余式运算更简便了.电子计算机通常是以二进制形式表示数的.在整数尾部字长为L 位的二进制计算机上,按式(1)求以m 为模的同余式时,可以利用计算机具有的整数溢出功能.设L 为计算机的整数尾部字长,取模m=2L ,若按式(1)求同余式时,显然有11111;[()/].n n n n n n n ax c m x ax c ax c m x ax c m ax c m -----+<=++≥=+-+当时,则当时,则这里[x]是取x 的整数部分.在电子计算机上由1n x -求n x 时,可利用整数溢出原理.不进行上面的除法运算.实际上,由于计算机的整数尾部字长为L ,机器中可存放的最大整数为2L -1,而此时a 1n x -+c ≥m ≥2L -1,因此a 1n x -+c 在机器里存放时占的位数多于L 位,于是发生溢出,只能存放n x 的右后L 位.这个数值恰是模m=2L 的剩余,即n x .这就减少了除法运算,而实现了求同余式.经常取模m=2L (L 为计算机尾部字长),正是利用了溢出原理来减少除法运算.由式(1)产生的n x (n=1,2,……),到一定长度后,会出现周而复始的周期现象,即{n x }可以由其某一子列的重复出现而构成,这种重复出现的子列的最短长度称为序列n x 的周期.由式(1)不难看出,{n x }中两个重复数之间的最短距离长度就是它的周期,用T 代表周期.周期性表示一种规律性,它与随机性是矛盾的.因此,通常只能取{n x }的一个周期作为可用的随机序列.这样一来,为了产生足够多的随机数,就必须{n x }的周期尽可能地大.由前所述,一般取m=2L ,这就是说模m 已取到计算机能表示的数的最大数值,意即使产生的随机数列{n x }的周期达到可能的最大数值,如适当地选取参数0x ,a ,c 等,还可能使随机数列{n x }达到满周期.三、非均匀分布随机数的产生3.1 一般通用方法 3.1.1组合法组合法的基本思想是把预定概率密度函数f ( x ) 表为其它一些概率密度的线性组合.而这些概率密度的随机抽样容易产生.通过这种避难就易的手段我们也许可以达到较高的输出速度和较好的性能.若分布密度函数f ( x ) 能表为如下式(2)所示的函数项级数的和,1()()i i i f x p f x ∞==∑(2)其 中1i i p ∞=∑,诸f( x )皆为概率密度函数.则依如下步骤可产生分布为f ( x )一次抽样.( 1 ) 产生一个随机自然数I , 使I 服从如下分布律:P ( I = i ) = p i i = 1 , 2 , 3……( 2 ) 产生服从f I ( x )的随机数0X 证明利用全概率公式,有:11()()()()()i i i i P x X x dx P Ii P x X x dx I i p f x dxf x dx∞=∞=<≤+==<≤+|===∑∑故X 服从f ( x ) 分布.我们以产生双指数(或拉普拉斯)分布的随机数为例来简单说明这种方法.双指数分布具有 概率密度函数f ( x ) = 0 . 5xe-, 如图2 :图2 双指数密度函数 f ( x ) 可表为:()0.5()0.5()l r f x f x f x =+ (3)其中()r f x 是指数分布,()l f x 是指数分布的对称分布.故产生双指数分布的抽样可按如下方法: 产生U 1 , U 2~U ( 0 , 1 ) ;若U 1 > 0 . 5 , 则令X = I n U 2,否则X = - I n U 2. 在式(2) 中, 若i →∞, 有p i → 0 ,则可用函数列{()}i i p f x 的前有限项和逼近f ( x ).这是一种近似的方法,与通常的函数逼近原理相同.只要近似的精度 ( 在某种“精度”的意义之下) 达到要求,我们就可以采用近似的方法 .使用组合法时,各f i ( x ) 的抽样应该容易产生,故选用合适的概率密度函数族{ f i ( x )}把任意连续分布表为式(2) ,乃是使用组合法的关键.3.3.2 概率密度变换法这是一种比较新的通用随机数产生方法.其主要的目的是对一般的f(x)找出较好的覆盖函数以达到较高的效率.我们知道,对某一特定的概率密度f(x),我们可以使用最优化技术找到好的覆盖函数.但对于一般情况,我们只能期望产生效率尚可的覆盖函数. H O R M A N N 用概率密度变换的方法生成一曲边梯形作为覆盖函数.其原理如下:使用一个变换函数T (x)把预定密度函数f ( x ) 变换为h ( x ) = T ( f ( x ) ) ,用一个分段线性函数l ( x )覆盖h ( x ),如图2 - 4 左图; h ( x ) 若是上凸的,则T 1-( l ( x ) )将是f ( x ) 的一个较好的覆盖函数,图3 概率密度变换法原理图这个方法在选择合适的T ( x ) ( l o g ( x ) 或1 / x a等) 后,能产生随机数包括了较多的分布类型.这个方法有较短的预处理时间,但需要较多的函数计算,不太适合硬件实现.此外,A h r e n s l用每段为常数的分段函数作为覆盖函数.L e y d o l d基于r a t i o - o f - u n i f o r m s 的方法也是一个通用算法.还有一种近似的方法,其产生的随机数与指定分布的随机数具有相同的前四阶矩,但概率分布不一定相同.这里就不详细介绍了.3.2 我们的方法当前的通用算法的问题是效率不能任意提高,不够灵活. 通常产生每个所需随机数X需以较大的概率计算f ( x )等函数.我们认为在速度要求非常高的场合,计算f ( x )是不利的,尤其以硬件进行函数计算是十分不利的.针对己有通用算法的不足,我们提出了基于组合法的通用算法.主要目的是尽可能地减少三角、指数、对数等超越函数的计算,以便硬件实现.产生任意连续分布随机数的高效舍选算法本文提出一种通用算法,可视需要使效率接近1 , 而且f ( x ) 的计算概率可任意小. 这些优点的取得是以长的预处理时间为代价的.在需要产生大量随机样本的场合( 例如通信系统的误码率测试,可能需要数小时乃至数天的仿真时间) ,本算法将有很大的优势,尽管有看法认为只有能用简单代码实现的算法才会被经常使用.3.2.1 算法原理假定预定的连续概率密度函数f ( x ) 为单峰的( 这是实际的大多数情况) ,已知其峰值点为m .一般f ( x ) 不关于x =m 对称,如图2 -5 .我们假定f ( x ) 定义在有界的区间[ a , b ] 上( 上文说过,对正态分布这类定义区间无限的情况,我们把这个区间取得足够大就可以了) . 直线X=m把f ( x ) 曲线与X轴所围面积分为左右两部分,我们把左右两部分各等分为K份,一共得到2 K个曲边梯形.并用2 K个矩形各自覆盖相应的曲边梯形.如图4所示( 图中各均分为四份) .R i , L i ( i = 1 , 2 , . . . , K -1 )是分点.并令R0=L=m,Lk = a,Rk= b .图4 均分f ( x ) 曲 线与X 轴所围面积我们的想法是利用舍选法的几何意义,分别在上述 2 K 个曲边梯形内均匀投点,从而使随机点在f ( x ) 曲线与x 轴所围的整个区域中均匀分布,这样即可产生f ( x ) 的抽样X . 而在曲边梯形内均匀投点可使用简单舍选法:先在各个矩形内均匀投点,再选出落于相应曲 边梯形内的点. 这种投点法浪费的点只位于各个矩形的一角, 显然效率大大高于简单舍选法.最为重要的是:随着K 的增大,效率会不断提高.另外,只有当投点位于曲边梯形的曲边之下时, 才需计算f ( x ) ,而且计算f ( x ) 概率是随着K 的增加而减小的. 我们每次“ 按概率”随机选中一个曲 边梯形进行投点. 这需要两步完成:先选择左边还是右边,再于此边的K 个曲边梯形中选择一个.这里的概率显然就是面积,这可以从以下的推导中看出来.为清晰起见,我们先阐述随机数的产生法,而把面积的均分这个预处理过程置于随后. 3.2.2 算法推导令()mP f x dx -∞=⎰为左边面积.则左边各曲边梯形面积皆为 P / K ,右边各曲边梯形面积皆为( ( I -P ) / K . f ( x ) 可表为:12111()()()KKi i i i P P f x f x f x KK==-=+∑∑(4)诸ji f ( x ) ( j = 1 , 2 ; i = 1 , 2 . . . k ) 皆为一腰为曲边的梯形形状的概率密度函数.依如下步骤可产生分布为f ( x ) 的一次抽样:S t e p l :产生一个随机自然数J ,使J 服从如下两点分布: P ( J = 1 ) = P , P ( J = 2 ) = 1 - P : S t e p 2 :产生一个随机自然数I , 使I 服从如下均匀分布律:P ( I = i ) = 1 / K , i = 1 , 2 . . . . K ; S t e p 3 : 用基本舍选法产生概率密度为f ( x ) 的随机数X . 证明利用全概率公式,有:2111211()()()(,)1(()())()Kj i KKi i i i P x X x dx P Jj P I i P x X x dx J j I i P P f x f x dxKKf x dx====<≤+===<≤+∣==-=+=∑∑∑∑故x 服从 f ( x ) 分布.下面完整地描述这个方法: S t e p l( 产生J ) :S t e p l . l 产生[ 0 , 1 ] 上的均匀随机数U 1 ;S t e p 1 . 2若U 1 < P ,则返回J = 1 , 否则返回J = 2 ; S t e p 2( 产生I ) :S t e p 2 . l 产生 [ 0 , I ] 上的均匀随机数U 2 ;S t e p 2 . 2 21;I kU x =+⎢⎥⎢⎥⎣⎦⎣⎦表示不大于x 的最大整数.产生 ji f ( x ) 的样本需区别j = 1 与j = 2 两种情况. 图2 - 6 示出j = 2 时一 典型的ji f ( x ) , 用简单舍选法产生其抽样,覆盖函数为矩形. 首先产生一个[ 0 , R i ] 的均匀数, 如它属于[ 0 , R 1i -] 小无需再产生y 轴方向的均匀随机数,接受此均匀数即可;否则还需产生一个Y 轴方向的均匀随机数进行投点,那些落在曲边下方的点被接受,投在矩形右上角的点被舍弃.同理易得j = 1 时的产生法.图5 典型的ji f ( x ) j=2整个S t e p 3 如下: S t e p 3( 产生X ) : i f J = =1{ l o o p :产生[ 0 , 1 ] 上的均匀随机数U 3 , W = ( L 0 - L 1 ) U 3 + L 1 : i f W> L1i -,返回 X = W;e l s e { 产生[ O , l ] 上的均匀随机数V ; if f ( W) - f ( L 1) < ( f ( L1j - ) - f ( L 1 ) ) V 返回X = W;e l s e 舍弃W ,重复l o o p ;} } e l s e{ l o o p : 产生[ 0 , 1 ] 上的 均匀随机数U 3 , W = ( R 1 - R o ) U 3 + R o ;i f W< R 1i -,返回 X = W; e l s e {产生[ 0 , 1 ] 上的均匀随机数V ;i f f ( W) - f ( R 1) C ( f ( R 1I - ) - f ( R 1) ) V , 返回X = W; e l s e 舍弃W ,重复l o o p ;} } 均匀随机数U 2 实际上可由U 1 变换得到, U 3 可由均匀数U2变换得到. 例如从U1 产生U 2 的方法是:当J = l 时, U 1 在[ 0 , P ] 上均匀分布, 故可令U 2 = U l / P ;当J = 2 时, U 1在[ P , 1] 上均匀分布, 故可令U 2 = ( U 1 - P ) / ( 1 - P ) . 从U 2 产生U 3 的方法是:当I = i 时, U 2 在 [ i / K , ( i + l ) / K ]上均匀分布, 故可令U 3 = K ( U 2 - i / K ) . 这样的做法节省了均匀随机数,增加了一些乘法和除法运算.对F P G A 等并行处理的硬件来说,产生均匀随机数是便宜的,除法运算是耗费的,所以我们不提倡减少均匀数的做法. 而对有C P U 的硬件来说, 减少均匀随机数意味着减少了过程调用,也许是值得的. 再介绍预处理过程.各分点需解下列递推方程求得:从i=1开始求解,直至i = K - 1 .这些方程可事先利用软件求解. 3.2.3 算法性能分析影响随机数产生速度的主要因素之一是f ( x ) 的计算,故把产生每个抽样平均计算f ( x )的次数 ( 计算概率)做为一个性能指标.另外舍选法的平均效率也作为一个性能指标,这个指标反映了每产生一个随机数所需的均匀数个数.产生每个样点X 需计算f ( x ) 的平均概率P f 可利用全概率公式计算:其中10i i iL L L L ---的分母是左边第i 个曲边梯形的下底长,分子是下底与上底的差,这个比值就是在此曲边梯形内投点时计算f ( x ) 的概率.10i i i R R R R ---的意义相仿.舍选法的平均效率” 可利用全概率公式计算:11()()11(1)()()L R KKi i L R A i A i P P K B i K B i η===+-∑∑诸(),(),(),()L L R R A i B i A i B i 分别表示左边各曲边梯形面积、左边各矩形面积、右边各曲边梯形面积和右边各矩形面积.在不同的K 值下,计算了算法用于产生正态分布、 指数分布、 瑞利分布三种标准分布时的上述两个性能参数.各个概率密度函数如下: 正态分布:2())2xf x =-指数分布:()xf x e-=瑞利分布:2()exp()48x xf x =-结果如下图6 :左图反映出概率密度函 数的计算概率P f 随K 的增大而减小, 最终趋于零,例如当K = 1 0 2 4 时, P f 已 非常小;右图反映出 舍选法的平均效率随K 的 增加而提高, 最终趋于 1 , 也就是三个均匀随机数产生一个预期的随机数.我们可根据实际情况选择合适的K 值.图6 计算概率密度函数的概率3.3正态分布的随机数的产生下面提出了一种已知概率密度函数的分布的随机数的产生方法,以典型的正态分布为例来说名任意分布的随机数的产生方法.如果一个随机数序列服从一维正态分布,那么它有有如下的概率密度函数:22()2()xf xμσ--=其中μ,σ(>0)为常数,它们分别为数学期望和均方差,如果读者对数学期望和均方差的概念还不大清楚,请查阅有关概率论的书.如果取μ =0,σ =0.2,则其曲线为图7 正态分布的概率密度函数曲线从图中可以看出,在μ附近的概率密度大,远离μ的地方概率密度小,我们要产生的随机数要服从这种分布,就是要使产生的随机数在μ附近的概率要大,远离μ处小,怎样保证这一点呢,可以采用如下的方法:在图7的大矩形中随机产生点,这些点是平均分布的,如果产生的点落在概率密度曲线的下方,则认为产生的点是符合要求的,将它们保留,如果在概率密度曲线的上方,则认为这些点不合格,将它们去处.如果随机产生了一大批在整个矩形中均匀分布的点,那么被保留下来的点的横坐标就服从了正态分布.可以设想,由于在μ处的f(x)的值比较大,理所当然的在μ附近的点个数要多,远离μ处的少,这从面积上就可以看出来.我们要产生的随机数就是这里的横坐标.基于以上思想,我们可以用程序实现在一定范围内服从正态分布的随机数.程序如下:double Normal(double x,double miu,double sigma) //概率密度函数{return 1.0/sqrt(2*PI*sigma) *exp(-1*(x-miu)*(x-miu)/(2*sigma*sigma));}double NormalRandom(double miu,double sigma,double min,double max)//产生正态分布随机数{double x;double dScope;double y;do{x = AverageRandom(min,max);y = Normal(dResult, miu, sigma);dScope = AverageRandom(0, Normal(miu,miu,sigma));}while( dScope > y);return x;}参数说明:double m iu:μ,正态函数的数学期望double s igma:σ,正态函数的均方差double m in,double max,表明产生的随机数的范围用如上方法,取μ=0,σ=0.2,范围是-1~1产生400个正态随机数如图8所示:图8 μ=0,σ=0.2,范围在-1~1时的400个正态分布的随机数分布图取μ=0,σ=0.05,范围是-1~1产生400个正态随机数如图9所示:图9 μ=0,σ=0.05,范围在-1~1时的400个正态分布的随机数分布图从图8和图9的比较可以看出,σ越小,产生的随机数靠近μ的数量越多,也说明了产生的随机数靠近μ的概率越大.我们,先产生4000个在0到4之间的正态分布的随机数,取μ=0,σ=0.2,再把产生的数据的数量做个统计,画成曲线,如下图10所示:图10 μ=0,σ=0.2,范围在0~4时的4000个正态分布的随机数统计图从图10中也可以看出,在靠近2处的产生的个数多,远离2处的产生的数量少,该图的轮廓线和概率密度曲线的形状刚好吻合.也就验证了该方法的正确性.有了以上基础,也就用同样的方法,只要知道概率密度函数,也就不难产生任意分布的随机数,方法都是先产生一个点,然后进行取舍,落在概率密度曲线下方的点就满足要求,取其横坐标就是所要获取的随机数参考文献:[1] 肖云茹.概率统计计算方法[M].天津:南开大学出版社,1994.[2]程兴新.曹敏.统计计算方法EM3.北京:北京大学出版社,1989.[3]王永德等.随机信号分析基础.北京:电子工业出版社,2 0 0 3.[4]皇甫堪等. 现代数字信号处理. 国防科技大学电子科学与工程学院内部印刷,2 0 0 2.。